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ABSTRACT

This study aims to synthesise magnesium layered hydroxide-3-(4-
methoxyphenyljpropionate (MLH-MPP) and coated nanocomposites for

controlled release formulation of herbicide. Direct reaction method has been
used to intercalate MPP into the space between layers of MLH. Further,
carboxymethyl cellulose (CMC) and chitosan, was coated on the external

surface of the MLH-MPP nanocomposite to form new materials, named MLH­
MPP/CMC and MLH-MPP/chitosan nanocomposites, respectively. The

physicochemical properties of all nanocomposites were characterised using
powder x-ray diffraction (PXRD), Fourier transform infrared spectroscopy
(FTIR), carbon, hydrogen, nitrogen and sulphur (CHNS) analyser, inductive

coupled plasma optical emission spectrometry (ICP-OES), thermogravimetric
analysis and derivative thermogravimetry (TGAlDTG), field emission scanning
electron microscope (FESEM) and transmission electron microscope (TEM).
Results of this study showed that the XRD pattern revealed an intense and sharp
peak with basal spacing of 18.9 A, which is proved that MPP anions were

successfully intercalated into the space between layers ofMLH in a monolayer
arrangement. The XRD pattern for both coated nanocomposites indicates the

adsorption of the polymer on the surface of MLH-MPP nanocomposite.
TGAlDTG spectra have shown an increase in the thermal stability of the MPP

anion in all nanocomposites. Both coated nanocomposites showed a slower

controlled release compared to the MLH-MPP nanocomposite and the release

behaviours of MPP anion from all nanocomposites were controlled by the

pseudo-second order kinetics. In conclusion, the MLH-MPP and coated

nanocomposites have been successfully synthesised and can be used as a host

for the controlled release formulations of herbicide. The implications from these

results highlight the potential of the nanocomposite as encapsulation materials

for controlled release formulations ofherbicide in the agriculture sector.
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Sintesis Nanokomposit Lapisan Hidroksida Magnesium-3-(4-Metoksifenil)
Propionat Dan Bersalut Untuk Formulasi Pelepasan Terkawal Herbisida

ABSTRAK

Kajian ini bertujuan mensintesis nanokomposit lapisan hidroksida magnesium-
3-(4-metoksifenil)propionat (LHM-MFP) dan bersalut untuk formulasi

pelepasan terkawal herbisida. Kaedah tindak balas langsung telah digunakan
untuk menginterkelasi MFP ke dalam ruang antara lapisan LHM. Selanjutnya,
karboksimetil selulosa (KSS) dan kitosan, masing-masing telah disalut ke atas

permukaan luar nanokomposit LHM-MFP untuk membentuk bahan baru, yang
dinamakan nanokomposit LHM-MFPIKSS dan LHM-MFPlkitosan. Sifat

fisikokimia untuk semua nanokomposit telah dicirikan menggunakan
pembelauan serbuk sinar-x (PSSX), spektroskopi inframerah transformasi

Fourier (IMTF), penganalisis karbon, hidrogen, nitrogen dan sulfur (KHNS),
spektrometri pancaran optik plasma gandingan aruhan (SPO-PGA), analisis

termogravimetri dan termogravimetri terbitan (ATGITGT), mikroskop imbasan

pancaran medan elektron (MIPME) dan mikroskop transmisi elektron (MTE).
Keputusan kajian ini menunjukkan bahawa pola PSSX mendedahkan puncak
yang jelas dan tajam dengan jarak dasar 18.9 A, yang membuktikan bahawa

anion MFP telah berjaya diinterkelasikan ke dalam ruang antara lapisan LHM
dalam susunan monolapisan. Pola PSSX untuk kedua-dua nanokomposit
bersalut menunjukkan terdapatnya penjerapan polimer pada permukaan
nanokomposit LHM-MFP. Spektra ATGITTG telah menunjukkan peningkatan
dalam kestabilan terma bagi anion MFP dalam semua nanokomposit. Kedua­
dua nanokomposit bersalut menunjukkan pelepasan terkawal yang lebih

perlahan berbanding nanokomposit LHM-MFP dan tingkah laku pengeluaran
anion MFP daripada semua nanokomposit dikawal oleh kinetik tertib pseudo­
kedua. Kesimpulannya, nanokomposit MLH-MFP dan bersalut telah berjaya
disintesiskan dan boleh digunakan sebagai perumah bagi formulasi pelepasan
terkawal herbisida, Implikasi dapatan ini telah menyerlahkan lagi potensi
nanokomposit sebagai bahan pengkapsulan untuk formulasi pelepasan terkawal

bagi herbisida dalam sektor pertanian.
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CHAPTER!

INTRODUCTION

1.1 Exploration ofNanotechnology

Nanotechnology has grown tremendously in the past few years and the application of

nanotechnology has developed flourishly. A stained glass window is one of the

example applications of nanotechnology. Stained glass windows that are found in

medieval churches contain different sizes of gold nanoparticles. The specific size of

the particles created orange, purple, red or greenish colour to the glass. Stained glass

windows can also be found in Sultan Abdul Samad Mosque or KLlA mosque. In the

biomedical field, application of nanotechnology can be seen in tissue engineering

scaffolds, drug delivery and cosmetics (Schulte, 2005). Tissue engineering scaffolds

is a synthetic biodegradable tissue that provides temporary templates for cell seeding,

invasion, proliferation and differentiation, resulting in regeneration of biologically
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functional tissue. From the application that was developed, it is proven that

nanotechnology is not just one science, but it touches on a variety of sciences, such as

physics, chemistry, mechanical engineering, materials science and biology. Therefore,

nanotechnology is an interdisciplinary field that is interesting to be explored.

There are a number of definitions used to explain nanotechnology. Roco,

Mirkin and Hersam (2011), stated that nanotechnology is the control and restructuring

of matter at the nanoscale, at the atomic and molecular levels in the size range of

about 1-100 nm. Ramsden (2011), also defined nanotechnology as the application of

scientific knowledge to measure, create, pattern, manipulate, utilize or incorporate

materials and components in the nanoscale. As mentioned before, definitions of

nanotechnology vary, but it generally refers to understand and manipulate of matter

on the nanoscale, from 1 nm to 100 nm (Zhu, Bartos & Porro, 2004). The ability to

control the size of matter is important in order to create materials, devices and

systems with new properties and wide functions.

Nanotechnology has entered one of the most promising scientific fields of

research for decades. This is due to the nanotechnology deals with the production,

processing and application ofmaterials with sizes less than 100 nm, the reduction in

size of matter to nanoscale range will increase to surface-to-volume ratio. Thus,

improved the properties of materials (Neethirajan & Jayas, 2010). For example,

discovery on silicon chips by nanotechnology for two decades has led to the rise of

advances in electronics, computing and communications. Silicon chip is electronics

equipment consisting of a small crystal of a silicon semiconductor fabricated to carry

out a number of electronic functions in an integrated circuit. The advancement created
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a better application like speed, accuracy for nowadays computers and transforms it

from room-sized devices to the portable sized.

The European Technology Platform (ETP) group has defined nanomedicine as

the application of nanotechnology to achieve breakthroughs in healthcare.

Nanotechnology and nanomedicine are rapidly growing fields that encompass the

creation ofmaterials and devices at atomic, molecular and supramolecular level, for

potential clinical use. Advances in nanotechnology have brought us closer to the

development of dual and multi-functional nanoparticles that challenge the traditional

distinction between diagnostic and treatment agents. Nanomedicine consists of several

sub domains including diagnostics and imaging, drug delivery, and regenerative

medicine (Adlakha-Hutcheon et aI., 2009). In January 2005, nanotechnology-based

drug called Abraxane was approved, and it is used in the battle against breast cancer

(Criswell, 2007). Nanomedicine is dominated by nanoparticle drug delivery systems

due to their ability to cross biological barriers, accumulate at tumour sites and

increase the solubility ofdrugs.

Malaysia's goal known as Wawasan 2020 is to become an industrialised and

developed nation by the year 2020. There are nine key points of Wawasan 2020 and

one of them is, to establish a progressive and inventive in science and society. Thus,

Malaysians are encouraged to be contributors to the scientific and technological

civilisation and not only consumers of technology. Therefore, the exploration in

nanotechnology will pave the way ofMalaysia to achieve this Wawasan 2020.
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1.2 Nanomaterial

The term use of nanotechnology and nanomaterials. are often misleading (Bawa,

Audette & Rubinstein, 2016). Nanotechnology referred to the technology used, while

nanomaterials referred to chemical substances or materials that are used at the

nanoscale. Nanomaterials are materials that have structural components smaller than

100 nm in at least one dimension (Khot, Sankaran, Maja, Ehsani & Schuster, 2012).

Nanomaterials are implicated in several domains such as chemistry,

electronics, high-density magnetic recording media, sensors, biotechnology and many

more. The applications of nanomaterials are very wide due to their excellent and

unique optical, electrical, magnetic, catalytic, biological or mechanical properties.

Those properties are originated from finely tuned nanoarchitectures and

nanostructures of these materials (Capek, 2006). The syntheses of nanomaterials are

achieved mainly through two approaches identified as top-down and bottom-up

approach. The top-down approach involves breaking down the bulk size of the

materials to the nanometer scale, while the bottom-up approach refers to the approach

that builds a material up from the bottom. Attrition or milling is a typical top-down

method in making nanoparticles whereas the colloidal dispersion is a good example of

bottom-up method (Cao & Wang, 2011).

Several researches were carried out on the risk faced by the environmental,

health harms and industrial. Thus, nanomaterials give solution for the arising risk.

Earlier in 1900, carbon black was discovered as a nanomaterial that is used in car tyre

to increase the life of the tyre and provide the black colour. Nanomaterials can also be



5

used in the treatment of wastewater. Water is the most essential substance for all

living life. As mention before, nanomaterials often possess novel size-dependent

properties different from their large counterparts. In the treatment of wastewater

utilise the smoothly scalable size-dependent surface area, such as fast dissolution,

high reactivity, strong sorption and superparamagnetism (Qu, Alvarez & Li, 2013).

Nano-absorbents can be integrated into existing treatment processes in slurry reactors

or adsorbers. These nano-adsorbents can be highly efficient since all surfaces of the

adsorbents are utilised and the mixing greatly facilitates the mass transfer. The

example of nano-adsorbents is carbon based nano-adsorbents, like carbon nanotubes

(Cbl'Is) which is used in organic and heavy metal removal (Pan & Xing, 2008). It is

clear that nowadays, nanotechnology and nanomaterials have received a great deal of

interest in the various research areas. Thus, nanomaterials soon will be recognised in

commercial market.

1.2.1 Nanomaterials for Agrochemicals

The development ofnanotechnology collaborates with biotechnology has significantly

expanded the application of nanomaterials in various fields. The application of

nanotechnology in agriculture normally focused on the significance of the

nanomaterials in order to improve the efficiency and productivity. There are some

studies that have been done on the function of nanomaterials towards plant

germination and growth. The effect of nano-size titanium oxide (n-Ti02) on the

germination of tomato, onion and radish seeds had been carried out and the

germination of tomato seed showed the most positive outcomes. The positive results
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are involved with two main reasons which are, the nano size of Ti02 and a great

contact area between this nanomaterials with the root and testa. The acceleration of

seed germination that caused by n-Ti02 depends on the species, surface structure of

testa, timing and method of application of n-Ti02 (Haghighi & Silva, 20 14b). Carbon

nanotubes (CNTs) can be applied to change the morphology and physiology

characteristics of plant cells. Haghighi and Silva (2014a) carried out a research on the

effect of CNT on the seed germination and seeding growth of tomato, onion, radish

and cabbage. From the previous research, it showed that CNTs had a greater positive

impact on germination percentage and seedling length of anion compared to other

crops.

Nanomaterials also help in plant protection and production. Pesticides are used

to protect plant from pests. Nanopesticides can be used to increase the pesticidal

properties, thus give a huge impact to the production plants. There are lots of

researches on nanopesticides carried out nowadays, for examples the nanopesticide

with photocatalysis (Jianhui, Kelong, Yuelong & Suqin, 2005), nanoencapsulation of

imidacloprid with chitosan and alginate (Guan, Chi, Yu & Li, 2010) and the

controlled delivery system of water-soluble pesticide validamycin (Liu et al., 2006).

This is due to the useful properties of nanopesticides itself. Nanopesticides has a

higher stiffness, permeability, crystallinity, thermal stability, solubility and

biodegradability (Bouwmeester et al., 2009). In addition, nanomaterial can also be

applied in agricultural as a pesticide residue detectors and plant pathogen detectors

(Khot et al., 2012).


