

i

ENHANCEMENT OF IONIC CONDUCTIVITY IN POLYACRYLAMIDE BASED POLYMER ELECTROLYTES FOR TIN-AIR BATTERIES

SUMATHI SUBRAMANIAM

🔾 05-4506832 🔇 pustaka.upsi.edu.my

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

ptbupsi

TESIS SUBMITTED IN FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY (CHEMISTRY)

FACULTY OF SCIENCE AND MATHEMATICS SULTAN IDRIS EDUCATION UNIVERSITY

2017

iv

ptbupsi

ABSTRACT

The purpose of this research is to study the ionic conductivities of gel polymer electrolytes (GPEs) and composite solid polymer electrolytes (CSPEs) for tin-air battery application based on polyacrylamide as host polymer. Methanesulfonic acid and p-toluenesulfonic acid were used as additives. Electrochemical impedance spectroscopy (EIS) was used to measure the ionic conductivities of the samples by using the bulk electrolyte resistance values (R_b). The FTIR spectra were analyzed to describe the mechanism involved in the proton transfer within the membranes by referring to the characteristic shifts of the absorbance bands of C=O and N-H₂. Tin-air batteries, with a configuration of Sn(anode)/GPE/ air(cathode) were fabricated to study the electrochemical properties of the GPEs. The batteries were discharged at various constant of current densities. The results showed that the maximum ionic conductivities of 7.0×10^{-1} S/cm and 9.34×10^{-1} S/cm were obtained for GPEs at a loading of 3.0 M MSA and 5.0 M of pTSA respectively. The highest ionic conductivity of 1.17 x 10⁻⁶ S/cm and 4.45 x 10⁻⁵ S/cm were observed at 5.0 M and 4.0 M loading of MSA and pTSA into CSPEs. The FTIR spectra indicated that the proton transfer in GPEs occurred through the protonation of NH₂ group of PAAm. Whereas, in CSPEs the protons were transferred from sulfonic acid to the fuctional group of C=O of PAAm through the formation of hydrogen bond. The OCV exhibited by tin-air cell of PAAm-MSA GPE was 1.27 V compared to 1.23 V for cell with PAAm-pTSA GPE. The tin anode of the cell for PAAm-MSA GPEs produced an average specific discharge capacity of 456mAh/g, while for PAAm-pTSA GPEs was 439 mAh/g. The tin-air cell of PAAm-MSA GPEs also supported a relatively high current of 12 mA/cm² with a maximum power density of 5.25 mW/cm². In conclusion, the research showed that MSA and pTSA as additives the enhanced the ionic conductivity of the PAAm electrolytes. The mechanism involved in the proton transfer of GPEs different from the mechanism in CSPEs. The tinair battery cell with PAAm-MSA GPE exhibited superior electrochemical cell performance in the discharge capacity. Thus, this research proves that PAA-MSA GPEs have high potential for application as tin-air battery.

v

PENINGKATAN KEKONDUKSIAN IONIK POLIMER POLIAKRILAMIDA ELEKTROLIT DALAM PENYEDIAAN BATERI TIN-UDARA

ABSTRAK

Tujuan kajian ini adalah mengkaji kekonduksian ionik bagi polimer electrolit bergel (GPEs) dan polimer electrolit pepejal berkomposit (CSPEs) untuk diaplikasikan dalam bateri tin-udara. Polimer poliakrilamida (PAAm) digunakan sebagai perumah. Asid metanasulfonik (MSA) dan asid para-toluenasulfonik monohidrat (pTSA) digunakan sebagai bahan tambah dalam elektrolit. Kaedah EIS digunakan untuk mengkaji konduksian ionik bagi semua sampel daripada nilai rintangan pukal (R_b). Mekanisma pergerakan proton dalam polimer elektrolit yang disintesis, dijelaskan dengan menggunakan jalur C=O dan NH₂ pada spectra FTIR. Bateri tin-udara berkonfigurasi Sn(anod)/GPE/udara(katod) dibentuk untuk mengkaji ciri-ciri elektrokimia GPEs yang disintesiskan. Kesemua bateri dinyahcaskan dengan menggunakan aliran elektrik berbeza. Dapatan kajian menunjukkan konduksian maksimum yang bernilai 7.0 x 10⁻¹ S/cm dan 9.34 x 10⁻¹ S/cm telah diperolehi dengan penambahan 3.0 M MSA dan 5.0 M pTSA secara berasingan dalam GPEs. Bagi CSPEs, konduksian ionik optimum yang bernilai 1.17 x 10⁻⁶ S/cm dan 4.45 x 10⁻⁵ S/cm diperolehi dengan penambahan 5.0 M MSA dan 4.0 M pTSA ke dalam polimer matriks masing-masing. Analisis spektra FTIR menunjukkan bahawa mobiliti proton dalam GPEs berlaku melalui mekanisme protonasi kumpulan berfungsi NH₂ dalam polimer. Manakala, mobiliti proton dalam CSPEs berlaku melalui.. pembentukan ikatan hidrogen di antara asid sulfonik dengan kumpulan berfungsi C=O pada polimer. Anod Sn bagi bateri dengan PAAm-MSA GPE telah menghasilkan purata kapasiti discas spesifik (456mAh/g) dan nilai OCV (1.27V) yang lebih tinggi berbanding dengan PAAm-pTSA. Purata kapasiti spesifik bagi anod Sn dengan PAAm-pTSA GPE adalah 439 mAh/g dengan nilai OCV 1.23 V. Bateri tin-udara dengan PAAm-MSA sebagai elektrolit juga boleh menggendalikan arus elektrik setinggi 12 mA/cm² dengan ketumpatan kuasa 5.25 mW/cm². Kesimpulannya, penambahan asid sulfonik ke dalam matriks polimer telah meningkatkan konduksian ionik dalam PAAm-MSA GPEs dan PAAm-pTSA GPEs. Mekanisme mobiliti proton dalam GPEs adalah berbeza berbanding dengan mobiliti proton dalam CSPEs. PAAm-MSA GPEs menunjukkan ciri-ciri electrokimia yang lebih baik berbanding dengan PAAm-pTSA GPEs. Kajian ini telah membuktikan bahawa PAA-MSA GPEs mempunyai potensi yang tinggi untuk aplikasi bateri tin-udara.

TABLE OF CONTENTS

	Page
TITLE PAGE	i
DECLARATION	ii
ACKNOWLEDGMENTS	iii
ABSTRACT	iv
ABSTRAK	v
C TABLE OF CONTENTS 05-4506832 pustaka.upsi.edu.my LIST OF FIGURES	PustakaTBainun Vii PustakaTBainun ptbupsi xiii
LIST OF TABLES	xix
LIST OF ABBREVIATIONS	xxi
CHAPTER 1 INTRODUCTION	
1.1 Introduction	1
1.2 Importance of Study	10
1.3 Objectives of Study	13
1.4 Scopes of Study	14

PustakaTBainun

vii

CHAPTER 2 LITERATURE REVIEW

2.1	Introd	uction	15
2.2	Histor	ical Developments of Batteries	16
2.3	The In	nportant Attributes of Batteries	19
	2.3.1	Energy Density	19
	2.3.2	Power Density	20
	2.3.3	Cycle Life/ Discharge Curve	22
2.4	Classi	fication of Batteries	23
	2.4.1	Primary Battery	24
05-4506832	2.4.2	a. Secondary Battery mpus Sultan Abdul Jalil Shah	PustakaTBainun 26 ptbupsi
	2.4.3	Reserve Battery	30
	2.4.4	Fuel Cell	32
2.5	Metal	-Air Batteries	34
	2.5.1	Lithium-Air Battery	36
	2.5.2	Zinc-Air Battery	39
	2.5.3	Aluminium-Air Battery	41
	2.5.4	Magnesium-Air Battery	42
	2.5.5	Silicon-Air Battery	43

		2.5.6 Sodium-Air Battery		45
	2.6	imitation and Challenges of Me	tal-Air Technologies	45
	2.7	fin as the Electrode (anode) of the	e Battery	49
	2.8	Electrolytes		51
	2.9	The Polymer Electrolytes in Batte	eries	53
		2.9.1 Solvent Free, Salt-Polymer Polymer Electrolyte	Complexes or Dry Solid	54
		.9.2 Composite Polymer Electro	lytes (CPEs)	58
		9.3 GPE that Contain Small Mo	plecule Additives or Plasticizer	59
05-450683	2	9.4 Single-Ion Polyelectrolytes Immobilized Anions Linked	in which the Polymers have I to the Polymer Chain	62 ptbupsi
		2.9.5 Proton (H ⁺) Conducting Ge	el Polymer Electrolyte	65
	2.10	Sulfonic Acids as an Additive to	the Polymer Electrolytes	66
	2.11	Jtilization of Polymer Electrolyte	es in Metal-Air Batteries	73
	2.12	Polyacrylamide as Polymer Elect	rolyte	75
	2.13	The Electrochemical Interface St	udy	77
		2.13.1 The Electrical Equivalent	and the Nyquist Plot Analysis	78
		2.13.2 The Warburg Impedance		83

viii

05-4506832

ix

CHAPTER 3 METHODOLOGY

	3.1	Introdu	uction	88
	3.2	Synthe	esis and Characterization of PAAm based GPEs	91
		3.2.1	Synthesis of PAAm-MSA GPEs	91
		3.2.2	Synthesis of PAAm-pTSA GPEs	92
		3.2.3	Characterization of PAAm based GPEs	94
			3.2.3.1 Electrical Inpedance Spectroscopy Study for GPEs	94
			3.2.3.2 Fourier Transform Infrared Spectroscopy Study (FTIR) for GPEs	96
) 05-450	3.3	Synthe	esis and Characterization of PAAm based CSPEs	97
		3.3.1	Synthesis of PAAm-MSA Composite Membranes	97
		3.3.2	Synthesis of PAAm-pTSA Composite Membranes	100
		3.3.3	Characterization of PAAm based CSPEs	100
			3.3.3.1 EIS Study for CSPEs	100
			3.3.3.2 Fourier Transform Infrared Spectroscopy Study for CSPEs	102
			3.3.3.3 Thermal analysis for CSPES	102
			3.3.3.4 FESEM Study for CPES	103
	3.4	Applica	ation of PAAm-based GPEs on Tin-Air Battery	104

(

	4.1	Intro	duction	108
	4.2	Chara	acterization of PAAm Based GPEs	109
		4.2.1	EIS and Ionic Condictivity of PAAm-MSA GPEs	110
		4.2.2	EIS and Ionic Conductivity of PAAm-pTSA GPEs	113
		4.2.3	Ionic Conductivity of PAAm-MSA and PAAm-pTSA GPEs	116
05-4506832	2	4.2.4 pustak	Fourier Transform Infrared Spectroscopy Analysis of a. ucsi edu. my GPEs Kampus Sultan Abdul Jalil Shah	130 ^{ptbupsi}
		4.2.5	Fourier Transform Infrared Spectroscopy Analysis of PAAm- MSA GPEs	134
		4.2.6	Fourier Transform Infrared Spectroscopy Analysis of PAAm- pTSA Monohydrate GPEs	136
		4.2.7	The Polymer-Acid Interactions of the Synthesized PAAm-MSA and PAAm-pTSA GPEs	139
		4.2.8	Fourier Transform Infrared Spectroscopy Analysis on the Formation of Ion Agregation	142
4.3	3	Synth	esis and Characterization of PAAm Based CSPEs	143
		4.3.1	EIS and Ionic Conductivity of PAAm-MSA CSPEs	146

CHAPTER 4 RESULTS AND DISCUSSIONS

ptbupsi

Х

PustakaTBainun

ptbupsi

xi

	4.3.2 EIS and Ionic Conductivity of PAAm-pTSA CSPEs	148
	4.3.3 Ionic Conductivity of PAAm-MSA and PAAm-pTSA CSPEs	151
	4.3.4 Fourier Transform Infrared Spectroscopy Analysis of CSPEs	154
	4.3.5 The Polymer-Acid Interactions of the Synthesized PAAm MSA and PAAm-pTSA CSPEs	159
4.4	The Electrochemical Interface Study	161
4.5	Thermal Analysis of PAAm-based CSPEs	166
4.6	FESEM of PAAm-Based CSPES Membranes	172
4.7 05-45068	Fabrication of Tin-Air Battery with PAAm-GPEs pustaka.upsi.edu.my 4.7.1 Tin-Air Cell Discharge with PAAm Based GPEs	174 ptbupsi 175
	4.7.1.1 Tin-Air Current Discharge with PAAm-MSA GPEs	175
	4.7.1.2 Tin-Air Current Discharge with PAAm-pTSA GPEs	179
	4.7.1.3 Electrochemical Characterization of PAAm GPEs	182
4.8	XRD on the Air Cathode	188
	4.8.1 XRD on Air-Cathode after Discharge with PAAm-MSA GPEs	189
	4.8.2 XRD on Air-Cathode after Discharge with PAAm-pTSA GPEs	190
4.9	FESEM on the Air -Cathode	191
	4.9.1 FESEM on the Air -Cathode for PAAm-MSA GPEs	191

🕓 05-4506832 😵 pustaka.upsi.edu.my 📑

xii

4.9.2	FESEM on the Air- Cathode for PAAm-pTSA GPEs	192
4.9.3	The Presences of SnO and SnO_2 Deposits on the Surface of the Air-Cathode	193
CHAPTER 5	CONCLUSION	
5.1	Introduction	195
5.2	Conclusion	196
5.3	Suggestion for Future Work	199
REFERENCE	ES	202
05-4506832	pustaka.upsi.edu.my f Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah y PustakaTBain	un tbupsi

C

xiii

LIST OF FIGURES

No.	Figures	Page
1.1	Projected Change in Energy Demand by Region	2
1.2	Flowcharts of Energy Needs	3
1.3	Theoretical and Practical Energy Densities of Various Types of Battery	8
1.4	Schematic Representation of the Structure and Operation Principle of a Metal-Air Battery	9
2.1	Ideal Ragone Plot	21
2.2 05-4500 2.3	Comparison of the Different Battery Technologies in Term of Specific Power pustaka.upsi.edu.my Discharge Curves of Various Types of Batteries	21 ptbupsi 25
2.4	Schematic Diagram of PEM Fuel Cell Operation	33
2.5	Schematic Cell Configuration for the Four Types of Li-Air Battery	38
2.6	Different Categories of Polymer Electrolytes in Battery Technologies	55
2.7	Conjugate Base Anion of Sulfonic Acid	69
2.8	Formation of Hydrogen Bonds between Sulfonic Acid and Water Molecules	69
2.9	Structural Formula of MSA and pTSA	72
2.10	Chemical Structure of the Acrylamide Monomer	75
2.11	Chemical Structure of Polyacrylamide	76

xiv

2.12	Resonance Stabilized Carbonyl Group	76
2.13	Representation of (a) Resistor, R (b) Capasitor (c) Resistor and Capasitor in Series and (d) Resistor and Capacitor in Parallel in a Nyquist Plot	82
2.14	Nyquist Plot for Randle's Electrochemical Cell Model.	85
2.15	Extrapolation of the Higher-Frequency and Lower Frequency Values to the Real Impedance axis	86
2.16	Randles Electrical Circuit Representing the Mass Transfer Reaction, Charge Transfer Reaction and Diffusion Processes at the Electrode/Electrolyte Interface	87
3.1	The Framework of the Research on Composite Solid Polymer Electrolyte	89
3.2	The Framework of the Research on Gel Polymer Electrolyte	90
053450	Preparation of PAAm-MSA GPE Repustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah	93 ^{tbupsi}
3.4	Cell Configuration of Electrical Impedance Spectroscopy for GPEs	95
3.5	Synthesis of PAAm-MSA CSPE	99
3.6	Cell Configuration of Electrical Impedance Spectroscopy for CSPEs	101
3.7	Schematic Illustration of PAAm-Sulfonic acid GPE based Tin-Air Battery	105
3.8	(a) PAAm-MSA GPE air-cathode electrode (b) PAAm-pTSA GPE air-cathode electrode	107
4.1	The Nyquist Plot with Various Concentration of MSA	110
4.2	The Variation in Conductivity of the PAAm-MSA GPEs with Different Concentration of MSA	112

05-4506832

XV

4.3	The Nyquist Plot of Pure PAAm with Various Concentration of pTSA	113
4.4	Variation of Conductivity of PAAm-pTSA Monohydrate GPE as the fuction of pTSA Monohydrate Concentration	115
4.5	Mobility of H ⁺ Ion from Sulfonic Acid to the Carbonyl Group of PAAm	121
4.6	Mobility of H ⁺ ion from Sulfonic Acid to the Amine Group of PAAm	122
4.7	Formation of White Cluster with 4.0 M of MSA and pTSA after a week	123
4.8	Variations of log o versus log C for GPE s	125
4.9	(a) Dissociation Reaction of MSA(b) Dissociation Reaction of pTSA	126
4.10 05-4506 4.11	 (a) The Three Resonances Structure of Methane Sulfonate Ions (b) The Three Resonances Structure of p-Tolune Sulfonate Ions (a) The Alkyl Substituent Group as an Electron Donating Group 	127 ptbupsi
	(b) The Benzene Ring Substituent Group as an Electron Withdrawing Group	129
4.12	FTIR Spectrum of Dry PAAm	131
4.13	FTIR Spectrum of PAAm Hydrogel	131
4.14	The Delocalization of Electrons in Amide Group	132
4.15	Dipolar Nature of PAAm and Formation of Hydrogen Bonds with Water Molecules	133
4.16	FTIR Spectra (a) Pure PAAm (b) PAAm Hydrogel (c) -(g) PAAm with different Concentration of MSA	135
4.17	FTIR Spectra of PAAm Hydrogel with (a) 1.0 M pTSA, (b) 2.0 M pTSA (c) 3.0 M pTSA (d) 4.0 M pTSA (e) 5.0 M pTSA	138

05-4506832

pustaka.upsi.edu.my

	4.18	Resonance Structures of Protonated CONH ₂ Amide Group	139
	4.19	(a) Dissociation of MSA in the Polymer Matrix(b) N-protonation of the PAAm	141
	4.20	Protonation of NH Group in PAAm - pTSA Network of GPEs	141
	4.21	Formation of Ion Aggregation at the Higher Concentrations of Sulfonic Acids	143
	4.22	Composite Solid Polymer Electrolyte Disc with (a) 4.0 M MSA (b) 5.0 M MSA (c) 6.0 M MSA and (d) 7.0 M MSA	144
	4.23	Composite Solid Polymer Electrolyte Disc with (a) 4.0 M pTSA (b) 5.0 M pTSA (c) 6.0 M pTSA and (d) 7.0 M pTSA	145
	4.24	The Nyquist Plot for PAAm CSPE with Various Concentrations of MSA	146
0	4.25 5-4506	Variation of Conductivity of PAAm - MSA CSPE as the Function of MSA Concentration	148 ^{tbupsi}
	4.26	The Nyquist Plot for PAAm CSPE with Various Concentrations of pTSA	149
	4.27	Variation of Conductivity of PAAm -pTSA CSPE as the Function of pTSA Monohydrate Concentration	151
	4.28	Proton Transfer by the Formation of Hydrogen Bonds	154
	4.29	FTIR Spectrum of PAAm-MSA CSPE with (a) 4.0 M (b) 5.0 M (c) 6.0 M (d) 7.0 M of MSA	156
	4.30	FTIR Spectrum of PAAm-pTSA CSPE with (a) 4.0 M (b) 5.0 M (c) 6.0 M (d) 7.0 M of pTSA Monohydrate	158
	4.31	Kinetic Processes at the Electrode-Electrolyte Surface and Electron Transfer through the Diffussion Process	162

PustakaTBainun

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

xvii

4.32	The Dissappearance of Semicircular Portion in the Nyquist Plot	164
4.33	Kinetic Process at the Electrode-Electrolyte Surface and the Migration of H^+ for Ion Conduction in the PAAm-GPEs and PAAm-CSPEs systems	165
4.34	TGA Curve of PAAm-5.0 M MSA CSPE	168
4.35	TGA Curve of PAAm-4.0 M pTSA CSPE	169
4.36	DSC Curve of PAAm-5.0 M MSA CSPE	170
4.37	DSC Curve of PAAm-4.0 M pTSA CSPE	171
4.38	Cross Sectional FESEM Images of PAAm-5.0 M MSA Membranes at (a) 1000 x (b) 5000 x of Magnification	173
4.39 () 05-4500 4.40	Cross Sectional FESEM Images of PAAm-4.0 M pTSA Membranes at (a) 200 x (b) 5000 x of Magnification pustaka.upsi.edu.my OCP Value of Tin-Air Battery with PAAm-MSA GPE	173 ptbupsi 176
4.41	Discharge Curves of Tin-Air Cell for PAAm-MSA GPE (a) $\Delta E/V$ vs t/hours (b)Power Density/mWcm ⁻² Plot	177
4.42	2 OCP Value of Tin-Air Battery with PAAm-pTSA Monohydrate GPE	179
4.43	Discharge Curves of Tin-Air Cell for PAAm-pTSA GPE (a) $\Delta E/V$ vs t/hours (b)Power Density/mWcm ⁻² Plot	181
4.44	The XRD Results of the Air Cathode of Tin-Air Cells before Discharge	188
4.45	The XRD Results of the Air Cathode of Tin-Air Cells with PAAm-MSA GPE After Discharge	189
4.46	The XRD Results of the Air Cathode of the Air Cathode of Tin-Air Cells with PAAm-pTSA GPE After Discharge	190


```
xviii
```

4.47 FESEM of Air-Cathode of Tin-Air Cells for PAAm-MSA GPE	191
4.48 FESEM of Air-Cathode of Tin-Air Cells for PAAm-pTSA Monohydrate Electrolyte (a)- (c) After Continuous Discharge (d) Before Discharge	192
4.49 Schematic Diagram of Tin-Air Battery	194

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

ptbupsi

xix

LIST OF TABLES

Tał	le No.	Page
1.1	Selected Polymer Hosts and Their Corresponding Chemical Formulae	7
2.1	Primary Battery versus Secondary battery	29
2.2	Properties of Common Anode Materials for Metal-Air Batteries	35
2.3	OCV and Theoretical Specific Energy of Metal-Air Batteries	36
2.4	Physical Properties of Tin Metal	50
2.5	Physical Properties of Plasticizers Perpustakaan Tuanku Bainun	ef0
2.6	Polymer Gel Electrolytes with Plasticizers and their Conductivity Values	63
2.7	Physical and Chemical Properties of Sulfonic Acid	73
2.8	The Current verse Voltage and the Impedance Expressions of the Ideal Circuit Elements	79
4.1	The Rb Values and the Ionic Conductivity of GPE with the Loading of Various Concentration of MSA	111
4.2	The Rb Values and the Ionic Conductivity of GPE with the Loading of Various Concentration of pTSA Monohydrate	114
4.3	Hard-Soft Acid and Base	118
4.4	The Physical Properties, Rb Values and the Ionic Conductivity of the CSPEs with Different Concentration of MSA	147

C

XX

ptbupsi

4.5 The Physical Properties, Rb Values and the Ionic Conductivity of the CSPEs with Different Concentration of pTSA	150
4.6 Tg and Tm Values of the CSPEs Synthesized	172
4.7 Optimum Ionic Conductivity of Synthesized PAAm-GPEs and PAAm- CSPEs	174
4.8 The Current Efficiencies of Tin-Air Cell with n=2 for PAAm-MSA GPE	178
4.9 The Current Efficiencies of Tin-Air Cell with n=2 for PAAm-pTSA Monohydrate GPE	182
4.10 Specific Discharge Capacities of Tin-Air Cells with PAAm-MSA GPE at	185
4.11 Specific Discharge Capacities of Tin-Air Cells with PAAm-pTSA GPE at	186
4.12 Average specific discharge capacity of tin-air cells with PAAm-MSA and ⁰⁵⁻⁴⁵⁰⁶⁸³ PAAm-pTSA GPEs ^{du.my} Kampus Sultan Abdul Jalil Shah	186 ^{tbupsi}

 \bigcirc

🕓 05-4506832 🛛 😵 pustaka.upsi.edu.my

xxi

LIST OF ABBREVIATIONS

- **CSPE** Composite Solid Polymer Electrolyte
- DEC Diethyl Carbonate
- DMC **Dimethyl Carbonate**
- DMAc Dimethylacetamide
- DMSO **Dimethyl Sulphoxide**
- DSC **Differential Scanning Calorimetry**
- EC Ethylene Carbonate

Perpustakaan Tuanku Bainun Electrical Impedance Spectroscopy

- **FESEM** Field Emission Scanning Electron Microscope
- FRA Frequency Response Analyser
- **FTIR** Fourier Transform Infrared
- GPE Gel Polymer Electrolyte
- KHCO₃ Potassium Hydrogen Carbonate
- MSA Methanesulfonic Acid
- NMP N- methylpyrrilidone
- OCV **Open Circuit Voltage**

PustakaTBainun

xxii

PAAm	Polyacrylamide		
PAN	Poly(acrylonitrile)		
PC	Propylene Carbonate		
PEO	Poly(ethylene oxide)		
PMMA	Poly(methyl methacrylate)		
pTSA	p-Toluenesulfonic acid		
PVC	Poly(vinylchloride)		
PVdF	Poly(vinylidene fluoride)		
R _b	Bulk Resistance		
055pe	Solid Polymer Electrolyte ampus Sultan Abdul Jalil Shah	PustakaTBainun	ptbupsi
Tg	Glass Transition Temperature		
TGA	Thermal Gravimetric Analysis		
XRD	X-ray Diffraction Analysis		

pustaka.upsi.edu.my

05-4506832

CHAPTER 1

INTRODUCTION

1.1 Introduction

The United Nations Department of Economic and Social Affairs have projected that the world population could eventually reach 10.6 billion, mostly due to the advent and progress of the industrial revolution. Population growth is incumbent on increased energy demands from individuals and societies. The oil and gas prices can be expected to increase dramatically as the demand for energy and power are increasing day by day. This could inevitably result in a future energy crisis. Figure 1.1 shows the projected change in energy demand by region for 30 years, as reported by the U.S Energy information Administration (EIA) in 1999.

2

There are many global initiatives working towards resolving the energy crisis, mostly in the form of funding research on the exploitation of electrochemical power sources. Examples of these include primary (single use) and secondary (rechargeable) batteries, fuel cells, super-capacitors, and photovoltaic devices. The success of these commercial products is dependent on its viability and reliability. Factors that govern performances include energy density, especially high rate discharges at low temperatures, and performance stability in the context of storage, overcharging, and cycle life. Figure 1.2 depicts human energy needs and ways of meeting them.

Figure 1.1. Projected Change in Energy Demand by Region, 1999-2020 Energy Information Administration, Independent Statistics and Analysis, 1999, Retrived from http://www.eia.goz/

3

Figure 1.2. Flowcharts of Energy needs by Energy Information Administration, Independent Statistics and Analysis, 1999. Retrived from <u>http://www.eia.goz/</u>

Battery is an essential energy storage device playing a significant role in fulfilling energy demands. It is a transducer that transforms chemical to electrical

05-4506832

05-4506832

pustaka.upsi.edu.my

4

ptbupsi

energy, which can in turn be utilized by an external device. It is also known as a galvanic cell, as the electrochemical reactions taking place within the batteries are galvanic reactions. Regardless of the form or technology, the basic building block for any kind of battery is referred to as a cell. A battery can be comprised of a single cell, such as the power source used in the common flashlight, to a package of multiple cells wired together in a laptop computer or a device in an automobile (Lee, 2013).

Every battery consists of two electrodes (an anode and a cathode), an electrolyte, and a separator between its anode and cathode. The anode in the battery deserves an equal say in the overall performance of a battery. The negative electrode is associated with the oxidation or release of electrons into the external circuit during performance of a battery. The negative electrode is associated with the oxidation or release of electrons into the external circuit during performance of the anode material is essential towards the effective development of a high energy density battery. Several potential solutions for a suitable anode were reported by Winter & Brodd (2004). Anode that is easily handled, efficient reducing agent, excellent conducting agent, good mechanical stability, and low cost is generally preferred.

The cathode is the positive electrode that accepts electrons from the external circuit during electrochemical reactions. Excellent electrical conductor, the retention of structure despite discharges or over charges, low cost, and environmentally benign materials are some of the key requirement for a cathode material in a battery. Almost all research and commercialization of cathode materials are centered on two classes of materials (Rao, 2014). The first type material contains layered compounds with an

