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Abstract

Deep-sea meiofaunal communities vary at a range of spatial scales. However,

identifying which scale(s) account for most of the variability in deep-sea

communities remains difficult, as few studies have been designed in such a way as

to allow meaningful comparisons across more than two spatial scales. Moreover,

deep-sea studies have largely focused on particular (macro) habitats in isolation,

with few studies considering multiple habitats simultaneously in a comparable

manner.

In the present study, meiofaunal and nematode community attributes (abundance,

diversity, community structure and trophic structure) were investigated at different

spatial scales (sediment depth (em), habitat (slope, canyon, seamount, and seep: 1--

100 km), and region (100-10000 km)) in two regions on the continental slope of

New Zealand (Hikurangi Margin and Bay of Plenty), while accounting for the

effects of water depth (700, 1000, 1200 and 1500 m). Nematode species new to

science encountered during sampling on the continental margin of New Zealand

were also described.

A consistent pattern for each meiofaunal community attribute was observed. The

greatest variability was found between sediment depth layers and between regions,

which explained 2-4 times more variability than habitats. Meiofaunal abundance

and diversity were higher at surface than subsurface sediment. High abundance of

meiofauna was also found in the higher productivity region of Hikurangi Margin

than in the Bay of Plenty region, but not diversity, which was slightly higher in the



in each region. In the Bay ofPlenty region, nematode diversity, community structure

and trophic structure consistently showed increased variability from habitat and

water depth to sediment depth. However, no consistent pattern was observed in

Hikurangi Margin.

The findings in this study suggest that meiofaunal community attributes are mostly

influenced by sediment characteristics and food availability, but that disturbance

(fishing activity and bioturbation) also accounts for some of the variability. These

findings provide new insights into the relative importance of processes operating at

different spatial scales in regulating meiofaunal communities in the deep-sea, and

their potential vulnerability to anthropogenic activities.

Two new species and one new species record of the family Comesomatidae from the

Hikurangi Margin were described: Vasostoma hexodontium n. sp., Sabatieria

dispunctata n. sp., and Laimella subterminata Chen & Vincx, 2000. A total of 159

species have been recorded/described from the New Zealand region, of which 37%

are deep-sea species. This study improves understanding ofmeiofaunal biodiversity

and their distribution patterns on the New Zealand continental region, which will

help underpin effective management of New Zealand's continental margin

communities in the future.
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Chapter 1: Introduction

Chapter 1

Review of recent trends in ecological and taxonomic

studies of deep-sea meiofauna, with an emphasis on the

New Zealand region

1.1 Introduction

The deep seafloor (> 200 m water depth) is the largest ecosystem on Earth,

but remains largely unexplored due to the high costs and technological challenges

associated with working in this environment. To date, only 5% of the deep-sea has

been explored with remote instruments, and less than 0.01% of the deep seafloor has

been sampled and studied in detail (Ramirez-Llodra et al. 2010). Advances in

technology, such as multibeam echosounders for high resolution bathymetry

mapping, Remotely Operated Vehicles (ROVs), Autonomous Underwater Vehicles

(AUVs), and permanent seafloor observatories have increased the capability for

exploring, sampling and experimentation in the deep-sea (Ramirez-Llodra et al.

2010). At the same time, new deep-sea technologies have increased interest in deep

sea exploration for mineral and biological sources as the deep-sea becomes more

accessible. However, relatively little information is available on how human

activities may impact deep-sea communities, and it is therefore important to obtain a

better knowledge about the nature of deep-sea benthic communities and the forces

that shape and control their structure and function.

Meiofauna, which are defined as benthic metazoans that pass through a 500-

1000 urn mesh but retained on a 20-63 urn mesh, are the most abundant and diverse

animals in deep-sea sediments (Giere 2009). Nematodes are typically the most

1



Chapter 1: Introduction

abundant meiofauna1 group, and often constitute more than 90% of all sediment

metazoans, followed by harpacticoid copepods, nauplii, and annelids (Grove et al.

2006, Giere 2009). Meiofauna play an important role in the sediment as they serve

as food for higher trophic levels such as macrofauna (e.g. shrimps and demersal

fishes) (Coull 1990, Service et al. 1992, Feller and Coull 1995), contribute to

bioturbation, thus enhancing nutrient exchange (Cullen 1973, Alkemade et al. 1992,

Green and Chandler 1994, Meadows and Meadows 1994), and also contribute to

reminera1ization processes in the sediment by stimulating microbial activity through

grazing and by enhancing assimilation of detritus by larger deposit feeders (Findlay

and Tenore 1982, Montagna et al. 1995, Moens et al. 2007, Pape et al. 2013a).

Meiofauna also indirectly influence biogeochemical cycles through their

contribution to mineralization of carbon and nitrogen (Findlay and Tenore 1982,

Ingham et al. 1985, A1kemade et al. 1992, Heip et al. 1992). Moreover, several

studies have demonstrated the usefulness ofmeiofauna as bio-indicators of pollution,

disturbance and climate change (Coull and Chandler 1992, Balsamo et al. 2012,

Pusceddu et al. 20l4a, Zeppilli et al. 20l5a). However, compared to larger benthic

fauna, meiofauna often receive less attention in deep-sea studies (Rex and Etter

2010). Although deep-sea expeditions began in the 1ate-1860s (Ramirez-Llodra et al.

2010), the first study of deep-sea meiofauna was only carried out a century later

(Wigley and McIntyre 1964). Since meiofauna play an important role in sediment

ecosystems as well as being a useful proxy for responses of benthic communities to

environmental changes, more studies on meiofauna are needed so they can be

incorporated into global change impact research (Zeppilli et al. 2015a).
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Chapter 1: Introduction

1.1.1 Previous reviews of the ecology of deep-sea meiofauna

Thiel (1983) first summarised the quantitative studies available for deep-sea

meiofauna up to the early 1980s, and a decade later Tietjen (1992) provided another

review of deep-sea meiofauna studies focusing on the information collected during

the 1980s. More recently Soltwedel (2000) provided an overview of meiofaunal

studies from the 1970s to the late-1990s. These authors focused on summarising

patterns of benthic standing stock (abundance and biomass) along bathymetric

gradients, horizontal and vertical distribution in the sediments, and seasonal patterns

in the Atlantic, north-west Indian, north- and south-west Pacific Ocean and

Mediterranean Sea, and across polar, temperate, subtropical, tropical and arid

regions (Figure 1.1). Overall, these pre-2000 studies show that meiofaunal standing

stocks decrease with increasing water depth, both at the scale of ocean basins and

globally (Thiel 1983, Tietjen 1992, Soltwedel 2000). These patterns are closely

related to declines in food availability with depth (Tietjen 1992, Soltwedel 2000);

however, abiotic factors such as hydrographic regime and varying sediment types

can also influence these general patterns (Soltwedel 2000). The negative relationship

between meiofauna standing stock and water depth is primarily related to the

abundance and biomass of two dominant meiofauna taxa, i.e. nematodes and

harpacticoid copepods.

In his review, Thiel (1983) noted the relation between productivity levels and

meiofauna standing stock along bathymetric gradients in different oceans (Atlantic,

Indian Ocean, Mediterranean Sea) and central oceanic regions (seamount plateau,

abyssal and hadal region). Three studies from seamount plateau showed abundances

as low as the nearby deep-sea plain (5000 m) and suggested the influence of strong

anticyclonic currents reducing sedimentation rate and leading to low organic matter
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concentrations on the plateau (Thiel 1970, Rachor 1975, Thiel 1975). No clear

seasonal pattern was observed in meiofauna abundance but he noted the high small

scale « 15 em) variability in meiofaunal abundance and diversity between samples.

Small-scale variability was suggested to be related to the small size of meiofaunal

organisms, sediment heterogeneity, small-scale biological disturbance, and also the

relative stability of the physical environment. He argued that comparing meiofaunal

communities at larger scale should therefore be done with caution. Thiel (1983) also

noted shifts in the vertical distribution ofmeiofauna with sediment depth. Meiofauna

were generally concentrated in the upper 5 em and showed a consistent decreased

from surface to subsurface sediment, which he related to trends in food availability;

however, he noted that deviation from this pattern can occur due to processes such

as bioturbation.

Tietjen (1992) summarised trends in meiofaunal abundance and biomass

along bathymetric gradients in the Atlantic, Pacific and Indian Oceans, relationships

between meiofaunal abundance and biomass, and relationships between standing

stocks of meiofauna and other benthic size groups. He noted a significant decrease

in meiofaunal abundance and biomass with water depth in the Atlantic Ocean, but

not in the Pacific and Indian Oceans. This observation was probably due to the low

number of studies (seven), conducted in the latter regions and including different

habitats such as hydrothermal vents. However, he found that meiofauna benthic

standing stocks generally showed a positive relationship with various indices of

surface-derived organic matter flux and surface productivity. He noted a positive

correlation between meiofauna abundance and macrofauna abundance in the

Atlantic Ocean. Tietjen (1992) observed that the abundance ratios of bacteria, and

meio-, macro-, and megafauna varied relatively little across ocean basins, with
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bacterial abundance seven to eight orders of magnitude greater than meiofauna

abundance, and meiofauna1 abundance about three and seven orders of magnitude

greater than macrofaunal and megafauna1 abundances, respectively.

Soltwede1 (2000) summarised regional differences in meiofauna1 standing

stocks associated with differences in surface productivity along bathymetry

gradients. The highest abundances occurred in upwelling regions off the north

western and south-western African coast (Thiel 1982, Kamenskaya and Galtsova

1996), while the lowest abundance was observed off north-eastern Australia

(Alongi and Pichon 1988). Food availability was identified as the most important

factor influencing meiofaunal abundance and higher taxa diversity. Soltwede1 (2000)

explored the relationship between meiofauna abundance and food availability

(measured using chlorop1astic pigment equivalents concentrations in the sediments)

and argued that large variation in these relationships resulted from the influence of

abiotic factors (pressure, temperature, oxygen level and sediment granulometry),

biological process in the water column (degradation process of organic matter), and

competitive and predatory interactions with other faunal groups.

Overall these literature reviews show that relationships between meiofauna1

benthic standing stocks and food availability and along bathymetry gradients are not

always consistent across regions due to the influence of other abiotic and biotic

factors. Therefore, each region needs to be investigated separately in order to

describe patterns and environmental variables that influences these patterns

(Soltwedel 2000). This realisation likely helped to stimulate further investigations of

deep-sea meiofauna in other parts of the globe, where meiofaunal communities

remained either incompletely undescribed or poorly known.
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1.1.2 Ecological studies of deep-sea meiofauna since 2000

Since Soltwedel's (2000) review, the focus of deep-sea meiofauna studies

has widened to include the eastern and southwest Pacific Ocean, the Sea of Japan,

the central Indian Ocean, the south Atlantic, and areas off the Antarctic Peninsula

(Figure 1.1). Further studies have been conducted in habitats such as seamounts and

hydrothermal vents, with the exploration of new habitats such as canyon and cold

seep. In addition to focussing on patterns related to water depth (Vanreusel et al.

2000, Hughes and Gage 2004, Sevastou et al. 2013), regions (Lambshead et al. 2002,

Tselepides et al. 2004), vertical gradients in the sediment (Neira et al. 2001, Van

Gaever et al. 2004) and seasons (Danovaro et al. 2000, Shimanaga et al. 2004),

meiofaunal studies conducted since 2000 have also concentrated on the effect of

deep-sea habitat (Vanreusel et al. 201Ob), the relative importance of different spatial

scales (Gambi and Danovaro 2006, Bianchelli et al. 2013, Danovaro et al. 2013,

Ingels and Vanreusel 2013, Gambi et al. 2014), meiofauna colonisation pattern in

the deep-sea (Gallucci et al. 2008b, Guilini et al. 2011, Zeppilli et al. 2015b), and

disturbance on meiofaunal communities (Pusceddu et al. 2014a). Habitat studies

have been mainly directed on one particular habitat (e.g. cold seep; Robinson et al.

2004, Van Gaever et al. 2004, or seamount; Pusceddu et al. 2009, Covazzi Harriague

et al. 2014), or comparisons between two habitats (e.g. canyon and adjacent slope

habitat; Soltwedel et al. 2005, Baguley et al. 2006a, Garcia et al. 2007, Bianchelli et

al. 2008). The complex settings of these habitats with different topographic and

hydrodynamic regimes, or contrasting geochemistry or physical substrates, also

provide an opportunity to investigate and compare the importance of environmental

variables in structuring meiofaunal communities at within-habitat scales (Van

Gaever et al. 2004, Ingels et al. 2011b).
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Meiofaunal dispersal and colonisation processes also play an important role

in structuring meiofaunal species diversity. Meiofauna may passively disperse over

large distance through the water column caused by hydrodynamic forces (Boeckner

et al. 2009), even though their ability to actively disperse in the water column is

limited. This passive dispersal can promote recolonisation of more distant locations

and may explain their widespread geographic distribution (Bik et al. 2010).

Sediments rich in organic matter have been shown to enhance nematode

colonisation in the deep-sea (Gallucci et al. 2008b), but another study has shown the

opposite pattern where either the presence of organic matter or type of organic

matter did not affect nematode colonisation (Guilini et al. 2011). Other studies on

marine nematodes have shown that type of substratum, reduced chemical exposure

(Zeppilli et al. 20 ISb), variability in microhabitats, and biological interactions

(Cuvelier et al. 2014) can influence nematode colonisation.

Disturbance can play an important role in shaping the distribution of

meiofaunal communities (Schratzberger et al. 2009), and has been the focus of

several studies since the review of Soltwedel (2000). Physical disturbance can occur

at various of spatial and temporal scales including events induced by physical (i.e.

erosion, sediment deposition, turbidity current, glacial fjord, benthic storm,

earthquakes; Lambshead et al. 2001, Canals et al. 2006, Somerfield et al. 2006,

Schratzberger et al. 2009), or biological (i.e. bioturbation and predation; Hughes and

Gage 2004, Kristensen and Kostka 2013), or anthropogenic sources (i.e. fishing and

mining; Schratzberger et al. 2009, Hein et al. 2013, Martin et al. 2014, Ramirez

Llodra et al. 2015). Physical disturbance can be beneficial, by stimulating bacterial

activity and helping to distribute organic matter into deeper sediment from

resuspension events (Olafsson 2003, Hughes and Gage 2004). However, physical
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disturbance can also negatively impact meiofauna communities directly or indirectly.

The transport of surface sediments along with strong bottom currents can lead to an

unstable sediment substrate, while frequent resuspension with high sedimentation

rates can also cause meiofauna to be buried by sediment, all of which can lead to

lower diversity and higher dominance of certain disturbance-tolerant species (Garcia

et al. 2007, Martin et al. 2014, Pusceddu et al. 2014a). In addition, anthropogenic

disturbance caused by bottom trawling or deep-sea mining can have pronounced

effects on deep-sea soft sediment communities, where the rates and magnitudes of

these alterations often greatly exceed those of natural disturbance occurrences

(Schratzberger et al. 2009, Miljutin et al. 2011, Martin et al. 2014).
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Figure 1.1. Map showing the distribution of ecological studies of deep-sea
meiofauna before (blue squares) and after (red circles) the review by Soltwedel

(2000) in (A) the world oceans, (B) Arctic region, and (C) Antarctic region. The
circle in (B) and (C) shows the position oflatitude 60°.
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