

BIOMECHANICAL ANALYSIS AND TRAINING ADAPTATIONS OF DIFFERENT LUNGE PROTOCOLS

ALI BIN MD NADZALAN

pustaka.upsi.edu.my

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah f

ptbupsi

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY (SPORTS COACHING)

FACULTY OF SPORTS SCIENCE AND COACHING UNIVERSITI PENDIDIKAN SULTAN IDRIS

2017

upsi

ABSTRACT

This research consisted of four studies that were conducted as acute and chronic studies. Study 1 and Study 3 were conducted to analyse the biomechanical responses of different lunge protocols. Study 2 and Study 4 were conducted to determine and compare the chronic effects of different lunge training programs on physical performances [lunge one repetition maximum (1RM), vertical jump, standing broad jump and change of direction] and muscle architecture. Study 2 and Study 4 also attempted to determine whether there is any relationship between muscle architecture and physical performance. Kinematics, kinetics, muscle activity and fascicle behaviour of both dominant and non-dominant limb were determined and compared between; i) step forward lunge (SFL) and jump forward lunge (JFL) among fifteen university badminton players (Study 1) and ii) 30% 1RM (30FL) and 70% 1RM (70FL) among thirty untrained men (Study 3). Eight weeks effects of different lunge training on physical performance and muscle architecture were determined and compared among thirty recreational badminton players (Study 2) and 30 untrained 05-4506 men (Study 4). Results in the acute studies showed muscle activity, force output and fascicle behaviour were greater during JFL compared to SFL and during 70FL compared to 30FL. Results in chronic studies showed the improvement of lunge 1RM, vertical jump and standing broad jump were greater among JFL compared to SFL training (Study 2) and 70FL compared to 30FL (Study 4). Results also showed that eight weeks of lunge training were enough to induce changes in muscle architecture. Overall, this research provides the findings that showed the different in biomechanical responses of different lunge protocols and the existing relationship between muscle architecture and lunge performance. Besides that, this research also demonstrated how the different in responses later brought to different adaptations in physical performances and muscle architecture adaptation.

ANALISIS BIOMEKANIK DAN ADAPTASI LATIHAN *LUNGE* DENGAN **PROTOKOL YANG BERBEZA**

ABSTRAK

Penyelidikan ini terdiri daripada empat kajian yang telah dijalankan secara akut dan kronik. Kajian 1 dan Kajian 3 telah dijalankan untuk menganalisa tindak balas biomekanik semasa protokol senaman lunge yang berbeza. Kajian 2 dan Kajian 4 telah dijalankan untuk menentukan dan membandingkan kesan kronik latihan lunge yang berbeza terhadap prestasi fizikal [satu ulangan maksimum lunge (lunge 1RM), prestasi lompatan dan ketangkasan] dan seni bina otot. Kajian 2 dan Kajian 4 juga bertujuan untuk menentukan sama ada terdapat hubungan antara seni bina otot dan prestasi fizikal. Kinematik, kinetik, aktiviti otot dan tingkah laku fasikel otot semasa protokol senaman *lunge* yang berbeza dikenalpasti dan dibandingkan antara; i) *lunge* melangkah (SFL) dan *lunge* melompat (JFL) dalam kalangan 15 pemain badminton universiti dan ii) 30% 1RM (30FL) dan 70% 1RM (70FL) dalam kalangan 30 lelaki tidak terlatih. Lapan minggu kesan latihan *lunge* yang berbeza terhadap prestasi fizikal dan seni bina otot dikenalpasti dan dibandingkan dalam kalangan 30 pemain 05-4506 badminton rekreasi (Kajian 2) dan 30 lelaki tidak terlatih (Kajian 4). Keputusan dalam kajian akut menunjukkan aktiviti otot, penghasilan daya dan tingkah laku fasikel otot didapati lebih besar semasa JFL berbanding SFL (Kajian 1) dan semasa 70FL berbanding 30FL (Kajian 3). Keputusan dalam kajian kronik menunjukkan peningkatan prestasi fizikal adalah lebih tinggi dalam kalangan kumpulan JFL berbanding SFL (Kajian 2) dan 70FL berbanding 30FL (Kajian 4). Hasil kajian juga menunjukkan bahawa lapan minggu latihan *lunge* mencukupi untuk menyebabkan perubahan pada seni bina otot. Secara keseluruhan, penyelidikan ini menunjukkan terdapat perbezaan dari segi tindak balas biomekanik dan adaptasi latihan yang disebabkan oleh protokol lunge yang berbeza. Implikasi kajian juga menunjukkan terdapat hubungan antara seni bina otot dan prestasi *lunge* dan bagaimana perbezaan tindak balas dalam latihan *lunge* membawa kepada adaptasi yang berbeza dari segi prestasi dan seni bina otot.

05-4506832

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

CONTENTS

		Pa	ages
ACKNOWLEDGE	CMENTS		iii
ABSTRAK			iv
ABSTRACT			v
CONTENTS			vi
LIST OF TABLES			X
LIST OF FIGURE	S		xiv
ABBREVIATION	5		XV
05-4506 CHAPTER 1 & INT	RODUCTION ampus Sultan Abdul Jalil Shah	PustakaTBainun	ptbupsi
1.1	Background of Study		1
1.2	Statement of Problems		12
1.3	Purposes of Study		14
1.4	Objectives of Study		15
1.5	Research Questions		17
1.6	Significance of Study		20
1.7	Delimitations		22
1.8	Limitations		23
1.9	Definition of Terms		23
CHAPTER 2 LIT	ERATURE REVIEW		
2.1	The Badminton Game		28
2.2	Important of Lunge in Badminton		33

2.	.3	Kinematics and Kinetics of Lunge	35
2.	.4	Muscle Activation during Lunge	46
2.	.5	The Effects of Lunge Training on Performance	53
2.	.6	Influence of Muscle Architecture on Performance	55
2.	.7	The Effects of Training on Muscle Architecture	57
2.	.8	Acute Physiological and Biomechanical Response of	65
		Different Loading and Velocity during Resistance	
		Training	
2.	.9	Chronic Effects of Different Loadings and Velocity	68
		during Resistance Training	
2.	.10	The Comparison of Dominant and Non-Dominant Limb	73
		during Exercise and Movement Execution	
05-4506832	.upsi.e	Summary Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah VustakaTBainun	D ptbupsi
CHAPTER 3 N	AETH	HODOLOGY	
3.	.1	Research Design	80
3.	.2	Participants	86
3.	.3	Equipment	88
3.	.4	Procedures	89
3.	.5	Data Collection	107
3.	.6	Training Programs	109
3.	.7	Statistical Analysis	110
CHAPTER 4 F	RESU	LTS	
4.	.1	Study 1:	
		4.1.1 Physical Characteristics	118
		4.1.2 Kinematics	119

05-4506832

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

		4.1.3	Muscle Activity	122
		4.1.4	Kinetics	127
		4.1.5	Fascicle Behaviour	131
	4.2	Study	2	
		4.2.1	Physical Characteristics	135
		4.2.2	Strength, Jumping and Change of Direction	136
			Performance	
		4.2.3	Muscle Architecture	141
		4.2.4	Relationship between Muscle Architecture and	150
			Strength, Jumping and Change of Direction	
			Performance	
	4.3	Study	3	
05-4506832	pustaka.upsi.	4.3.1	Physical Characteristics Shah	156 ptbupsi
		4.3.2	Kinematics	157
		4.3.3	Muscle Activity	161
		4.3.4	Kinetics	165
		4.3.5	Fascicle Behaviour	169
	4.4	Study	4	
		4.4.1	Physical Characteristics	173
		4.4.2	Strength, Jumping and Change of Direction	173
			Performance	
		4.4.3	Muscle Architecture	178
		4.4.4	Relationship between Muscle Architecture and	187
			Strength, Jumping and Change of Direction	

Performance

CHAPTER 5 DISCUSSIONS

	5	.1	Kinematic Responses during Different Lunge Protocols	195
	5	5.2	Muscle Activation during Different Lunge Protocols	201
	5	5.3	Kinetic Responses during Different Lunge Protocols	207
	5	5.4	Fascicle Behaviour during Different Lunge Protocols	212
	5	5.5	Strength Adaptation of Different Lunge Protocols	215
			Trainings	
	5	.6	Jumping Performance Adaptation of Different Lunge	220
			Protocols Trainings	
	5	5.7	Change of Direction Performance Adaptation of Different	224
			Lunge Protocols Trainings	
	5	.8	Muscle Architecture Adaptation of Different Lunge	227
05-4506832	pustaka	a.upsi.e	Protocols Trainings ultan Abdul Jalil Shah	ptbupsi
	5	.9	Relationship Between Muscle Architecture and	235
			Performance	
	5	5.10	Summary	239
	5	.11	Conclusions	240
	5	.12	Recommendations	242
RE	FERENCE	S		245

L)

PustakaTBainun

05-4506832

LIST OF TABLES

	Table	No.	Pages
	2.1	Previous Studies on Kinematics and Kinetics of Lunge	44
	2.2	Previous Studies on Muscle Activation during Lunge	51
	2.3	Previous Studies on Chronic Effects of Lunge Training	54
	2.4	Previous Studies on the Effects of Training on Muscle Architecture	63
	3.1	Statistical Analysis for Research Questions in Study 1	112
	3.2	Statistical Analysis for Research Questions in Study 2	113
05-450	3.3 6832 (3.4	Statistical Analysis for Research Questions in Study 3 pustaka.upsi.edu.my Statistical Analysis for Research Questions in Study 4	114 ptbupsi 115
	4.1	Physical Characteristics of Participants	119
	4.2	Kinematics Data of Dominant Lower Limb during SFL and JFL	120
	4.3	Kinematics Data of Non-dominant Lower Limb during SFL and JFL	121
	4.4	EMG Data of Dominant Lower Limb during SFL and JFL	124
	4.5	EMG Data of Non-dominant Lower Limb during SFL and JFL	126
	4.6	Kinetics Data of Dominant Lower Limb during SFL and JFL	128
	4.7	Kinetics Data of Non-dominant Lower Limb during SFL and JFL	130
	4.8	Fascicle Behaviour Data of Dominant Lower Limb during SFL and JFL	132
	4.9	Fascicle Behaviour Data of Non-dominant Lower Limb during SFL and JFL	133
	4.10	Physical Characteristics of Participants	135

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

4.11	Lunge 1RM Score among SFL, JFL and CG	138
4.12	Relative 1RM Score among SFL, JFL and CG	139
4.13	Vertical Jump Score among SFL, JFL and CG	139
4.14	Standing Broad Jump Score among SFL, JFL and CG	140
4.15	Change of Direction T-test Score among SFL, JFL and CG	140
4.16	Vastus Lateralis Muscle Thickness among SFL, JFL and CG	144
4.17	Vastus Lateralis Pennation Angle among SFL, JFL and CG	144
4.18	Vastus Lateralis Fascicle Length among SFL, JFL and CG	145
4.19	Vastus Medialis Muscle Thickness among SFL, JFL and CG	145
4.20	Vastus Medialis Pennation Angle among SFL, JFL and CG	146
4.21	Vastus Medialis Fascicle Length among SFL, JFL and CG	146
4.22	Rectus Femoris Muscle Thickness among SFL, JFL and CG	147
05-450684:23 (Rectus Femoris Pennation Angle among SFL, JFL and CGustakaTBainun	47 tbupsi
4.24	Rectus Femoris Fascicle Length among SFL, JFL and CG	148
4.25	Biceps Femoris Muscle Thickness among SFL, JFL and CG	148
4.26	Biceps Femoris Pennation Angle among SFL, JFL and CG	149
4.27	Biceps Femoris Fascicle Length among SFL, JFL and CG	149
4.28	Correlation Analysis of Pre-test Muscle Architectures and Lunge 1RM, Relative 1RM, VJ, SBJ and COD	151
4.29	Correlation Analysis of Post-test Muscle Architectures and Lunge 1RM, Relative 1RM, VJ, SBJ and COD	153
4.30	Correlation Analysis of Percentages Changes of Muscle Architectures and Lunge 1RM, Relative 1RM, VJ, SBJ and COD	155
4.31	Physical Characteristics of Participants	156
4.32	Kinematics Data of Dominant Lower Limb during 30FL and 70FL	158
4.33	Kinematics Data of Non-dominant Lower Limb during 30FL and 70FL	159

4.34 EMG Data of Dominant Lower Limb during 30FL and 70FL 162 4.35 EMG Data of Non-dominant Lower Limb during 30FL and 70FL 164 4.36 Kinetics Data of Dominant Lower Limb during 30FL and 70FL 166 4.37 Kinetics Data of Non-dominant Lower Limb during 30FL and 70FL 168 4.38 Fascicle Behaviour Data of Dominant Lower Limb during 30FL and 170 **70FL** 4.39 Fascicle Behaviour Data of Non-dominant Lower Limb during 30FL 171 and 70FL 173 4.40 **Physical Characteristics of Participants** 4.41 Lunge 1RM Score among 30FL, 70FL and CG 176 4.42 Relative RM Score among 30FL, 70FL and CG 176 4.43 Vertical Jump Score among 30FL, 70FL and CG 177 4.44 Standing Broad Jump Score among 30FL, 70FL and CG 177 05-4506832 pustaka.upsi.edu.my ptbupsi PustakaTBainun 4.45 Change of Direction T-test Score among 30FL, 70FL and CG 178 4.46 Vastus Lateralis Muscle Thickness among 30FL, 70FL and CG 181 4.47 181 Vastus Lateralis Pennation Angle among 30FL, 70FL and CG 4.48 Vastus Lateralis Fascicle Length among 30FL, 70FL and CG 182 4.49 Vastus Medialis Muscle Thickness among 30FL, 70FL and CG 182 4.50 Vastus Medialis Pennation Angle among 30FL, 70FL and CG 183 4.51 Vastus Medialis Fascicle Length among 30FL, 70FL and CG 183 4.52 Rectus Femoris Muscle Thickness among 30FL, 70FL and CG 184 4.53 Rectus Femoris Pennation Angle among 30FL, 70FL and CG 184 4.54 Rectus femoris Fascicle Length among 30FL, 70FL and CG 185 4.55 Biceps Femoris Muscle Thickness among 30FL, 70FL and CG 185 4.56 Biceps Femoris Pennation Angle among 30FL, 70FL and CG 186

4.57	Biceps Femoris Fascicle Length among 30FL, 70FL and CG	186
4.58	Correlation Analysis of Pre-test Muscle Architectures and Lunge 1RM, Relative 1RM, VJ, SBJ and COD	188
4.59	Correlation Analysis of Post-test Muscle Architectures and Lunge 1RM, Relative 1RM, VJ, SBJ and COD	190
4.60	Correlation Analysis of Percentage Changes of Muscle Architectures and Lunge 1RM, Relative 1RM, VJ, SBJ and COD	192

O5-4506832 Spustaka.upsi.edu.my

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

PustakaTBainun

ptbupsi

LIST OF FIGURES

	Figur	e No.	Pages
	1.1	Forward Lunge Used in This Study	4
	2.1	Muscle Architecture of Vastus Lateralis Muscle	55
	3.1	The Research Design for Study 1	80
	3.2	The Research Design for Study 2	82
	3.3	The Research Design for Study 3	83
	3.4	The Research Design for Study 4	85
05-450	63:5 (Starting and Ending Phase of SFL and JFL (Study 1) PustakaTBainun	90 ptbupsi
	3.6	Descent Phase of SFL and JFL (Study 1)	91
	3.7	Starting and Ending Phase of SFL and JFL (Study 3)	91
	3.8	Descent Phase of SFL and JFL (Study 3)	92
	3.9	Starting and Ending Phase of 30FL and 70FL (Study 2)	93
	3.10	Descent Phase of 30FL and 70FL (Study 2)	94
	3.11	Starting and Ending Phase of 30FL and 70FL (Study 4)	94
	3.12	Descent Phase of 30FL and 70FL (Study 4)	95
	3.13	Delsys Trigno EMG That was Used in This Study	99
	3.14	AMTI BP400600HF-2000 Force Platform That was Used in This Study	100
	3.15	An Example of Vicon T10s That was Used in This Study	102
	3.16	Hitachi Aloka F37 Ultrasound That was Used in This Study	103

3.17	Muscle Architecture of Vastus Lateralis	105
3.18	Change of Direction T-Test Set Up	107

O5-4506832 Spustaka.upsi.edu.my

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

PustakaTBainun

Ŀ

ABBREVIATIONS

	1RM	One Repetition Maximum
	30FL	30 % One Repetition Maximum Forward Lunge
	70FL	70 % One Repetition Maximum Forward Lunge
	BF	Biceps Femoris
05-4506832	CG ustaka.upsi	ec Control Group ppus Sultan Abdul Jalil Shah
	COD	Change of Direction
	EMG	Electromyography
	FL	Fascicle Length
	GM	Gluteus Maximus
	IFa	Absolute Impact Force
	IFr	Relative Impact Force
	JFL	Jump Forward Lunge
	LG	Lateral Gastrocnemius

E)

	MANOVA	Multivariate Analysis of Variance
	MCFa	Absolute Mean Concentric Force
	MCFr	Relative Mean Concentric Force
	MEFa	Absolute Mean Eccentric Force
	MEFr	Relative Mean Eccentric Force
	MG	Medial Gastrocnemius
	MVIC	Maximal Voluntary Isometric Contraction
	MT	Muscle Thickness
05-4506832	PA pustaka.upsi	Pennation Angle .edu.my f Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah PustakaTBainun ftbupsi
	PCFa	Absolute Peak Concentric Force
	PCFr	Relative Peak Concentric Force
	RF	Rectus Femoris
	RM	Repetition Maximum
	SFL	Step Forward Lunge
	SPSS	Statistical Package of Social Science
	ST	Stance Time
	TPF	Time to Peak Force
	VL	Vastus Lateralis

VM

Vastus Medialis

05-4506832 🔮 pustaka.upsi.edu.my

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

y PustakaTBainun ptbupsi

CHAPTER 1

INTRODUCTION

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah 7 PustakaTBainun

🔰 ptbupsi

1.1 Background of Study

As a way to enhance performance in sports, apart from in-field or in court training, athletes are recommended to adopt strength training into their training routine. Strength training is a type of physical exercise performed to improve muscular strength by gradually increasing the ability to resist force through the use of free weights, machines, or the person's own body weight. Strength training sessions are designed to impose increasingly greater resistance, which in turn stimulates development of muscle strength (Fleck & Kraemer, 2014). Strength training is now widely recognized for its great value for all those interested in optimizing health, fitness and functionality.

ptbupsi

Mounting evidences of health benefits from resistance training lends support to its importance in helping individuals to achieve positive adaptation including strength (Kadir, Nadzalan, Yusof, Aiman, & Shapie, 2014; Manolopoulos et al., 2015; Schoenfeld et al., 2014; Shultz et al., 2015), muscular endurance (Aagaard et al., 2011; Manimmanakorn, Hamlin, Ross, Taylor, & Manimmanakorn, 2013; Radaelli et al., 2015), power (Kadir et al., 2014; Lockie, Murphy, Schultz, Knight, & de Jonge, 2012; Van Roie, Delecluse, Coudyzer, Boonen, & Bautmans, 2013), speed (Appleby, Cormie, Cormack, & Newton, 2013; Veliz, Requena, Suarez-Arrones, Newton, & de Villarreal, 2014), and change of direction (Johnson, Burns, & Azevedo, 2013; Sole, Moir, Davis, & Witmer, 2013). The usage of strength training as a part of training to improve performance in sports have been well established such as badminton in which majority of elite badminton athletes adopt strength training in their training 05-4506 program (Sturgess & Newton, 2008). However, it is important to note that strength burst training need to be well planned as it has been shown that different training programs might stimulate different adaptations (Bloomquist et al., 2013; Earp, 2013; Farup et al., 2012).

In parallel to the expansion of body of knowledge, the strength training programs that is planned to be developed can be referred to a lot of sources which has been proven in researches that had been conducted over the years (Fleck & Kraemer, 2014; Ratamess et al., 2009). Through various researches, the concept of specificity in training has received considerable mention and attention over the past decade (Fleck & Kraemer, 2014). Thus, it is important to analyse the movements performed in a specific sport as the more similar the training activity is to the actual sport movement,

📢 pustaka.upsi.edu.my

the greater the likelihood of positive transfer to performance (Fleck & Kraemer, 2014).

Most movements in sports involve an athlete to split apart their feet so that one foot is in front of the other (Keogh, 1999). Several benefits evolved when performing exercises with one limb such as the ability to reduce bilateral deficit (Sale, 1988), detection of muscular imbalances and the greater proprioceptive demand while performing the split position (Tippett & Voight, 1995). Looking at the criteria of one limb splitted, lunge exercise seems to be an appropriate exercise to be used in training. Additionally, to better train the body to become functional in various directions, lunge exercise is suggested to be included in the training program (Bennie & Hrysomallis, 2005; Sturgess & Newton, 2008; Yap & Brown, 2000).

> Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

One of the most performed lunge technique is the forward lunge. Forward lunge started with a front step followed by a backward push. In order to enhance its effectiveness, the forward lunge should be performed with the lead leg been brought as far as possible to the front as in descent phase, the knee should not exceed the toe.

The forward lunge (Figure 1.1) exaggerates the movement that occurs in the lower body during the gait cycle (Crill, Kolba, & Chleboun, 2004). The forward lunge involves: a) hip flexion, extension, and adduction, b) knee flexion, extension, and abduction, c) tibial internal rotation, d) talar plantar flexion and adduction and e) calcaneal eversion (Crill et al., 2004). There are various types of lunge pattern exercises that have been used as assessment tools for measuring strength, flexibility, and balance (Cook, 2003; Crill et al., 2004; Thijs, Van Tiggelen, Willems, De Clercq,

05-4506832

& Witvrouw, 2007). Hybrids of the forward lunge have been used to screen the functional movement of the lower extremities (Cook, 2003; Kritz, Cronin, & Hume, 2009). Given the relevance of the lunge pattern to sport and the necessity of the strength and conditioning specialist to load the movement pattern to enhance performance, lunge training could be one of the most specific resistance exercises to many athletes. However, in order to achieve desired outcomes, the lunge training could be adjusted as different lunge training have also demonstrated different adaptations (Jönhagen, Halvorsen, & Benoit, 2009).

o ptbupsi

Figure 1.1. Forward lunge used in this study

O ptbupsi

Badminton is one of the sports that involved a lot of lunge movement in the game. Since its inclusion as an official sport in the 1992 Olympic Games in Barcelona, badminton has increased its popularity worldwide. Badminton is an intermittent sport characterized by multiple intense actions (Sturgess & Newton, 2008) including fast accelerations, decelerations and many explosive movements with changes of direction over short distances (Baker, 1996; Chin, Steininger, So, Clark, & Wong, 1995; Chin et al., 1995; Hughes & Bopf, 2005).

A video-based pilot study had confirmed the relatively high frequency of lunging, approximately 15% of all movements, in a competitive singles games (Farrokhi et al., 2008). The important of lunge in a game could be seen when the player want to retrieve a drop shot where the player need to do a deep lunge to get to 05 4500 the shuttlecock. Sturgess and Newton (2008) had highlighted the importance of the ability to accelerate from receiving stance to retrieving a drop shot. Athletes should accelerate quickly with the lunge to the shuttlecock because reaching the drop shot late will either result in an error or will enable the opponent to easily attack a poorly returned shot. However, having just a good acceleration is not enough as the strength to perform the lunge and maintain stability to reach the shuttlecock is also needed as this will allows them to; a) reach difficult shots; b) execute an effective return shot; and c) conserve energy by executing the shot with comfortable body posture (Sturgess & Newton, 2008).

The usage of lunge as an important movement was not only in badminton, but also in other sports such as during reaching the ball in other racquet sports (tennis and squash), defending or attempting to steal the ball in football and many more.

Throughout the consistency of lunge used in sports, lunge exercises should be used widely as training exercises during strength training program. The inclusion of lunge as training exercises should be beneficial as it will allow athletes or individuals to train and improve their ability for the movement and as a way to overload the athletes or individuals, various methods of lunge could be implemented during training sessions (Baechle & Earle, 2008). This includes putting some weights and includes ballistic movement during the exercise.

Previous studies have shown that different lunge techniques have cause different mechanics during the movement (Escamilla et al., 2010a; Farrokhi et al., 2008; Gresham-Fiegel, House, & Zupan, 2013; Jönhagen et al., 2009; Kim & Yoo, 2013). For example, Flanagan, Wang, Greendale, Azen, and Salem (2004) found the 05-450 lateral lunge targeted the ankle plantar flexors, producing greater dorsiflexion angles, joint moments, impulse and mechanical energy expenditure compared to forward lunge. In contrast, forward lunge was found to target the hip extensors, producing a greater flexion angle, peak joint moment, joint power, and mechanical energy expenditure compared to lateral lunge. In line with Flanagan et al. (2004), Riemann, Congleton, Ward, and Davies (2013) also found forward lunge to target the hip extensors while lateral lunge prompted greater ankle flexion and greater ankle and knee extensor kinetic contributions.

Previous studies had been conducted on comparing the muscle activity during lunge with different methods (Jönhagen, Halvorsen, et al., 2009; Parker, 1996; Sorensen, 2009) and equipment (Jakobsen, Sundstrup, Andersen, Aagaard, & Andersen, 2013; Kim & Yoo, 2013). Research on lunge has examined the muscle

📢 pustaka.upsi.edu.my

activation on different legs (Thorlund, Damgaard, Roos, & Aagaard, 2012), in fatigue conditions (Longpré, Acker, & Maly, 2014), ratio of muscle activation (Harput, Soylu, Ertan, Ergun, & Mattacola, 2013; Irish, Millward, Wride, Haas, & Shum, 2010), different muscle activation across genders (Hale, Hausselle, & Gonzalez, 2014), and how this compared to other exercises (Fauth, Garceau, Wurm, & Ebben, 2010; Garceau et al., 2010). As such, Kim and Yoo (2013) compared the use of variety of foot wedge boards on vastus medialis (VM) and vastus lateralis (VL) muscle activities and the VM/VL ratios among 20 asymptomatic males. Result demonstrated the use of medial and posterior wedge boards during the lunge exercise can selectively strengthen the VM muscle. All these studies showed that performing different protocols of lunge exercise will provide different acute biomechanical response.

05-4506832

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

Several studies had also been conducted on the biomechanics of lunge specific to sport. Williams and Kuitunen (2010) conducted a study aimed to determine and compare the ground reaction forces produced during simulated forehand and backhand lunge shot among experienced juniors and developing juniors in squash. Results demonstrated no significant differences between any variables tested when comparing forehand and backhand, thus showed similar force magnitude and kinematics were produced although participants were using alternate legs during the lunge movement. Due to slightly straighter leg with a more flat-footed strike during landing among developing junior group, it was found that this group produced higher impact loading forces and lower initial impact forces. The development junior group has been shown tended to begin knee flexion later, after the foot was completely flat on the ground, suggesting the inexperienced players had not yet developed the

appropriate coordination and movement skills, or strength, to reduce this aspect of the impact force (Lees & Hurley, 1995).

Researches on the chronic effects of lunge were not well established. Not many researches have been conducted on determining the effects of lunge as a single training exercise. Bloomfield (2009) in his study examined the effectiveness of six weeks lunge training on balance control among elderly women. Results demonstrated that the exercise group managed to perform lunge with lower forward trunk velocities, lower forward pelvis velocities, lower medial-lateral trunk velocities, and shorter step lengths compared to control group after training. The authors concluded that lunge training would benefit elderly women in terms of improving medial-lateral trunk stability during a lunge by decreasing peak medial-lateral trunk velocity.

05-4506832 Sustaka.upsi.edu.my

Training different kind of lunge might provide different adaptations. For example, study by Jönhagen et al. (2009) have found that a six weeks period of training with walk forward lunge improved hamstring strength, whereas training with jump forward lunge improved sprint running performance. The different of adaptations could be attributed to several factors such as different structural adaptations (Earp et al., 2010) imposed by the different stimuli that was caused by the different methods of training.

Lack of information existed on the fascicle behaviour during lunge movement. Several studies have been conducted on investigating the fascicle behaviour during movements (Finni, Ikegawa, & Komi, 2001; Finni, Ikegawa, Lepola, & Komi, 2003; Ishikawa, Finni, & Komi, 2003; Ito, Kawakami, Ichinose, Fukashiro, & Fukunaga,

