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ABSTRACT 

 

 

Hybrid organic-inorganic nanocomposite materials have emerged as one of the most 

potential alternative candidate to silicon as future optoelectronic material due to their 

unique optical and electrical characteristics. However, current fabrication process 

involving synthesizing the pre-made nanoparticles inside the polymer matrices is tediously 

complex, costly and time consuming. In this research, two approaches in preparing 

nanocomposite thin films, in situ hybridization and ex situ hybridization, were studied and 

the results were compared. In situ hybridization, a novel method, where the nanoparticles 

were grown directly in the Poly(3-hexylthiophene) (P3HT) mixed with stearic acid layers 

by exposing the films to either H2S or H2Se gas. Ex situ hybridization were done by mixing 

pre-made CdS or CdSe quantum dots into P3HT solution. For both approaches, depositions 

of thin films on the solid substrate were done by employing modified Langmuir-Blodgett 

technique. Studies on Langmuir layer found that the film is very sensitive towards its 

environment where the amount of solutions, the weight percentage, and the subphase 

affecting the gas-liquid-solid transformation. Absorbance spectra show higher polymer 

crystallization for thin films exposed to H2S or H2Se gas. The peak shifting and 

depreciation of absorption intensity indicates the quantum confinement effect of 

nanoparticles formed. Photoluminescence intensity decreased with the increment of gas 

exposure time and quantum dots’ weight percentage. The current density-voltage 

measurement revealed open circuit voltage for in situ hybrid thin film nucleating CdS and 

CdSe is 0.56 V and 0.72 V respectively. Thin films fabricated by ex situ method possess 

lower Johnson noise than that of in situ. Overall, in situ hybridization has shown a better 

performance as compared to hybrid nanocomposite thin films fabricated using ex situ 

approach. These findings have given a promising future for gas exposure method to be 

further studied in the fabrication of hybrid organic-inorganic nanocomposite thin films for 

optoelectronics application. 
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PENCIRIAN ISOTERM TEKANAN PERMUKAAN-LUAS, OPTIK  

DAN ELEKTRIK BAGI FILEM TIPIS P3HT/NANOPARTIKEL  

MENGGUNAKAN KAEDAH UBAH SUAI  

LANGMUIR-BLODGETT 

 

 

ABSTRAK 

 

 

 

Bahan komposit nano hibrid organik-tak organik telah menjadi salah satu calon alternatif 

kepada silikon sebagai bahan optoelektronik disebabkan oleh ciri-ciri optik dan elektrik 

yang unik. Walau bagaimanapun, proses fabrikasi masakini melibatkan sintesis pra-hasil 

nanopartikel di dalam matriks polimer adalah rumit, mahal dan memakan masa. Di dalam 

kajian ini, dua pendekatan dalam penyediaan filem tipis komposit nano, penghibridan in 

situ dan penghibridan ex situ, telah dikaji dan keputusannya dibandingkan.Penghibridan in 

situ ialah kaedah novel di mana nanopartikel ditumbuhkan secara langsung dalam lapisan 

Poly(3-hexylthiophene) (P3HT) yang dicampur dengan asid stearik, dengan mendedahkan 

filem tipis dengan gas H2S atau H2Se. Penghibridan ex situ dilakukan dengan mencapurkan 

titik kuantum CdS atau CdSe ke dalam larutan P3HT. Untuk kedua-dua pendekatan ini, 

filem tipis didepositkan ke atas substrat dengan menggunakan kaedah ubahsuai Langmuir-

Blodgett. Kajian terhadap lapisan Langmuir mendapati bahawa filem tersebut sangat 

sensitif kepada perubahan sekeliling, di mana jumlah larutan, peratusan berat dan sub-fasa 

memberi kesan terhadap transformasi gas-cecair-pepejal. Serapan spektrum menunjukkan 

filem tipis yang didedahkan kepada gas H2S atau H2Se mengalami penghabluran polimer 

yang lebih tinggi. Anjakan puncak dan penurunan keamatan serapan menandakan kesan 

kekangan kuantum oleh nanopartikel yang terbentuk. Keamatan PL menurun dengan 

kenaikan masa dedahan dan peratusan berat titik kuantum. Pengukuran ketumpatan arus-

voltan menunjukkan bahawa nilai voltan litar terbuka bagi filem tipis hibrid in situ 

menghasilkan CdS dan CdSe ialah 0.56 V dan 0.72 V. Filem tipis yang difabrikasi secara 

ex situ mempunyai ciri hingar Johnson yang lebih rendah berbanding fiem tipis yang 

dihasilkan secara in situ. Secara keseluruhan, hibrid filem tipis yang terhasil dari proses in 

situ mempunyai prestasi yang lebih baik berbanding dengan komposit nano hibrid filem 

tipis yang difabrikasi menggunakan pendekatan ex situ. Keputusan-keputusan ini 

memberikan masa depan yang cerah untuk kaedah pendedahan gas dikaji dengan lebih 

lanjut untuk fabrikasi hibrid filem nipis organik–tak organik bagi aplikasi optoelektronik. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Research Background 

 

Semiconductor materials have been an important catalyst in tremendous progress of 

electronic and microelectronic devices. Semiconductor is a group of materials whose 

conductivity lies between conductor and insulator, ranging from 10
5
 S/cm −  10

-8
 S/cm 

(Czichos, Saito & Smith, 2007). It exhibits an energy bandgap, where the states below the 

gap are fully occupied by electrons whilst the upper state is empty. At absolute zero, the 

semiconductor carries no net current hence acts like an insulator.  
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The most dominant material for semiconductor devices is silicon, a single-element 

from group IV, which is abundantly and cheaply available all around the world. One main 

advantage of silicon general properties is its ability to be doped to tune the types of 

conductivity in order to fabricate high quality substrates. Silicon semiconductor industry 

is a matured technology that began in 1947 when silicon-based transistors were invented 

in Bell Laboratories (Zekry, 2014). The rapid progress in silicon technology enabled Bell 

Lab to invent photovoltaic device with efficiency around 6% in 1954 (Chapin, Fuller & 

Pearson, 1954). However, the substrate fabrication is very expensive as compared to the 

cost of overall device. For example, in order to fabricate photovoltaic panel, around 50% 

of overall fabrication cost is due to cost of silicon substrate production (Aberle & 

Widenborg, 2011). Thinner wafers are produced to lower the cost, but it causes the wafer 

to break easily at minimum achievable thickness. Thinner substrates also lead to fractional 

loss due to sawing damage. Thus, among possible approach to address this issue are by 

using alternative semiconducting materials, thin film technology, or the combination of 

both. 

 

The most popular choice of alternative semiconducting material is conjugated 

polymer, owing to its relatively lower cost as compared to silicon (Gaudiana & Brabec, 

2008). While semiconducting properties of silicon depending on its crystal structure, 

conjugated polymer semiconductivity depends on its chemical structure. Conjugation in 

polymer is due to alternating single and double bonds between the carbon atoms on its 

backbone. Single bond comprises of strong covalent bond called sigma (σ) bond only, 

whilst double bond is constructed by both σ bond and a pi (π) bond. The π bond is due to 
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weak overlapping of unhybridized p-orbital electron. Electrons in π bond are known as π 

electrons, delocalized along carbon backbone. Atomic orbitals overlapping also creating 

occupied π-bond and unoccupied π*-anti-bond molecular orbital. The filled π band is called 

the highest occupied molecular orbital (HOMO) and the empty π* band is called the lowest 

unoccupied molecular orbital (LUMO). This is analogous to silicon band gap, where 

HOMO is equivalent to valence band and LUMO is called conduction band.  

 

Among interesting characteristic of conjugated polymer are it has strong absorption 

and high quantum yield in the solid state that make it a promising material for 

optoelectronic devices (Brandão, Viana, Bucknall & Bernardo, 2014), exhibits molecular 

wire properties and highly fluorescent (Y. Liu, Lam & Tang, 2015) and it can be easily 

processed (Gaudiana & Brabec, 2008) and deposited on a wide range of substrates (Levell, 

Giardini & Samuel, 2010). The deposition of conjugated polymer is generally done by 

means of thin film technology.  

 

Thin film technology henceforth became the basis in the development of solid state 

electronics, in which the properties of functional materials are significantly different when 

analyzed in the form of thin films as compared to their bulk materials. Thin film is a solid 

layer of a material, adhered to a substrate that possesses different properties of the said 

film, with the thickness ranging from tenths of nanometers to micrometers. The processing 

of materials into thin film allows easy integration into many types of applications in various 

industries (West, 2003). 
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The major application of thin film is in microelectronic field (Lazar, Tadvani, Tung, 

Lopez, & Daoud, 2010), with growing applications in other areas like optoelectronics, 

magnetic devices, electrochemistry, and protective and decorative coatings. Studies on thin 

films have advanced and combined many new area of research, particularly in solid state 

physics, chemistry and biophysics. One of the leading reasons behind thin film 

advancement is the miniaturization of electronic devices towards cheaper and faster gadget 

but with lower power consumption and higher efficiency.  

 

The manufacturing technique plays important role in determining thin films’ 

properties (Vilarinho, 2005). There are varieties of thin film deposition techniques 

available and in use today which originate from purely physical or chemical processes. 

However, recently many studies combined different well developed process to get more 

defined control and properties of the thin films. Generally, the deposition technique affects 

the morphology, adhesion, crystallinity, and growth rate of thin film, in which necessitate 

direct control of materials on molecular and atomic scale (Mallik & Ray, 2011). Hence the 

appropriate deposition method selection is vital in order to control the properties of the 

resultant film. 

 

Thin films deposition can be categorized into one of three approaches: physical 

vapor deposition, chemical vapor deposition and wet chemical deposition. Each of the 

categories and several common techniques are described in the next subtopics. 
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1.2  Physical Vapor Deposition (PVD) 

 

Physical vapor deposition (PVD) methods are a range of techniques used to fabricate thin 

films using purely physical process. The technique involves the condensation of a solid or 

liquid source material that is vaporized under vacuum, onto a substrate (Pulker, 1999). The 

evaporation of the source either by evaporation, or sublimation of ions impinge on a target, 

depending on the technique to excite the source atoms to the vapor phase. The main PVD 

techniques are vacuum thermal evaporation, sputter deposition, cathodic arc deposition and 

pulse laser deposition. 

 

The first system called vacuum thermal evaporation is the easiest system among 

PVD technique. Due to its low cost and maintenance, most university research laboratories 

use this system in work of materials science and related field (Stagon, 2013). The 

evaporation of material occurs inside a vacuum chamber, in which a conductive heating 

element used to vaporize the materials, and allowed to deposit onto a substrate. This 

technique generally is performed in high to ultra-high vacuum condition because the vapor 

atom will not leave the liquid melt if the minimum required pressure is not met (Stagon, 

2013).  

 

A method that is categorized under thermal evaporation is electron beam 

evaporation (EB-PVD), in which a high energy electron beam bombards the source 

material causing local vaporization (Singh & Wolfe, 2005). The system is as illustrated in 
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Figure 1.1. With a proper pumping and slow outgassing of the source, high purity film can 

be achieved. This technique allows a wide range of materials to be deposited. 

 

 

Figure 1.1. Electron beam physical vapor deposition (EB-PVD) 

 

The second PVD technique is sputter deposition, where surface atoms are ejected 

from source materials by momentum transfer from energetic bombarding particles and then 

freed into a vacuum chamber. Since the energetic particles are usually gaseous ions 

accelerated from plasma, it is quite challenging to control the bombardment rate. Another 

setback of this method is random bombardment angle complicate the process of masking 

and shadowing that is usually implemented in microelectronic industry. 
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Cathodic arc deposition is the third system where cathodic electrode was vaporized 

on anodic electrode using high current, low-voltage arc. The arc beam is only a few microns 

in size and rapidly heats the area causing the source to evaporate and highly ionized. The 

ions are then accelerated to a biased substrate resulting a very hard thin film coating. Other 

deposition system generates a less hard coating even using the same materials because the 

temperature and velocity of the vapor is lower. 

 

The fourth physical vapor technique is pulsed laser deposition (PLD) where a target 

is hit with a high energy laser in regular intervals causes evaporation of the source material 

(Park, Ikegami, Ebihara & Shin, 2006). The interaction of laser and the source not just 

heats the area, but also generates phonon, excites electrons, and ejects ions, molecules, and 

melted cluster. Hence this system is quite complicated and it is quite hard to control the 

deposition rate. 

 

 

1.3  Chemical Vapor Deposition (CVD) 

 

Chemical vapor deposition (CVD) is a process of formation of a thin film on a 

substrate by reacting chemical precursors in vapor phase. The precursors are evaporated 

via heating and transported into the reaction chamber. The product of the reaction is a solid 

material in thin film form, condenses on the surface inside the chamber. Figure 1.2 depicted 

the typical CVD reactor. 

 


