

ADSORPTION OF METAL IONS AND DYES FROM AQUEOUS SOLUTIONS USING LALA CLAM (Paphia textile) SHELL

ARWA ALSEDDIG AHMED ELJIEDI

🕓 05-4506832 🛛 📢 pustaka.upsi.edu.my

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

ptbupsi

THESIS SUBMITTED IN FULFIILMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER OF SCIENCE (ANALYTICAL CHEMISTRY) (MASTER BY RESEARCH)

FACULTY OF SCIENCE AND MATHEMATICS UNIVERSITI PENDIDIKAN SULTAN IDRIS

2018

iv

ABSTRACT

This study aimed to evaluate the effectiveness of lala clam shell as an adsorbent for the remediation of water contaminated by metal ions and dyes. Three main studies, namely adsorption, desorption and characterisation, have been conducted. In this study, Cd(II), Cu(II), Pb(II), Congo red (CR), Methylene blue (MB), Rhodamine B (RB) and Methyl orange (MO) were used as contaminants. A systematic evaluation for adsorption process involving several experimental parameters such as solution pH, adsorbent dosage and initial adsorbate concentration was performed. The applicability of lala clam shell to remove metal ions and dyes from aqueous solution was assessed in both single- and mixsystem. Hydrochloric acid (HCl) and ethylenediaminetetraacetic acid (EDTA) were used as desorption agents in desorption study. The characterisation study was carried out using Field Emission-Scanning Electron Microscope (FE-SEM), Energy Dispersive X-ray (EDX) Spectrometer and Fourier Transform Infrared (FTIR) Spectrometer. The surface morphology of lala clam shell changed significantly following interaction with metal ions and dyes. The adsorption equilibrium data of metal ions and dyes were correlated with both Langmuir and Freundlich isotherm models. The separation factor (R_L) and $_{0.5}$ Freundlich constant (n) values suggest that the adsorption process was favourable. At an initial metal ion concentration of 200 mg/L, the maximum adsorption capacity (Q_{max}) values of Cd(II), Cu(II) and Pb(II) were 66.66 mg/g, 64.94 mg/g and 100.00 mg/g, respectively. Meanwhile, at an initial dye concentration of 100 mg/L, 15.48 mg/g of CR, 1.50 mg/g of MO, 11.66 mg/g of MB and 0.31 mg/g of RB were adsorbed onto lala clam shell. The adsorption performance of lala clam shell was compared with mangrove stem derived activated carbon (MSAC), a commercial adsorbent for water treatment. In conclusion, the presence of carbonate functional group on lala clam shell enhanced its ability to adsorb metal ions and dyes. The implication of this study is lala clam shell offers an alternative low-cost adsorbent for water treatment particularly in developing countries such as Malaysia and Libya.

PENJERAPAN ION LOGAM DAN PEWARNA DARI LARUTAN AKUEUS MENGGUNAKAN KULIT KERANG LALA (*Paphia textile*)

ABSTRAK

Kajian ini bertujuan untuk menilai keberkesanan kulit kerang lala sebagai suatu penjerap untuk pemulihan air tercemar oleh ion logam dan pewarna. Tiga kajian utama, iaitu penjerapan, penyaherapan dan pencirian, telah dilaksanakan. Dalam kajian ini, Cd(II), Cu(II), Pb(II), Kongo merah (CR), Metilena biru (MB), Rhodamin B (RB) dan Metil oren (MO) telah digunakan sebagai bahan cemar. Satu penilaian yang sistematik untuk proses penjerapan yang melibatkan beberapa parameter eksperimen seperti pH larutan, dos penjerap dan kepekatan awal bahan terjerap telah dilakukan. Kebolehgunaan kulit kerang lala untuk menyingkirkan ion logam dan pewarna daripada larutan akueus telah dinilai dalam kedua-dua sistem tunggal dan campuran. Asid hidroklorik (HCl) dan asid etilenadiaminatetraasetik (EDTA) telah digunakan sebagai ejen penyaherapan dalam kajian penyaherapan. Kajian pencirian telah dijalankan menggunakan Mikroskop Imbasan Elektron – Medan Pemancaran (FE-SEM), Spektrometer Penyebaran Tenaga Xray (EDX) dan Spektrometer Inframerah Transformasi Fourier (FTIR). Morfologi permukaan kulit kerang lala berubah dengan ketara berikutan interaksi dengan ion logam os dans pewarna. Data keseimbangan penjerapan ion logam dan pewarna telah dikaitkan dengan kedua-dua model isoterma Langmuir dan Freundlich. Nilai-nilai faktor pemisahan $(R_{\rm L})$ dan pemalar Freundlich (n) mencadangkan bahawa proses penjerapan adalah baik. Pada kepekatan awal ion logam 200 mg/L, nilai maksimum kapasiti perjerapan (Q_{max}) untuk Cd(II), Cu(II) dan Pb(II) ialah 66.66 mg/g, 64.94 mg/g dan 100 mg/g, masingmasing. Manakala, pada kepekatan awal pewarna 100 mg/L, 15.48 mg/g CR, 1.50 mg/g MO, 11.66 mg/g MB dan 0.31 mg/g RB telah dijerap ke atas kulit kerang lala. Prestasi penjerapan kulit kerang lala telah dibandingkan dengan karbon teraktif daripada batang pokok bakau (MSAC), suatu penjerap komersial untuk rawatan air. Kesimpulannya, kehadiran kumpulan berfungsi karbonat pada kulit kerang lala meningkatkan keupayaannya untuk menjerap ion logam dan pewarna. Implikasi kajian ini adalah kulit kerang lala menawarkan alternatif penjerap kos rendah untuk rawatan air terutamanya di negara-negara membangun seperti Malaysia dan Libya.

TABLE OF CONTENTS

	Page
DECLARATION	ii
ACKNOWLEDGEMENTS	iii
ABSTRACT	iv
ABSTRAK	v
TABLE OF CONTENTS	vi
LIST OF TABLES	xi
LIST OF FIGURES	xiii
LIST OF ABBREVIATIONS pustaka.upsi.edu.my Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah	PustakaTBainun

CHAPTER 1 INTRODUCTION

1.1	Water Contamination	1
1.2	Contribution of Industrial Activities to Water Pollution	7
	1.2.1 Heavy Metals Industry	8
	1.2.2 Dyes Industry	10
1.3	Water Pollution by Industrial Activities in Libya	11
1.4	Water Treatment Technologies	13
	1.4.1 Chemical Precipitation	13
	1.4.2 Coagulation and Flocculation	14
	1.4.3 Electrochemical Treatment	15

() 05-

vii

	1.4.4	Ion Exchange	17
	1.4.5	Membrane Filtration	18
1.5	Proble	em Statement	20
1.6	Resear	rch Gaps	20
1.7	Resear	rch Significance	20
1.8	Resear	rch Aim and Objectives	21
1.9	Resear	rch Scope	22
CHAPTER 2 LITE	RATUI	RE REVIEW	
2.1	Chemi Metals	istry, Sources and Toxicity of Heavy	23
	2.1.1	Cadmium	23
832 🜍 pustaka.upsi.edu.my	2.1.2 2.1.3	Copper Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah Lead	25 ptbupsi 26
2.2	Classi	fication and Properties of Dyes	29
	2.2.1	Anionic Dyes	29
		2.2.1.1 Congo red	30
		2.2.1.2 Methyl orange	31
	2.2.2	Cationic Dyes	31
		2.2.2.1 Methylene blue	32
		2.2.2.2 Rhodamine B	33
2.3	Adsor	ption	34
	2.3.1	Introduction	34
	2.3.2	Types of Adsorption	36
	2.3.3	Adsorption Isotherms	38

	2.3.3.1	Freundlich isotherm model	38
	2.3.3.2	Langmuir isotherm model	39
2.3.4	Adsorbe	nts Used for Adsorption	40
	2.3.4.1	Activated carbon	40
	2.3.4.2	Industrial wastes	42
	2.3.4.3	Agricultural wastes	47
	2.3.4.4	Clam shell	52

CHAPTER 3 METHODOLOGY

	3.1	Materi	als		55
		3.1.1	List of Ch	emicals	55
		3.1.2	Preparatio	on of Adsorbent	56
pustaka.upsi	i.edu.my	3.1.3	Preparatio	n of Adsorbate Solution	57 ptbupsi
			3.1.3.1	Preparation of metal ions solutions	57
			3.1.3.2	Preparation of dyes solutions	58
	3.2	Measu	rement of	Heavy Metals and Dyes	58
		3.2.1	Atomic A	bsorption Spectrometer (AAS)	58
		3.2.2	UV-Visib	le Spectrophotometer (UV-Vis)	59
	3.3	Adsorp	ption Study	ý.	61
		3.3.1	Single-Sy	rstem	62
			3.3.1.1	Effect of solution pH	62
			3.3.1.2	Effect of adsorbent dosage	63
			3.3.1.3	Effect of initial concentration	65
		3.3.2	Mix-Syste	em	67
	3.4	Desorp	otion Study	7	68

05-4506832

3.5.1 Surface Area and Pore Diameter

Characterisation Study

f

3.5

69

69

٠		
1	v	
1	Λ	

		3.5.2	Microsco	nission Scanning Electron ope (FESEM) and Energy ve X-ray (EDX)	70
		3.5.3	Fourier 7 Spectron	Fransform Infrared (FTIR) neter	70
CHAPTER 4	RESU	JLTS A	ND DISC	CUSSION	
	4.1	Heavy	Metals A	Adsorption Study	72
		4.1.1	Single-S	ystem	72
			4.1.1.1	Effect of solution pH	72
			4.1.1.2	Effect of adsorbent dosage	75
05-4506832 🜍 pustaka.u	psi.edu.m	f	P 4 rgusta 3 aa Kampus Sul	n Effect of initial concentrations	77 Ptbupsi
			4.1.1.4	Adsorption isotherms	79
		4.1.2	Mix-Sys	stem	85
	4.2	Dyes	Adsorptio	n Study	88
		4.2.1	Single-S	ystem	88
			4.2.1.1	Effect of solution pH	88
			4.2.1.2	Effect of adsorbent dosage	90
			4.2.1.3	Effect of initial concentrations	93
			4.2.1.4	Adsorption isotherms	95
		4.2.2	Mix-Sys	stem	100
	4.3	Desor	ption Stuc	ły	104
		4.3.1	Heavy N	Aetals Desorption	104
		4.3.2	Dyes De	esorption	106
O 05-4506832 D pustaka.u	psi.edu.m	f	Perpustakaa Kampus Sult	n Tuanku Bainun tan Abdul Jalil Shah 🏾 🎔 PustakaTBainun	ptbupsi

Х

4.4	Characterisation Study				
	4.4.1	Surface Area and Pore Diameter Analyses	108		
	4.4.2	FESEM Analysis	109		
	4.4.3	EDX Analysis	112		
	4.4.4	FTIR Analysis	114		

CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS

5.1	Conclusions	118
5.2	Future Research	119

REFERENCES 121 **PUBLICATION** 145 Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah 45bupsi 05-4506 CONFERENCES si.edu.my f PustakaTBainun

C

xi

LIST OF TABLES

Tables N	0.	Page
1.1	A Summary of Treatment Technologies for Water Pollution by Heavy Metals and Dyes	4
1.2	Types of Industrial Activities Related to Water Pollution	8
1.3	The Maximum Contaminant Levels (MCL) for the Most Common Heavy Metals	10
1.4	List of Industries that Contribute to the Production of Several Dyes	11
1.5	The Principal Characteristics for Types of the Electrochemical Processes	16
1.6 O 05-4506832	Characterisation Processes of Different Types of Membrane Filtration pustaka.upsi.edu.my	19 Iloo ptbupsi
2.1	Summary of Blood Lead Level and Adverse Effect in Adults and Children	28
2.2	The Evolves in Adsorption Process Over the Years	36
2.3	The Scientific Name of Lala Clam (Paphia textile) Shell	53
3.1	List of Chemicals Used in this Study	56
3.2	Weight of Metal Salts Required for the Preparation of Stock Solutions	57
3.3	Specific AAS Conditions for Measurement of Elements	59
3.4	Maximum Wavelength (λ_{max}) for Four Dyes Studied	61
3.5	Descriptions on Each Effect of Experimental Parameters Studied	66
4.1	Freundlich and Langmuir Isotherm Constants and Correlation Coefficients	81
4.2	$R_{\rm L}$ Values for Metals ion Adsorption by Lala Clam shell at Different Initial Concentrations (C _o)	83

xii

4.3		Comparison of Maximum Adsorption Capacities of Cd(II), Cu(II) and Pb(II) on Various Low-Cost Adsorbents	84
4.4		The Amount of Metal Ion Adsorbed onto Lala Clam Shell in Single and Mix-System	86
4.5		Comparison of Amount of Metal Ion Adsorbed into Lala Clam Shell and Activated Carbon in Mix-System	87
4.6		Freundlich and Langmuir Isotherm Constants for Dye Adsorption by Lala Clam Shell	97
4.7		$R_{\rm L}$ Values for Dyes Adsorption by Lala Clam Shell at Different Initial Concentrations (C _o)	98
4.8		The Maximum Adsorption Capacity (Q_{max}) of Several Adsorbents for Dyes	99
4.9		The Amount of Dye Adsorbed onto Lala Clam Shell in Single and Mix-Dye System	102
4.1	0	Comparison of Amount of Dyes Adsorbed into Lala Clam Shell and Activated Carbon in Mix-System	103
05-45068421	1	Percentages of Adsorption and Desorption Pb(II), Cd(II) and Cu(II) from Lala Clam Shell	0105 ^{bupsi}
4.1	2	Percentages of Adsorption and Desorption Dyes from Lala Clam Shell	107

LIST OF FIGURES

No.	Figures	Page
1.1	The Ranking of Annual Incidences of Diseases Due to the Lack of Sanitation	3
1.2	The Iron-Steel Factory in the Area Qasar Ahmad, Misurata City-Libya	12
2.1	Chemical Structure of Congo Red	30
2.2	Chemical Structure of Methyl Orange	31
2.3	Chemical Structure of Methylene Blue	33
2.4	Chemical Structure of Rhodamine B	34
05-4506832 ¹	pustaka. Experiment Steps for Effect of Solution pH Kampus Sultan Abdul Jalil Shah	63 ptbupsi
3.2	Experiment Steps for Effect of Adsorption Dosage	64
3.3	Experiment Steps for Effect of Initial Adsorbate Concentration	65
3.4	Experiment Steps for Mix Adsorption System	67
4.1	Effect of Solution pH on Adsorption of Cd(II), Cu(II) and Pb(II) onto Lala Clam Shell	74
4.2	Effect of Adsorbent Dosage on Adsorption of Cd(II), Cu(II) and Pb(II)	76
4.3	Effect of Initial Concentration on Adsorption of Cd(II), Cu(II) and Pb(II) onto Lala Clam Shell	78
4.4	Freundlich Adsorption Isotherm Model of Metal Ion Adsorption by Lala Clam Shell	82
4.5	Langmuir Adsorption Isotherm Model of Metal Ion Adsorption by Lala Clam Shell	82
4.6	Effect of Solution pH on Adsorption of CR, MO, MB and RB Dyes onto Lala Clam Shell	89

	4.7	Effect of Adsorbent Dosage on Adsorption of Anionic Dyes	91
	4.8	Effect of Adsorbent Dosage on Adsorption of Cationic Dyes	92
	4.9	Effect of Initial Concentration on Adsorption of CR, MO, MB and RB Dyes onto Lala Clam Shell	94
	4.10	Protonated of CR at Optimum pH 2.0	94
	4.11	Freundlich Adsorption Isotherm Model of Dye Adsorption by Lala Clam Shell	96
	4.12	Langmuir Adsorption Isotherm Model of Dye Adsorption by Lala Clam Shell	96
	4.13	FESEM Images of Lala Clam Shell Before Metal Ion Adsorption (a) and After Adsorption of (b) Cd(II), (c)Cu(II) and (d) Pb(II) at 10,000× Magnification	110
	4.14	FESEM Images of Lala Clam Shell Before Dye Adsorption (a) and After Adsorption of CR (b), MO (c), MB (d) and RB (e) at 10,000× Magnification	111
05-450	4.15 6832 Øpust	EDX Spectra of Lala Clam Shell Before and After Metal Ions Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah	ptbupsi
	4.16	The FTIR Spectra of Lala Clam Shell Before Metal Ion Adsorption (a) and After Adsorption of (b) Cd(II), (c) Cu(II), (d) Pb(II)	116
	4.17	The FTIR Spectra of Lala Clam Shell Before Dye Adsorption (a) and After Adsorption of (b) CR, (c) MO, (d) MB and (e) RB	117

E

XV

LIST OF ABBREVIATIONS

	AAS	Atomic Absorption Spectrometer
	AC	Activated Carbon
	Annual O&M	Annual Operation and Maintenance
	ATSDR	Agency for Toxic Substances and Disease Registry
	BET	Brunauer-Emmett-Teller
	BJH	Barrett, Joyner and Halenda
	COD	Chemical Oxygen Demand
	EDTA	Ethylenediaminetetraacetic acid
05	EDX 5-4506832	Energy Dispersive X-ray Kampus Sultan Abdul Jalil Shah PustakaTBainun ptbupsi European Union
		-
	FAO	Food and Agriculture Organization
	FTIR	Fourier Transform Infrared
	FESEM	Field Emission Scanning Microscope Electron
	IQ	Intelligence quotients
	MCL	Maximum contaminant levels
	MF	Microfiltration
	MGD	Million Gallons per Day
	MSDS	Material Safety Data Sheet
	NF	Nanofiltration
	RO	Reverse Osmosis

O5-4506832 Og pustaka.upsi.edu.my Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

xvi

RSC	Royal Society of Chemistry
TDS	Total Dissolved Solid
UF	Ultrafiltration
USDA	United States Department of Agriculture
USEPA	United States Environmental Protection Agency
WHO	World Health Organization

O 05-4506832 **O** pustaka.upsi.edu.my

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

PustakaTBainun

ptbupsi

CHAPTER 1

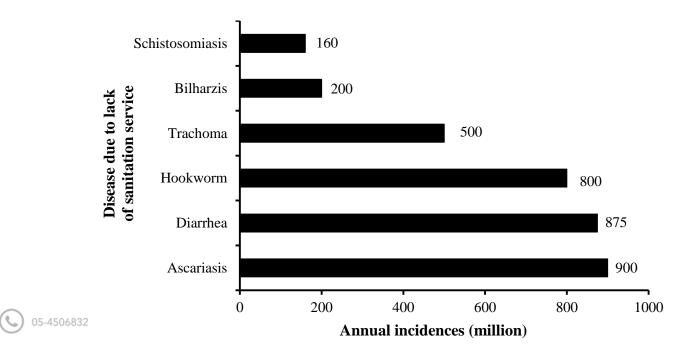
INTRODUCTION

) ptbupsi

Water contamination is a phenomenon that can be defined as the deterioration of the quality of water, which has cause a serious threat to the living things. Water contamination has becoming an immense problem worldwide due to rapid industrial growth, environmental pollution and exhausted water resource among others (Salpekar, 2008; Vapnek, Aylward, & Popp, 2009; Lee & Park, 2013). Many human activities increase water pollution by contaminating natural water sources from several industries such as mining, agriculture, textile, tanneries and transportation both in developing and industrialised countries (Salpekar, 2008; Qu, Alvarez, & Li, 2013). The main sources of water pollution are wastewaters from household, agricultural and industrial activities (Chiu et al., 2015). It has been estimated that about 2 million

tonnes of industrial sludge and waste are discharged into water environment daily, worldwide (Jabeen, Huang, & Aamir, 2015).

Globally, the presence of hazardous and toxic pollutants such as heavy metals and organic compounds in industrial wastewater is one of the most challenging problems threatening to human health and the environment (Kyzas & Kostoglou, 2014; Malik, Jain, & Yadav, 2016). Due to this, organic and inorganic substances with a non-biodegradable characteristic can lead to be accumulated in the environment. Through bioaccumulation, their concentration increases in the food chain and consequently they can be very harmful to human health, causing various diseases and disorders (Inyinbor, Adekola, & Olatunji, 2016).


⁰⁵⁻⁴⁵⁰⁶⁸² According to Carmonal Soprani, and Sberveglieri (2017), around 1.1 billion of ^{burst} world population has crucial access to clean water supplies and half of the developing world's population are suffering from infections and diseases due to water contamination. Water contamination has caused around 5 million of world's population died, every year (WHO, 2002; Jabeen et al., 2015). Contagious diseases are the main diseases that may affect and kill kids under 5 years old. Schistosomiasis is a major disease in sub-Saharan Africa and it affected more than 160 million of world population every year (Jabeen et al., 2015; Tchuente, Rolinson, Stothard, & Molyneux, 2017). Another infectious disease is commonly found in Sub-Saharan Africa and Southeast Asia is ascariasis (highest prevalent in warm tropical and sub-tropical atmospheres), which affect almost 900 million over population throughout the world. As indicates in Figure 1.1, Wright and Mundial (1997) stated that due to lack of enough precautions in sanitation facilities has led to various diseases in the

worldwide. In 2002, nearly 2.1 million world's population died due to diarrheal diseases (WHO, 2002) and the numbers of death reached to 4 billion in 2005 (WHO, 2005; Firdhouse & Lalitha, 2016).

Figure 1.1. The Ranking of Annual Incidences of Diseases Due to the Lack of Sanitation Source: Wright and Mundial (1997); Massoud, Tarhini, and Nasr (2009); Jabeen et al. (2015)

Wastewater treatment is the procedure whereby these pollutants are eliminated from wastewater before discharge into water environment. Overall the cost for water treatment is very expensive. Table 1.1 summarises the techniques used to treat water pollution by heavy metals and dyes. This table involves summary notions for the technologies, nature of the polluter, effectiveness (%) and cost (USD).

Table 1.1

A Summary of Treatment Technologies for Water Pollution by Heavy Metals and Dyes

Technology	Description	Pollutant	Operation	System Limitations	Cost	Effectiveness	References
Adsorption using lala clam shell	Adsorption is accumulation / adhesion of molecules at the surface of a solid material. In contact with water phase.	Metal ions and dyes	Preparation of a water solution contaminated by metal ions or dyes, the need for pH adjustment before adds the adsorbent and filtration.	Dependent on the pH	Lala clam shells are readily available at no cost.	Results from this study indicated that lala clam shell can beneficial and efficient alternative to expensive adsorbents for water treatment.	Present study
Activated carbon (AC)	Innovative technology using powder activated carbon obtained from rubber-seed shell.	Metal ions	Properties of using rubber-seed shell based on AC to remove Cu ²⁺ and Zn ²⁺ ions from single metal aqueous solution.	Dependent on the temperature	The global market for activated carbon totalled USD 1.9 billion in 2013, driven primarly, by Asia- Pacific and North American region for applications in water treatment and then reached USD 2.1 billion, in 2014	Borhan, Abdullah, Rashidi, and Taha (2016) reported that the effectiveness of Cu(II) and Zn(II) are 99%.	Borhan et al. (2016); USEPA (2014); Ceskaa (2015)
Coagulation and flocculation	In this technology is destabilising the solute in the solution to form agglomerates by agitation that settle down under gravity.	Metal ions and dyes	Dependent on material coagulants, examples of chemical treat coagulants include aluminium, iron salts and polyelectrolytes.	At natural pH	Equipment cost is about USD 11.7 million.	Sami et al. (2017) performed coagulation and flocculation, and obtained about 90% dye removal as a result of the activity of the starch chitosan nanocomposite	USEPA (2014); Sami et al. (2017); and Banchon Castillo and Posligua (2017)

🕓 05-4506832 🛞 pustaka.upsi.edu.my 👔 Perpustakaan Tuanku Bainun 💟 PustakaTBainun 🚺 ptbupsi

(Continue)

Table 1.1 (Continued)

Electro- coagulation	In this process, water is remedied using electrolysis with graphite or stainless steel cathodes in conjunction with a metal anode. When a voltage is applied across the electrodes, insoluble precipitates are formed from ions the metal present in the water.	Metal ions and dyes	Water was pre-treated using lime neutralization and sedimentation followed by electrocoagulation. After electrocoagulation, water was filtered using a microfiltration flat sheet ceramic membrane. Dependent on the composition of the wastewater is selected anode selected Perpustakan Justice Mampus Suttan Abdu	The conductivity of the polluted water must be high and it is necessary to replace the electrodes regularly	For some applications, operating costs, including electric power, replacement of electrodes, pump maintenance and labour, can be less than USD 1.53 per thousand gallons.	Heavy metals in water such as arsenic, cadmium, lead and zinc are generally reduced by 95 to 99%. As for colour, using iron electrode only 15.70% removed from wastewater at natural pH.	USEPA (2014); Truttim and Sohsalam (2016)
Ion exchange	Ion exchange is the reversible exchange of pollutant ions from a process stream with more desirable ions of a similar charge adsorbed to solid surfaces known as ion exchange resins. This process provides desalination, alkalinity removal, radioactive waste removal, ammonia removal and metals expulsion.	Metal ions	Important considerations include type of resin, the volume and type of regenerant, the need for pre-filtration of solids, the column configuration, the need for pH adjustment before and after ion exchange, and the cycle length.	Organics, strong oxidants and high temperatures can degrade the resin. Resins may need to be disposed of if they cannot be regenerated, meaning high disposal costs	Equipment cost is USD 4.3 million. About USD 168,993 are estimated annual costs for one site, the Soudan Mine.	Commonly greater than 90% recovery rates, given resin specificity for target constituent and regenerant requirements.	Braun et al. (2002); Oehmen et al. (2014); and USEPA (2014)

(Continue)

Table 1.1 (Continued)

Nanofiltration (NF)	Nanofiltration is a Metal ions and dyes form of filtration that uses a semi- permeable membrane.	Requires small space To meet membrane and allows for durability requires modular construction. However, due to larger pore size, it is generally less effective.	For a 1 MGD Al-Alawy and Salih system, total (2017) reported that the e installed cost is percentage removal of estimated at USD Zn(II) was 97.4% using 42.9 million. NF. Annual O&M costs are estimated at USD 3.2 million.	Al-Alawy and Salih (2017); and USEPA (2014)
Reverse Osmosis (RO)	Reverse osmosis is Metal ions the pressure-driven separation through a semi-permeable membrane that allows water to pass through while rejecting contaminants.	The influence of various parameters such as feed pressure (136–544 kPa), feed adjust operating flow rate (0.25–1.172kaa pressure in L/min), Kfeed Sultan Abdul Jalil Shah Drust Concentration (30–100 mg/L) and pH (8, 10, and 11).	e USD 1.35 million. removal of Cr(II) 99.9% Annual costs are and Cu(II) 99.3% from estimated at USD electroplating wastewater 3.2 million at the was observed by Al-	Khazaali, Kargari and Rokhsaran, (2014); Codday et al. (2014); and USEPA (2014); Al- Alawy and Salih (2017)

ptbupsi

Like other developing countries, Malaysia and Libya are committed in finding cost-effective method to treat low concentrations of heavy metals and dyes in a large volume of contaminated water especially for drink and household use. This research is developed for response to the increased water contamination by heavy metals and dyes.

1.2 **Contribution of Industrial Activities to Water Pollution**

Various industrial processes may utilise water for cooling and large amount of wastewater often has been discharged into streams or lakes, thus cause water pollution. All these chemicals of industrial wastes are toxic and may cause damage or 05-4506 death to different living life of the aquatic fauna and flora. The types of industrial bupsi activities contribution to water pollution are shown in Table 1.2.

Table 1.2

Types of Industrial Activities Related to Water Pollution

Type of industrial	Statistics	Pollutant	References
Mining	In 2014, 2531.67 million tonnes of industrial wastewater was discharged by the mining industry in china.	Heavy metals, sulphuric acid hydrogen sulphide.	Xue et al. (2017); Li et al. (2017).
Iron and steel	The biggest producer of steel by far is China (1607 million metric tonnes in 2013), followed by the EU (165), Japan (110), USA (87) and India (81).The three major sources of iron are China (23%), Australia (18%) and Brazil (18%).	Organic such as, oil phenol and naphtha and inorganic as copper, lead, chromium, cadmium and mercury.	Tiwari et al. (2016).
Textile	The country with the highest amount of emissions of organic water pollutants in the world is China, with an impressive value of (9,428,874 kg/day). It is followed by USA (1,850,753 kg/day).	Dyes, sulphates and chromium.	Paraschiv et al (2015); Dey and Islam, (2015).
Paper and pulp	tal 47.4% edpercentage Peroustakaan. Tua Bangladesh.	Sulphides bleaching Pusta and cellulose fibres.	Faisal et al. (2001)

1.2.1 Heavy Metals Industry

Heavy metals are the elements which are having atomic weight between 63.5 - 200.6 g/mol, and a specific gravity is greater than five times that of water (Fu & Wang, 2011). These metallic elements can be divided into two groups; namely those that are essential for growth, such as iron and calcium, and those that are nonessential or toxic, such as cadmium and lead. Unlike organic compounds, heavy metals are non-biodegradable and can be accumulated in living tissues, can lead to causing various diseases and disorders or serious health threats up to death (Wang, Chen, Hung, & Shammas, 2009; Vafakhah, Bahroloom, Bazarganlari, & Saeedikhani, 2014).

Therefore, the exposure of human to heavy metals can cause joint diseases such as rheumatoid arthritis, kidneys related diseases, circulatory system, nervous system and damaging of the fetal brain (Nguyen et al., 2013; Kumar, Saravanan, Rajan, & Yashwanthraj, 2016). For example, cadmium a possible carcinogen since its persistent exposure leads to renal dysfunction and death respectively (Fu & Wang, 2011; Wang et al., 2012). Nickel can cause several diseases such as dermatitis, myocarditis, encephalopathy, vomiting, chest pain, rapid respiration etc. (Singh & Gupta, 2016). Excessive dosages of some heavy metal ions replace or displace essential ions from biomolecules and obstruct the functional groups of significant biomolecules such as enzymes thereby altering enzymes' structure as well as inactivating them (Kieu, Müller, & Horn, 2011; Sunitha et al., 2013). Wastewater regulations are established to minimise human and environmental exposure to 05-4506 hazardous chemicals. This includes limits on the types and concentration of heavy bupsi metals that may be present in the discharged wastewater. The maximum contaminant levels (MCL) standards and health effects of various toxic metals, established by the United States Environmental Protection Agency (USEPA) are given in Table 1.3.

Table 1.3

The Maximum Contaminant Levels (MCL) for the Most Common Heavy Metals

Toxicities	MCL (mg/L)
Skin manifestation, visceral cancers, vascular disease.	0.05
Kidney damage, renal disorder, human carcinogen.	0.01
Headache, diarrhea, nausea, vomiting, carcinogenic.	0.05
Liver damage, Wilson disease, insomnia.	0.25
Dermatitis, nausea, chronic asthma, coughing.	0.20
Depression, lethargy, neurological signs, increased	0.80
Damage the fetal brain, diseases of the kidneys.	0.006
Rheumatoid arthritis and diseases of the kineys.	0.001
	 Kidney damage, renal disorder, human carcinogen. Headache, diarrhea, nausea, vomiting, carcinogenic. Liver damage, Wilson disease, insomnia. Dermatitis, nausea, chronic asthma, coughing. Depression, lethargy, neurological signs, increased thirst. Damage the fetal brain, diseases of the kidneys.

Source: USEPA (2000); Barakat (2011); Nguyen et al. (2013); Gautam et al.

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

PustakaTBainun

1.2.2 Dyes Industry

The textile, dyestuffs, paper, leather, cosmetic, pharmaceutical, rubber, plastics and food industries frequently used a significant amount of dyes for their various products (Rangabhashiyam, Aun, & Selvaraju, 2013; Boudechiche, Mokaddem, Sadaoui, & Trari, 2016). Consequently, dyes and pigments used in the textile industry considered as one of the most important group of pollutants that get mixed in wastewater (Hosseini et al., 2011; Vieira, Cestari, Carvalho, Oliveira, & Chagas, 2012).

The number of dyes and pigments presently used in textile industry is about 10,000 tonnes, with worldwide annual production of over 7 x 10^5 tonnes (Sharma &

