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ABSTRACT

A priori error estimation provides information about the asymptotic behavior of the

approximate solution and information on convergence rates of the problem. Contrarily,

a posteriori error estimation derives the estimation of the exact error by employing the

approximate solution and provides a practical accurate error estimation. Additionally,

a posteriori error estimates can be used to steer adaptive schemes, that is to decide the

refinement processes, namely local mesh refinement or local order refinement schemes.

Adaptive schemes of finite element methods for numerical solutions of partial differential

equations are considered standard tools in science and engineering to achieve better

accuracy with minimum degrees of freedom.

In this thesis, we focus on a posteriori error estimations of mixed finite element

methods for nonlinear time dependent partial differential equations. Mixed finite ele

ment methods are methods which are based on mixed formulations of the problem. In a

mixed formulation, the derivative of the solution is introduced as a separate dependent

variable in a different finite element space than the solution itself. We implement the

HI-Galerkin mixed finite element method (HIMFEM) to approximate the solution and

its derivative. Two nonlinear time dependent partial differential equations are consid

ered in this thesis, namely the Benjamin-Bona-Mahony (BBM) equation and Burgers

equation. Our a posteriori error estimations are based on implicit schemes of a posteri

ori error estimations, where the error estimators are locally computed on each element.

We propose a posteriori error estimates by using the approximate solution produced by

HIMFEM and use the a posteriori error estimates to compute the local error estimators,

respectively for the BBM and Burgers equations. Then, we prove that the introduced a

posteriori error estimates are accurate and efficient estimations of the exact errors.

The last part of this study is on numerical studies of adaptive mesh refinement

schemes for the two equations mentioned above. By implementing the introduced a pos

teriori error estimates, we propose adaptive mesh refinement schemes of HIMFEM for

both equations.
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Chapter 1

Introduction

1.1 Subject of study

Disciplines such as engineering, physics, economics and biology involve many real models

which are translated into solving mathematical models, e.g. partial differential equations

in space and time. One of the well-known mathematical models is the boundary value

problem (BVP). For example, a description of waves in electromagnetic and fluid dy

namics is represented by a wave equation with specified boundary conditions, which is

often stated as a boundary value problem.

Consistent with the application of the BVP in real problems, the number of numerical

methods and analysis for solving the BVP is rapidly growing. In general, there is no

closed form for the exact solution u of the BVP. Numerical methods as the finite difference

method, the finite clement method, the finite volume method, and spline interpolation

are used as a tool to compute the approximate solution Ui; of the exact solution u.

Motivated by this situation, our study is considering the finite element method (FEM)

for the boundary value problems.

During the approximation of the BVP, it is normal to question "How good are the

approximate solutions produced by the numerical methods? When should we stop the

computation process and which of the approximate solutions should be taken as the best

approximation to the real problem?" In order to answer these questions, one way is to
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perform another approximation in a specified norm of the exact error e,

i.e. by letting the exact error be approximated such as

Extra concern should be put on deciding the methods to compute values of E, the error

estimator. The computability and cost of computation are factors that are considered

in deciding the efficiency of the error estimation.

In this study, we focus on a posteriori error estimation which is a method to compute

the error estimator. Details about the a posteriori error estimation of finite element

methods can be found in [6, 8J and the references therein. The a posteriori error esti

mation is based on a situation where we have the approximate solutions Ui, which are

generated by a FEM, then our aim is to obtain a quantitative estimate for the exact

error e measured in a specified norm.

A posteriori error estimates provide useful indications of the accuracy of a calculation

and provide a basis for adaptive mesh refinement schemes. We will give the details of

a posteriori error estimation in Chapter 3.

1.2 Scope of study

This study focuses on a posteriori error estimation of a mixed finite element method

(mixed FEM) for the Benjamin-Bona-Mahony equation and Burgers equation. The

mixed FEM is a FEM which is based on a mixed formulation of the problem. In a

mixed formulation, the derivative of the solution u is introduced as a separate dependent

variable in a different finite element space than the solution itself. In this study, we

implement the HI-Galerkin mixed finite element method which is based on the procedure

introduced by Pani [45J. Our scope of study can be categorized into three main parts.

The first part is devoted to a posteriori error estimation of the HI-Galerkin mixed

finite element method for the Benjamin-Bona-Mahony equation. The Benjamin-Bona

Mahony equation is a nonlinear equation which is widely used in modelling physical
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problems involving long waves. The Benjamin-Bona-Mahony equation is studied by

Benjamin et al. as an alternative to the Korteweg-de Vries equation for describing

unidirectional long dispersive waves [12].

Secondly, we study a posteriori error estimation of the HI-Galerkin mixed finite

element method for the Burgers equation. The Burgers equation is a well-known equation

and named after Johannes Martinus Burgers [18, 19]. The Burgers equation is also known

as a nonlinear diffusion equation, and a simplified version of Navier-Stokes equation. We

will give details about the HI-Galerkin mixed finite element method, the Benjamin

Bona-Mahony equation and the Burgers equation in the following chapter (Chapter 2).
The last part of this study is on adaptive schemes for two equations mentioned

above. The a posteriori error estimates are known as a fundamental component in the

designation of efficient adaptive algorithms for solving partial differential equations. By

implementing the a posteriori error estimates introduced in the first two objectives,

our third objective is on numerical studies of adaptive schemes for the Benjamin-Bona

Mahony equation and the Burgers equation.

1.3 Structure of thesis

This thesis consists of six chapters. Chapter 1 is the introduction. In Chapter 2, some

important function spaces, theorems and results are reviewed. We complete Chapter 2

with an introduction for HI-Galerkin mixed finite element method, the Benjamin-Bona

Mahony equation and the Burgers equation.

Chapter 3 is devoted to a general framework of a posteriori error estimation. In

this chapter, we present some known a posteriori error estimation techniques and the

procedure of a posteriori error estimation considered in this study.

In Chapter 4, we present the first contribution of the thesis which is a posteriori

error estimation of HI-Galerkin mixed finite element method for the Benjamin-Bona

Mahony equation. In this chapter, we propose some error estimators to compute the

error estimation of the Benjamin-Bona-Mahony equation. We prove that the introduced

a posteriori error estimates are accurate and efficient approximations of the exact errors.
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We finish this chapter with some numerical experiments.

Our second contribution (Chapter 5) is a posteriori error estimation of H1-Galerkin

mixed finite element method for the Burgers equation. This chapter consists of analysis

and numerical studies of a posteriori error estimation of H1-Galerkin mixed finite element

method for the Burgers equation.

Our third contribution (Chapter 6) is numerical studies of adaptive schemes for

the Benjamin-Bona-Mahony and Burgers equations. We present the procedure of the

adaptive schemes for both equations where the approximate solutions are computed

by H1-Galerkin mixed finite element method and the a posteriori error estimations are

proposed in Chapter 4 and Chapter 5. We finish the chapter with numerical experiments.



Chapter 2

Preliminaries

This chapter provides a range of fundamental results which will be used in the remain

der of the thesis. We begin by introducing some important function spaces. We then

introduce the fundamental results for variational formulation of differential equations.

Important theorems and results that will be used in the analysis of finite element methods

are introduced in the next section. We finish this chapter with an introduction on finite

element discretization, the Hl-Galerkin mixed finite clement method, the Benjamin

Bona-Mahony equation and the Burgers equation, respectively in Section 2.5, Section 2.6

and Section 2.7.

2.1 Function spaces

All of the results stated in this section arc well-known and can be found in different

literatures; see e.g. [16, 53]. Since the equations we study in this thesis are posed in one

spatial dimension, we mention only results for this case.

We let D = (a, b) be an open subset in rn; and u be a scalar function defined on D.

For p E [1,00], the Lebesgue space lY(D) is defined as

U(D) = {u : D ---+ rn;lllulb(st) < oo}.

The lY(D)-norm is defined by

lIuIILP(st) := (12Iu(x)IP dX) lip,
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for 0 < p < 00, and

IluIIL=(D) := inf{C::::: 0: lu(x)1 � C for almost all x En}

for p = 00. A special role is taken when p = 2. The L2(n) is a Hilbert space with the

inner product

(u, v) £2(D) = in u(x)v(x) dx u, v E L2(n)

and the norm IluIIL2(D).
Let <cm(n) be the space of all functions ¢ : n --t IR such that ¢, ¢', ... ,¢(m) are

continuous on n. The space <cO'(n) denoted the space of all functions ¢ E <cm such that

¢(x) = 0 for all x E no for some bounded subset no of n.

We recall the definition of derivative in a weak sense. A function u E V (n) is called

the weak derivative of order m = 1,2,3, ... of a function v E V(n) if

in u(x)¢(x)dx = (_l)m in v(.r,)¢(m)(x)dx V¢ E <cO'(n).

In the following part, we recall the Sobolev spaces and norms to be used in this thesis.

The Sobolev space W;(n), 1 � p < 00 and k = 1,2, ... is defined as

W;(n) := {u E V(n) : u', u",· .. ,u(k)exist in the weak sense}

and W;(n) norm is defined by

(
k

)
lip

'U k:= 'uti)
P

II Ilwp (D) � II tp(D)
When p = 2, we have w:f(n) = Hk(n), which is a Hilbert space equipped with the

inner product

and norm

The space Hg(n) contains all functions in Hk(n) whose traces are zero at a and b.

In the case p = 00, W�(n) norm is defined by

Ilull k := max Ilu(i) II .

Woo (D) o�i9 Loo(D)
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2.2 Notations

In the remaining part of the thesis, we use the following notations for the norm spaces

and inner products. For any p E [1,00) and any normed vector space D, by LP(D) we

denote the space LP(O, T; D) of all functions defined in [0, T), with values in D. We will

write II·IILP(L=) and 11·IILP(Hl) instead of II·IILP(LOO(D)) and 11·IILP(Hl(D)). We will also write

HO(D) = L2(D). The Hn(D) norm, for n = 0,1, ... is represented by Ilu(t)lln instead of

Ilu(t)IIHn(D)· Similarly, we will write IluIIW&,(Hn) instead of Ilullw&,(o,T;Hn(D)).
In general, the inner product in HS(X) is aenoted by (0, ·)HS(X)' where s = 0,1, ...

and X is a subset of lEt In particular, when s = ° and X = [2 we write (., -)0 instead of

(-, ·)HO(D)· When s = 1 and X = [2, we write (., ·)1 instead of (0, ·)Hl(D).
Besides that, when there is no confusions we omit the dependence of the function on

t to avoid crowded notations. For example, we write (u,v)s instead of (u(t),v(t))HS(D).
Finally, for l > 0, we define the local inner product in HS([2l) by

(11,,1I)sD = r u(x)v(x)dx \111,,11 E HS([2l).,l JDl (2.2.1 )

2.3 Important theorems and results

The following well-known results will be frequently used. They are recalled here for the

reader's convenience.

Theorem 2.3.1 (Imbedding Theorem [16, Theorem 1.4.6]). Let k be a positive integer

and p be a r-eal number- in the range 1 ::; p < 00 such that

k 2: 1 when p = 1

k > 1/P when p > 1.

Then ther-e is a constant C such that for all u E W; ([2)

Lemma 2.3.2 (Gronwall's Lemma [11, Theorem 4.2) or [28]). Let ip, 'ljJ and 8 be locally

integrable functions defined on [0, T) which satisfy

8(t) 2: ° and :p(t)::; 'ljJ(t) + lot 8(s)rp(s) ds \It E [0, T].
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Then

r.p(t) < 1jJ(t) + lot 8(s)1jJ(s) exp [it 8(r)dr] ds "It E [0, T].

If 1/) is a constant, then

r.p(t) < 1jJexp [lot 8(s) dS] .

Lemma 2.3.3 (General Gronwall's Lemma [11, Theorem 4.3] or [13, Section 3]). If f3

is a positive constant and 8 is a non-decreasing function satisfying 8(s) > 0 for 8 > 0,

then the inequality

implies

r.p(t) :::; 8-1(t) "It E [0, T*]

where 8-1 is the inverse of

r ds
8(0") = 1(3 8(s)'

0";:::: 0,

and T* = min(T, T1) with [0, T1] being the range of 8.

Proof. Let

1jJ(t) = f3 + lot 8[r.p(T)] dr,
Then from r.p(t) :::; 1jJ(t) and the monotonicity of 8 we deduce

1jJ'(t) 8[r.p(t)]
8[1jJ(t)]

=

8[1jJ(t)]
:::; 1.

This implies

By integrating from 0 to t and noting that 8[1jJ(0)] = 0, we obtain

8[1jJ(t)] < t.

Now if t E [0, T*] then by applying the inverse function 8-1, we obtain 1jJ(t) :::; E-)-I(t),
and thus the required inequality follows from r.p(t) :::; 1jJ(t). o
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2.4 Finite element discretization

In this section, we introduce the hierarchical basis functions of finite element spaces used

in the thesis. We partition the interval f? = (a, b) into

a = .'1:1 < .'1:2 < ... < .'1:N+l = b, (2.4.1)

and let hi := Xl+l - Xl, l = 1, ... , N, and h := max, hi. We define the linear basis

functions by using the hat functions cPll on (Xl-I, XIH) for l = 2, ... ,N, i.e.,

cPll(X) = Xl+l-X
=i;':

0, otherwise.

At the endpoints of n we define

{ x��x , Xl::; X < X2,
cPll(X) =

0, otherwise,
(2.4.2)

and

{ Xh�N, XN::; X < XN+l,
cPN+l,l(X) =

0, otherwise.
(2.4.3)

For l = 1, ... ,N and k = 2,3,4, ... , functions cPlk are defined as antiderivatives of the

Legendre polynomials Pk-l of degree k - 1 scaled to the subinterval [Xl, Xl+l], i.e.,

{� J� Pk-l(Y) dy, ·'1:1::; X < xl+l,
cPlk(X) =

0, otherwise.
(2.4.4)

Figure 2.4 shows functions cPl,k of degree k = 2, ... ,5 on the reference element [-1,1].
Let Sh be the space of piecewise linear functions on f? i.e.,

Sh:= span {cPll,cP2l.·. ,cPN+l,l},

and s, its subspace consisting of functions vanishing at a and b, i.e.,
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0,4 .----�---�----�---�

°

-0.6 a3
4
5

1
-0,6�---�---�----�---_,

-1 -0.5 o 0.5

Figure 2.1: Hierarchical shape functions of degrees 2 (_.), 3 (solid), 4 (- -) and 5 (-.)
on reference element [-1, 1].

The spaces of bubble functions in fl are defined by

s� := span {<Plk>"" <PNk}, k � 2,

where, for l = 1, ... ,N and k = 2,3,4, ... , <Plk is defined by (2.4.4).
For pEN and p � 2, let V� and V� be finite dimensional subspaces of Hl(fl) and

HJ(fl), respectively, defined by

p

V� :=Sh+ 'L,st
k=2

(2.4.5)

With Xh E V� and Wh E V�, we have the following approximation properties

inf {Ilu - xhllo+h Ilox(u - xh)llo} ::::; ChP+lllullp+l 'Vu E HJ(n)nHP+l(fl) (2.4.6)
XhEV�

and

(2.4.7)
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2.5 H1-Galerkin mixed finite element method

The mathematical analysis and applications of mixed FEM have been widely developed

since decades ago. For example, a general analysis for this kind of methods is studied

by Brezzi [17]. A mixed FEM is a type of FEM which is based on a mixed formulation

of the problem. The mixed FEM is originally considered for problems where there are

possibilities of having numerical ill-posedness if discretized by using the normal FEM.

An example of such problems is computation of stress and strain fields in an almost in

compressible elastic body. Besides that, the mixed FEM is also applied for cases where

we have to discretize the gradient of the solution. The need to approximate the gradient

of the solution is originated from solid mechanics problems which require more accu

rate approximations of certain derivatives of the displacement [16]. The mathematical

elements of classical mixed FEM can be found in the books on mathematical theory of

FEM [16, 53].

By using mixed FEM, the original problem is reformulated into a problem of two

bilinear forms and two finite element spaces. As an example we consider the following

one dimensional parabolic partial differential equation:

OtU(x, t) - oxxu(x, t) = f(x, t), x E [2 = (0,1), t E (0, TJ, T < 00, (2.5.1)

with boundary conditions

U(O, t) = u(l, t) = 0, t E [0, TJ, (2.5.2)

and initial condition

U(x,O) = uo(x), x E n. (2.5.3)

By using a mixed formulation, the derivative of the solution u is introduced as a second

unknown. The second order problem is reformulated into a system of first order equations

having the form

v(x, t) = oxu(x, t),

Otu(x, t) - oxv(x, t) = f(x, t)

(2.5.4)

(2.5.5)
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with boundary condition (2.5.2) and initial condition (2.5.3). We note that, with a E

Hl(f2) and (3 E HO(f2) are arbitrary test functions, the solution (u, v) E HO(f2) x Hl(f2)
also solves the weak formulation

(v(t), a)o = - (u(t), oxa)o 'Va E Hl(f2)

(Otu(t), (3)0 - (oxv(t), (3)0 = U(t), (3)0 'V(3 E HO(D).

(2.5.6)

(2.5.7)

It should be noted that the boundary condition u = 0 (see (2.5.2)) is implicitly contained

in the formulation (2.5.6)-(2.5.7). Using integration by parts in (2.5.6), we have

and hence, formally, v = oxu in f2 and u = 0 at the endpoints of f2. Since v = oxu from

(2.5.6), noting that oxv E HO(D) and taking (3 = OtU - oxv - f E HO(D) in (2.5.7), we

have (2.5.1).
This way of mixed formulation needs two finite dimensional spaces W c HO (f2)

and V c Hl(f2) which are required to satisfy inf-sup condition or Ladyzhenskaya

Babuska-Brezzi (LBB) condition to have a stable numerical scheme. Details of the

mixed formulation by classical mixed FEM for a general parabolic partial differential

equation can be found in [30).
In this study, we implement a mixed FEM called H1-Galerkin mixed finite element

method (H1MFEM) which is based on an approach suggested by Pa.ni et. al for nonlinear

parabolic equations and second order hyperbolic equations [45, 46). The H1MFEM is

closely related to least square mixed methods in that the second order partial differential

equation is reformulated into a system of first order partial differential equations with a

new unknown defined as the flux. Studies on the least square mixed finite element method

can be found in [20, 21, 49, 48) and the references therein. By using the H1MFEM, a

problem is reformulated into a system of first order partial differential equations, which

allows the approximation for u and its gradient v.

As an example, we consider parabolic partial differential equation (2.5.1)-(2.5.3).

Using the H1MFEM, equation (2.5.1) is reduced to a system of first order equations
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by defining a new variable v = 8xu. As a consequence, we have (2.5.4)-(2.5.5). By

multiplying (2.5.4) by 8xa and (2.5.5) by -8xfJ where a E H6(D) and fJ E Hl (D) we

have

(2.5.8)

and

(2.5.9)

For the first term in (2.5.9), we have used integration by parts and the Dirichlet boundary

conditions 8tu(0, t) = 8tu(l, t) = O.

The weak formulation by HIMFEM is formulated as: Given Uo E H6(D) n H2(D),
find (u, v) : [0, T]-+ H6(D) x Hl(D), satisfying for t > 0

(v(t), 8xa)0 = (8xu(t), 8xa)0 Va E H6(D)

(8tv(t), fJ)o + (8xv(t), 8xfJ)0 = - (f(t), 8x(3)0 VfJ E Hl(D)

(2.5.10)

(2.5.11)

and for t = 0,

(2.5.12)

If u E W�(O, T; H6(D) n H2(D)), v E W�(O, T; Hl(D)) and (u, v) satisfies (2.5.10)

(2.5.11) then (u, v) satisfies (2.5.4)-(2.5.5). Indeed, by using integration by parts we

deduce from (2.5.10) that 8x(v - 8xu) = 0 E W�(O, T; HO(D)), which implies

v(x, t) = 8xu(x, t) + g(t) a.e. in D x (0, T) (2.5.13)

for some function 9 depending on t. We note that we also have

v(x,O) = 8xu(x, 0) + g(O).

By integrating over D, noting (2.5.12), we infer g(O) = O. On the other hand, it follows

from (2.5.13) and (2.5.11) (with fJ = 1) that

In 8tx7L + g'(t) = 0, (2.5.14)

implying g'(t) = O. Hence 9 =: 0, i.e. (u, v) satisfies (2.5.4). This immediately gives

(2.5.5).
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Some of the attractive features of the H1MFEM are firstly this method does not

require the LBB condition. Secondly, finite element spaces of u and v are allowed to be

of different polynomial degrees. For example, by using the H1MFEM, the approximate

solutions Ui, and Vh of the finite element spaces V� and V% (see (2.4.5)) are allowed to

be of different polynomial degrees, i.e. we can have different values of p and q where

p, q 2: 1. Thirdly, this procedure required extra regularity of the solution which gives a

better order of convergence for v, in HO(f)) norm [45J. For one dimensional cases, the

orders of convergence obtained by H1MFEM are

(2.5.15)

and

(2.5.16)

which are comparable with results generated by a classical mixed FEM. Details of the

mixed formulation by the H1MFEM for a general parabolic partial differential equation

can be found in [45J.
In 2007, the H1MFEM is adapted for a priori error estimation of the Burgers equa

tion [47J. Besides that, Tripathy et. al studied on the superconvergence properties of

the H1MFEM for second order elliptic equations [56J. Recently, Zhang et. al studied the

H1MFEM with the linearised Crank-Nicolson for couple BBM equations [59J.
In this thesis, we are interested in a posteriori error estimations of the H1MFEM for

the BBM and Burgers equations. Mixed finite element methods allow approximation to

the solution of the BBM and Burgers equations and its derivative, by reformulating the

BBM and Burgers equations into a system of first order equations. Therefore, instead

of dealing with second order nonlinear partial differential equations, the problem is re

formulated and the computation is less hard compared to the approximation by using

a normal finite element method. Mixed finite element methods give better orders of

convergence for the unknown derivative by requiring extra regularity of the unknown.

To the best of our knowledge, this is the first time the procedure of a posteriori error es

timation in this study (to be explained in Chapter 3) is applied to the BBM and Burgers

equations, where the approximate solutions are computed by using the H1MFEM.
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2.6 The Benjamin-Bona-Mahony equation

The Benjamin-Bona-Mahony (BBM) equation

Otu(x, t) - Oxxt7J.(x, t) + u(x, t)ox7),(x, t) + oxu(x, t) = 0, (2.6.1)

where Ot = %t, Oxxt = o3/ox2ot and Ox = %x is studied by Benjamin et al., with

u(x, t) being considered in a class of real nonperiodic functions defined for -00 < x < 00

and t ::::: ° [12). The BBM equation is studied in flows of fluid. Examples where the BBM

equation is used are acoustic-gravity waves in compressible fluids, hydromagnetic waves

in cold plasma and acoustic waves in anharmonic crystal.

The BBM equation is studied as an alternative and improvement of the Korteweg-de

Vries (KdV) equation

OtU(x, t) + oxxx'u(x, t) + u(x, t)ox'u(x, t) + ox'u(x, t) = 0, (2.6.2)

particularly for describing unidirectional long dispersive waves. In general, the KdV

model in physical science and engineering has difficulty with the dispersion ratio; a

ratio of dispersion's effect in a medium, when a wave is travelling within the medium.

The dispersion term oxxxu in the KdV model has a tendency to emphasise the short

wave components which is unnatural with respect to the original physical problem, The

dispersion relation OxxtU in the BBM model overcomes this difficulty by giving a bounded

dispersion relation [37). Besides that, modelling with the BBM equation also overcomes

the stability problem with high wave number components in the KdV modeL

Details on the uniqueness and stability of the BBM model for long waves in nonlinear

dispersive systems can be found in [12]. The existence and uniqueness of (2.6.1) and

its non-homogeneous form are studied by Benjamin et al. Besides that, the uniqueness,

global existence and continuous dependence of solutions on initial and boundary data for

model equation (2.6.1) with an additional term -Oxx71, are studied by Bona and Dougalis

[14). Another general case of the BBM equation, namely

OtU(x, t) - Oxxtu(x, t) + oxf(u) = g(x, t) (2.6.3)

where f E C1(JR) and g E LOO(O, T; L2(0, 1)), is studied by Medeiros and Miranda [39].

They prove existence, uniqueness and regularity of (2.6.3). The BBM equation is also
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studied for periodic solutions (periodic with respect to the x variable) [23], [38J. For

higher dimensions, a study on the existence, uniqueness and regularity is conducted by

Goldstein et. al [27J.
Since decades ago, initial boundary value problems for various generalized BBM

equations have been studied. For example, in [32], a linearised method which is based on

a differential quadrature method is studied as a new method to approximate the BBM

equation on a semi-infinite interval. A linearised Crank-Nicolson H1MFEM is studied for

coupled BBM equations in [59J. Besides that, a numerical study on the BBM equation

with a mixed FEM (differently from the method studied in Chapter 4 of this thesis) can

be found in [33J. In this study, we are interested on a posteriori error estimation for the

BBM equation, where the approximate solutions are computed by using the H1MFEM.

2.7 The Burgers equation

The Burgers equation

8tu(x, t) + u(x, t)8xu(x, t) = v8xxv,(x, t) (2.7.1)

is a fundamental one dimensional nonlinear partial differential equation occurring in var

ious areas ofmathematical modelling, particularly in mathematical models of turbulence

and shock wave theory. Solution 7J, (.7: , t) can be considered as a quantity of a velocity for

space x and time t. The value of v is a small parameter known as a viscosity coefficient

of the fluid motion, which is related to the Reynolds number R = i. The Burgers model

has been studied as the simplest form of nonlinear advection term u8xu and dissipation

term v8xxu for simulating the physical phenomena of wave motions.

Since decades ago, the Burgers model became an interest of researchers due to the

tendency of a steep gradient (shocks) which almost becomes discontinuous when the

viscosity coefficient v = 0 in (2.7.1) i.e.

8t'U(x, t) + 'U(x, t)8x'u(x, t) = O. (2.7.2)

Equation (2.7.2) is also known as inviscid Burgers equation.
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Because of the nonlinear convection term and the occurrence of the viscosity term,

the Burgers equation (2.7.1) shows similar features with Navier-Stokes equation and it

is viewed as the simplified version of the Navier-Stokes equation. Due to the complexity

in obtaining the analytical solutions, many researchers have used numerical methods as

a tool to approximate the solution, e.g. finite element methods and spline interpolation.

In 1950, Hopf and Cole introduced a method to solve (2.7.1), which is known as

a Hopf-Cole transformation [29J. By the Hopf-Cole transformation, a new dependent

variable w(x, t) is introduced such that

() ( oxw(x, t))U x,t = -2v
w(x,t)

.

Then, the nonlinear Burgers equation (2.7.1) is transformed to a linear heat equation

Otw(x, t) = vOxxw(x, t).

Since the heat equation is explicitly solvable in terms of the so-called heat kernel, then

the general solution of the Burgers equation can be obtained. There are many numeri

cal studies conducted which are relied on the Hopf-Cole transformation of the Burgers

equation, e.g. [43, 44J.
There are many studies have been done on the numerical methods for the Burgers

equation. Numerical studies of Burgers equation by FEM can be found in [4, 25, 43J. A

series of study on application of FEM and spline in approximating the Burgers equation

can be found in [5, 31, 44, 60J and the references therein. Some studies on the a posteriori

error estimations for the Burgers equation are studied by Patera et.al [41, 50J.

Considering the importance of the Burgers equation as a mathematical model of

turbulence and shock wave theory and a simplified model to study the Navier-Stokes

equation, we are interested to study the error estimation of the Burgers equation. In

this study, we focus on approximation of the Burgers equation without the Hopf-Cole

transformation. We first implement the H1MFEM to compute the approximate solution

of the Burgers equation. Secondly, we design a posteriori error estimation for the Burgers

equation, using the approximate solution produced by the HIMFEM.


