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ABSTRACT 

 

The purpose of this research is to study the ionic conductivities of gel polymer electrolytes 

(GPEs) and composite solid polymer electrolytes (CSPEs) for tin-air battery application 

based on polyacrylamide as host polymer. Methanesulfonic acid and p-toluenesulfonic acid 

were used as additives. Electrochemical impedance spectroscopy (EIS) was used to 

measure the ionic conductivities of the samples by using the bulk electrolyte resistance 

values (Rb). The FTIR spectra were analyzed to describe the mechanism involved in the 

proton transfer within the membranes by referring to the characteristic shifts of the 

absorbance bands of C=O and N-H2. Tin-air batteries, with a configuration of 

Sn(anode)/GPE/ air(cathode) were fabricated to study the electrochemical properties of the 

GPEs. The batteries were discharged at various constant of current densities. The results 

showed that the maximum ionic conductivities of 7.0 x 10-1 S/cm and 9.34 x 10-1 S/cm were 

obtained for GPEs at a loading of 3.0 M MSA and 5.0 M of pTSA respectively. The 

highest ionic conductivity of 1.17 x 10-6 S/cm and 4.45 x 10-5 S/cm were observed at 5.0 M 

and 4.0 M loading of MSA and pTSA into CSPEs. The FTIR spectra indicated that the 

proton transfer in GPEs occurred through the protonation of NH2 group of PAAm. 

Whereas, in CSPEs the protons were transferred from sulfonic acid to the fuctional group 

of C=O of PAAm through the formation of hydrogen bond. The OCV exhibited by tin-air 

cell of PAAm-MSA GPE was 1.27 V compared to 1.23 V for cell with PAAm-pTSA GPE. 

The tin anode of the cell for PAAm-MSA GPEs produced an average specific discharge 

capacity of 456mAh/g, while for PAAm-pTSA GPEs was 439 mAh/g. The tin-air cell of 

PAAm-MSA GPEs also supported a relatively high current of 12 mA/cm2 with a maximum 

power density of 5.25 mW/cm2. In conclusion, the research showed that MSA and pTSA as 

additives the enhanced the ionic conductivity of the PAAm electrolytes. The mechanism 

involved in the proton transfer of GPEs different from the mechanism in CSPEs.  The tin-

air battery cell with PAAm-MSA GPE exhibited superior electrochemical cell performance 

in the discharge capacity. Thus, this research proves that PAA-MSA GPEs have high 

potential for application as tin-air battery.  
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PENINGKATAN KEKONDUKSIAN IONIK POLIMER POLIAKRILAMIDA 

ELEKTROLIT DALAM PENYEDIAAN BATERI TIN-UDARA 

ABSTRAK 

Tujuan kajian ini adalah mengkaji kekonduksian ionik bagi polimer electrolit bergel 

(GPEs) dan polimer electrolit pepejal berkomposit (CSPEs) untuk diaplikasikan dalam 

bateri tin-udara. Polimer poliakrilamida (PAAm) digunakan sebagai perumah. Asid 

metanasulfonik (MSA) dan asid para-toluenasulfonik monohidrat (pTSA) digunakan 

sebagai bahan tambah dalam elektrolit. Kaedah EIS digunakan untuk mengkaji konduksian 

ionik bagi semua sampel daripada nilai rintangan pukal (Rb). Mekanisma pergerakan 

proton dalam polimer elektrolit yang disintesis, dijelaskan dengan menggunakan jalur C=O 

dan NH2 pada spectra FTIR. Bateri tin-udara berkonfigurasi Sn(anod)/GPE/udara(katod) 

dibentuk untuk mengkaji ciri-ciri elektrokimia GPEs yang disintesiskan. Kesemua bateri 

dinyahcaskan dengan  menggunakan aliran elektrik berbeza. Dapatan kajian menunjukkan 

konduksian maksimum yang bernilai 7.0 x 10-1 S/cm dan 9.34 x 10-1 S/cm telah diperolehi 

dengan penambahan 3.0 M MSA dan 5.0 M pTSA secara berasingan dalam GPEs. Bagi 

CSPEs, konduksian ionik optimum yang bernilai 1.17 x 10-6 S/cm dan 4.45 x 10-5 S/cm 

diperolehi dengan penambahan 5.0 M MSA dan 4.0 M pTSA ke dalam polimer matriks 

masing-masing.  Analisis spektra FTIR menunjukkan bahawa mobiliti proton dalam GPES 

berlaku melalui mekanisme protonasi kumpulan berfungsi NH2 dalam polimer. Manakala, 

mobiliti proton dalam CSPEs berlaku melalui.. pembentukan ikatan hidrogen di antara asid 

sulfonik dengan kumpulan berfungsi C=O pada polimer.  Anod Sn bagi bateri dengan 

PAAm-MSA GPE telah menghasilkan purata kapasiti discas spesifik (456mAh/g) dan nilai 

OCV (1.27V) yang lebih tinggi berbanding dengan PAAm-pTSA. Purata kapasiti spesifik 

bagi anod Sn dengan PAAm-pTSA GPE adalah 439 mAh/g dengan nilai OCV 1.23 V. 

Bateri tin-udara dengan PAAm-MSA sebagai elektrolit juga boleh menggendalikan arus 

elektrik setinggi 12 mA/cm2 dengan ketumpatan kuasa 5.25 mW/cm2. Kesimpulannya, 

penambahan asid sulfonik ke dalam matriks polimer telah meningkatkan konduksian ionik 

dalam PAAm-MSA GPEs dan PAAm-pTSA GPEs. Mekanisme mobiliti proton dalam 

GPEs adalah berbeza berbanding dengan mobiliti proton dalam CSPEs. PAAm-MSA GPEs 

menunjukkan ciri-ciri electrokimia yang lebih baik berbanding dengan PAAm-pTSA 

GPEs. Kajian ini telah membuktikan bahawa PAA-MSA GPEs mempunyai potensi yang 

tinggi untuk aplikasi bateri tin-udara. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

  

 

1.1 Introduction 

 

The United Nations Department of Economic and Social Affairs have projected that 

the world population could eventually reach 10.6 billion, mostly due to the advent and 

progress of the industrial revolution. Population growth is incumbent on increased 

energy demands from individuals and societies. The oil and gas prices can be 

expected to increase dramatically as the demand for energy and power are increasing 

day by day. This could inevitably result in a future energy crisis. Figure 1.1 shows the 

projected change in energy demand by region for 30 years, as reported by the U.S 

Energy information Administration (EIA) in 1999. 
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There are many global initiatives working towards resolving the energy crisis, 

mostly in the form of funding research on the exploitation of electrochemical power 

sources. Examples of these include primary (single use) and secondary (rechargeable) 

batteries, fuel cells, super-capacitors, and photovoltaic devices. The success of these 

commercial products is dependent on its viability and reliability. Factors that govern 

performances include energy density, especially high rate discharges at low 

temperatures, and performance stability in the context of storage, overcharging, and 

cycle life. Figure 1.2 depicts human energy needs and ways of meeting them. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. Projected Change in Energy Demand by Region, 1999-2020  

Energy Information Administration, Independent Statistics and Analysis, 1999, 

Retrived from http://www.eia.goz/ 

 

 

 

 

 



3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2. Flowcharts of Energy needs by Energy Information Administration, 

Independent Statistics and Analysis, 1999. Retrived from http://www.eia.goz/ 

 

 

Battery is an essential energy storage device playing a significant role in 
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energy, which can in turn be utilized by an external device. It is also known as a 

galvanic cell, as the electrochemical reactions taking place within the batteries are 

galvanic reactions. Regardless of the form or technology, the basic building block for 

any kind of battery is referred to as a cell. A battery can be comprised of a single cell, 

such as the power source used in the common flashlight, to a package of multiple cells 

wired together in a laptop computer or a device in an automobile (Lee, 2013). 

 

 Every battery consists of two electrodes (an anode and a cathode), an 

electrolyte, and a separator between its anode and cathode. The anode in the battery 

deserves an equal say in the overall performance of a battery. The negative electrode 

is associated with the oxidation or release of electrons into the external circuit during 

electrochemical reactions. The choice of the anode material is essential towards the 

effective development of a high energy density battery. Several potential solutions for 

a suitable anode were reported by Winter & Brodd (2004). Anode that is easily 

handled, efficient reducing agent, excellent conducting agent, good mechanical 

stability, and low cost is generally preferred.  

 

The cathode is the positive electrode that accepts electrons from the external 

circuit during electrochemical reactions. Excellent electrical conductor, the retention 

of structure despite discharges or over charges, low cost, and environmentally benign 

materials are some of the key requirement for a cathode material in a battery. Almost 

all research and commercialization of cathode materials are centered on two classes of 

materials (Rao, 2014). The first type material contains layered compounds with an 


