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Abstract

Carbon-based advanced nanomaterials are important for the devices of next

generation, such as in field effect transistors, sensors, nanoelectronics, nanocomposites

and flexible displays. In recent years, one-dimensional carbon nanotubes (CNTs) and

two-dimensional graphene have become new members of the carbon family. They are

ideal model materials for low-dimensional sciences, and are regarded as the keymaterials

for future nanoscience and nanotechnology. For the device applications, their

controllable synthesis and position control should be indispensable. In this thesis, these

issues are challenged by dynamically observing their formation process in atomic

dimension inside transmission electron microscopy (TEM).

For the in-situ TEM dynamical observation, the sample preparation is a key factor.

Firstly, platinum (Pt)-, palladium (Pd)- and cobalt (Co)-included amorphous carbon

nanofibers (CNFs) as well as pristine (pure) CNFs were fabricated on the edges of

graphite foil by argon (Ar+) ion irradiation with and without a supply of those metals at

room temperature. Also, the controllable synthesis of copper-carbon nanoneedles (Cu­

CNNs) with higher Cu concentration than C directly on an edge of Cu foil by Ar" ion

irradiation with a supply ofC during ion irradiation was achieved. They were featured by

the amorphous carbon structure with the inclusion of metal nanoparticles. For a

comparison, Cu-coated pristine CNFs were also prepared. For those samples, dynamic

TEM observation was performed by in-situ current-voltage (I-V) measurement and/or

direct heating in TEM.
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In-situ 1-V measurement ofboth Cu-CNNs and Cu coated CNFs in TEM revealed

for the first time that current increased gradually at the beginning and suddenly steeply

increased with applied voltage due to the transformation from amorphous carbon to

graphene catalyzed by Cu. After the formation of graphene, current density as high as 106

A'crrr', which is comparable to that of Cu film in normal interconnect application was

achieved. Graphene formation was due to the Joule heating induced by the electron

current flow. Compared with Cu-coated CNFs, the formation temperature of graphene as

low as 1073 Kwas realized for Cu-CNNs, thanks to the reduction inmelting point induced

by the size effect ofCu nanoparticles dispersed in the Cu-CNNs.

In-situ I-V measurement ofPd-included CNFs in TEM resulted in the formation

of graphene which involves the thermomigration starting from the middle part of the

structure. This thermomigration also was due to Joule heating induced by the electron

current flow. It also proved that Pd possessed a good ohmic contact with carbon materials.

This implies that it can be replaceable to gold as an electrode for carbon interconnection

application.

Different from the Pd and Cu cases, the in-situ 1-V measurement of Co-included

CNF showed that Co nanoparticle in CNF migrated through electromigration

phenomenon and resulted in the formation ofCo-capped CNTs due to the current induced

Joule heating. This implies that movement of Co particle is controllable, thus being

advantageous to apply it to fabricate a probe for magnetic force microscopy (MFM),

because CNTs probe with amagnetic particle on the tip is known to be ideal for the better

performance ofMFM.
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In-situ I-V measurement of Pt-included CNF in TEM led to the formation of a

multilayer CNTs through electromigration behavior ofPt nanoparticles. The driving force

for the transformation was current induced Joule heating. The movement of Pt

nanoparticles were controllable and by using this controllable movement, the connection

of two CNTs was achieved. So, the application of this controllable migration of Pt will

open a door for nanosoldering of carbon nanostructure.

Thus, this thesis demonstrated the potential of engineering the controllable

formation of graphene and CNTs as well as position control by solid phase reaction for

various future device applications.
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Chapter 1

Introduction

1.0 Background of the Study

In Richard Feynman's famous speech entitled "There is plenty of room at the

bottom", he emphasized about the manipulation and rearrangement of things in atomic

scale to achieve the mechanical and atomic sized devices and components [1]. He

concluded that the development of technologies to construct such small systems would

be interdisciplinary, combining fields such as physics, chemistry and biology, and would

offer a new world of possibilities that could radically change the technology around us.

Since then, the technological world are being developed rapidly in almost all

technological areas towards nanotechnology. However, this development is inadequate

as the giga-scale miniaturization of those technologies faces difficult challenges in terms

of materials, architectures, fabrication and integration of nanoscale active and passive

elements. Also, there are many questions on the expected performance in terms of

reliability, speed, compatibility and power consumption [2]. To continue with the current

speed of development of nanofabrication, highly strong, controllable, flexible and

conductive materials with wide range of optical and electronic properties are essential.

Among the nanomaterials, carbon nanomaterials are anticipated as key materials



that underpin major advances in all areas of science and technology due to their unique

electronic, optical, thermal, mechanical and chemical properties [3,4]. The discovery of

hollow carbon sphere named C60 buckyballs or fullerene in 1985, and the Nobel Prize

awarded to Curl, Kroto and Smalley, obviously marked the beginning of this nanocarbon

era [5, 6]. The research in nanocarbon continuously developed by the discovery of 1

dimensional carbon nanotubes CCNTs) by Sumio Iijima in 1991 [7,8]. One decade later,

the discovery of2 dimensional graphite structure called graphene by Geim andNovoselov

which led them to be awarded the Nobel Prize in Physics further highlights the high

expectations for nanocarbons, in particular for applications in electronics and material

sciences [9-11]. Among those allotropes of carbon, CNTs and graphene are of importance

to modem science and technology since they provide exciting challenges and

opportunities for chemists, physicists, biologists and materials scientists.

Although CNTs and graphene have been employed in many nanotechnology

applications including interconnections, nanosensors, medicals and so on, the detail

information about these nanomaterials still need to be answered before it can be fully

utilized in various applications [12-15]. These fundamental information will be

significant to control the CNTs and graphene growth, as well as knowledge and

explanation about their properties in desired applications. Current studies on

nanostructured materials, including nanowires, nanocrystalline and nanotubes (NTs) have

discovered many of 'unusual deformation' phenomena compared with their bulk parts,

such as high strength, nano-piezoelectric effects and unusual plastic deformation

behaviors [16]. Nanostructured materials can stand a larger dynamic range of elastic and

plastic strains compared to conventional materials. Furthermore, Richard Feynman in his

speech in 1959 also talked about the importance ofmanipulation and control ofmaterials

2



on a small length scale, such as the fabrication ofmolecular machines [1].

To achieve the manipulation and control of materials in nanoscale, nano­

manipulation in scanning electron microscopy (SEM) has been proved to be a powerful

technique for in-situ manipulating, structuring, characterizing, and assembling as-grown

nanomaterials and as-fabricated nanostructures [17-19]. However, the best resolution of

a high grade commercially available SEM is typically around 1-2 nm in an ideal

environment which is not satisfactory for high resolution investigation. To solve this

problem, transmission electron microscopy (TEM) has come in the picture. The higher

resolution of the TEM allows for a more detailed and especially local analysis of the

structural properties of the nanostructures [20-23]. Therefore the selection of a

nanostructure with the desired properties is possible. Furthermore, the ultra-high vacuum

(UHV) in the TEM and the low generation of secondary electrons leads to a much reduced

deposition of contamination on the samples [20]. Thus, the in-situ nanomanipulation or

nanoengineering in TEM opens the path to understand the mechanism of nanocarbon

formation and its properties. In the following sections, recent progress in CNTs and

graphene research will be introduced including the controllable synthesis, proposed

growth mechanism, CNTs/graphene-based electronic devices and in situ TEM

investigations. After that, the motivation and organization of this thesis will be presented.

1.1 Controllable Synthesis ofGraphene and Carbon Nanotubes

Graphene and CNTs has been explored as promising candidates for future

nanoelectronic applications as a result of their superior properties, atomic thickness and

plethora of applications. To achieve this aims, graphene and CNTs must be synthesized

in a controllable manner. Thus, the controllable synthesis of graphene and CNTs is of

3



great interest and received more attention recently.

1.1.1 Graphene with Controlled Size and Shape

A variety of benzene ring arrangements in the two-dimensional space creates

graphene sheets with different shapes, sizes, edges and layer structures. Besides that, the

different covalent or noncovalent bondings with other atoms lead to different doping or

modification of graphene sheet, which create graphene materials with various properties

[24]. For example, depending on the width and edge configurations, graphene nanoribbon

can act as metallic or semiconducting materials [25, 26]. Graphene nanoribbon with a

width narrower than 10 nm will possess semiconducting properties, because of the

confinement of the electron wave function. Also, the bandgap of the nanoribbon can be

tuned by varying their width. The narrow nanoribbon will create a material with larger

bandgap [26].

For graphene with larger width, the properties of graphene nanoribbon are mainly

determined by the edge configurations. Zigzag nanoribbons possess half-metallic

properties with a good conductivity, while armchair nanoribbons could have either

metallic or semiconducting, depending on their widths [27]. On the other hand, doping or

chemical modification of graphene can modify their properties. N-type graphene can be

synthesized by doping nitrogen atoms at the edges of graphene hexagonal ring [28, 29].

Figure 1.1 below summarizes present techniques for synthesizing graphene with

controlled sizes, shapes. edges, layers, doping and assembly. These various types of

graphene are potential candidates for fabricating nanodevices or nanocircuits where each

type of graphene can function as a different component based on their properties [30].
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Figure 1.1. The present techniques for synthesizing graphene with controlled SIzes,

shapes, edges, layers, doping and assembly [24].

To achieve the practical applications, well-defined graphene is essential. However,

conventional techniques usually produce graphene with various sizes, shapes and layer

numbers due to random exfoliations and growth process. This problem remains

challenges and limits the fundamental research and practical applications of graphene. To

date, more attention has been given on the controllable synthesis of graphene. Chemical

vapor deposition (CVD) is a well-known technique to controllably produce various types

of nanomaterials. Many groups have reported on the epitaxial growth of single and few

layers graphene on catalyst metals such as Cu, Ni, Pt and Co which was deposited on the

wafer [31-33]. Several groups have revealed the patterned growth of graphene using

catalyst pattern in CVD [34,35]. The graphene growth takes place only on the surface of

catalyst pattern and thus resulting in graphene pattern (Figure 1.2 (a)). However, in the

application point ofview, the drawback of this technique is the presence of catalyst metals
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which need to be removed. Reina et al. reported the etching process of ametal catalyst and the

transfer process of graphene to another substrate using polymethylmethacrylate (PMMA)

(Figure 1. 2(a)). Some ofthe researchers reported on using ofpolydimethylsiloxane (PDMS)

stamps or a floating process to transfer the graphene patterns for applications (Figure

1. 2(b)) [32, 35].

Besides that, patterned graphene is also synthesizable using an electron beam, ion

beam, laser or scanning probe microscopy (SPM) tips. Also, Joule heating is used to

reshape rough edges of graphene into armchair or zigzag edges. The atomically smooth

straight edges can also be attained by carving graphene sheets with thermally activated

metal nanopartic1es. On the other hand, focus laser beam thinning was developed to

control the number of layers of graphene [24, 36].

(a) (b)

Figure 1.2. Controlled epitaxial growth of graphene and its applications. a) Photo images

of the prepatterned Ni films on a Si02/Si substrate and the grown graphene pattern after

transferring to another Si02/Si substrate. b) Photo image of the grown graphene pattern

after transferring by PDMS stamp. [32,35]
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