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PENGKODAN DNA IKAN MARIN DI MALAYSIA, FILOGENETIK DAN

FILOGEOGRAFI BAGI IKAN 'SNAPPER'

(PERCIFORMES: LUTJANIDAE)

ABSTRAK

Kajian ini dilak:sanakan dengan menggunakan teknik Barkod DNA yang

menawarkan potensi yang baik sebagai alat pengecaman untuk klasifikasi tangkapan

ikan di Malaysia. Secara keseluruhan, kajian ini berjaya untuk menkodkan sebanyak

107 spesies, 69 genus, 36 famili dan 10 order ikan komersial Malaysia. Juga didapati

bahawa, ikanjenahak:, ikan bulu, ikan bayan dan ikan biji nangka dikesan mengalami

penspesiesan 'cryptic' atau terdiri daripada spesies yang tidak diketahui. Hasil

daripada kajian ini menunjukkan bahawa klasifikasi secara morfologi sahaja didapati

tidak selalunya menjurus tepat kepada spesies individu atau kumpulan spesies.

Pengenalan konvensional sehingga peringkat spesies yang menggunakan ciri

morfologi didapati sukar bagi genus ini terutama bagi kes-kes berkaitan spesimen

juvana dan dewasa yang mempamerkan variasi wama. Menggunakan gen COl, nilai

perbezaan genetik yang tinggi (K2P = 6.1%) diperolehi antara kumpulan L. lutjanus,

LLI dan LL2, serta analisis seterusnya menggunakan jujukan COl dan cyt b

menunjukkan tapak: penggantian nukleotid diagnostik bagi setiap kumpulan. Oleh itu,

pada rnasa ini, kajian ini mendedahkan bahawa wujud satu leluhur yang

mengandungi takson yang tidak dikenali bagi 'kompleks ikan jenahak berbaris

kuning'. Sejumlah 3612 bp jujukan yang selanjar dengan kombinasi dua gen

mitokondria (654 bp gen COl dan 1116 bp gen cyt b) dan dua gen nuklear (897 bp

gen RH dan 945 bp gen EGR1) telah digunakan untuk membina semula kerangka

filogenetik Lutjanidae yang kornprehensif Hasil dari kajian semasa juga
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menunjukkan bahawa 'lutjanids' menunjukkan distribusi monofiletik tidak resiprokal

dalam rantau Pasifik Timur (EP), Indo-Pasifik (lP), Lautan Hindi (10) dan Atlantik

Barat (WA). Dengan penggunakan penentukuran berasaskan fosil sebagai kekangan

terhadap model jam molekul bagi analisis biogeografi dalam kajian semasa, didapati

bahawa 'lutjanids' WA, EP dan 10 adalah berasal dari leluhur Indo-Pasifik.
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DNA BARCODING OFMALAYSIANMARINE FISH, PHYLOGENETICS

AND PHYLOGEOGRAPHY OF THE SNAPPERS

(PERCIFORMES:LUTJANIDAE).

ABSTRACT

This study, implemented DNA Barcoding which offers great potential as a

reliable identification tool to classify catches in Malaysia. Overall, this study had

successfully barcoded a total of 107 species, 69 genera, 36 families and 10 order of

commercial Malaysian fishes. It is found that, the snappers, threadfin fishes, parrot

fishes and goatfishes sampled were detected to either experience cryptic speciation or

consist ofunknown/undescribed species. Conventional identification to species level

using morphological characters were found to be difficult for this genera especially

in cases where juvenile and adult specimens exhibit variation in colouration. Using

COl gene, deep genetic divergence (K2P = 6.1%) values was obtained between LLI

and LL2 groups of L. lutjanus and the subsequent analysis of both COl and cyt b

sequences revealed diagnostic nucleotide substitution sites exclusively to each group.

Thus, at present, this study exposed that at least one lineage represents a currently

unrecognized taxon of the 'yellow-lined snapper complex'. A total of 3612 bp

aligned sequences corresponding to the combinations of two mitochondrial genes

(654 bp of the COl gene and 1116 bp of cyt b gene) and two nuclear genes (897 bp

of the RH gene and 945 bp of the EGRI gene) were also employed to reconstruct a

comprehensive phylogenetic framework of the Lutjanidae. Results from current

study did indicate that lutjanids presented a non-reciprocal monophyletic distribution

within Eastern Pacific (EP), Indian Ocean (10), Indo-Pacific (lP) and Western

Atlantic (WA) regions. Using a fossil-based calibration to constraint the relaxed

XIX



molecular clock model for biogeography analysis in current research, it is found that

WA, EP and 10 lutjanids derived from Indo-Pacific lineages.
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CHAPTERl

INTRODUCTION

The marine fisheries sector plays an important role in the Malaysian economy,

contributing to the national Gross Domestic Product (GDP), employment and foreign

exports and representing a rich source of protein for Malaysians. Located on the edge

of the "coral triangle" and home to an estimated >2000 species of marine fishes

(Allen, 2008), the marine waters surrounding the Malay coastlines that support these

activities are some ofthe most biodiverse regions in the world.

Approximately 200-300 species of marine fishes are landed in the major

Malaysian landing sites, with an average of 50-100 species being displayed for sale

daily in fish markets (DoF, 2014). Additional species may appear seasonally, with

certain species predominating market landings during the monsoons, while other

permanent resident species of estuaries, bays and reef areas are landed throughout the

year (DoF, 2014). The diversity of wild species harvested and variety of fisheries

operations in the country makes assembling accurate detailed catch data challenging.

This thesis covers three areas of investigation in which each is focused on

resolving specific issues. The objectives ofcurrent study are as follows:

1



1) Large-scale DNA Barcoding assessment of commercial marine fishes in

malaysian water: An application for sustainable fishery management.

2) Phylogenetic analysis of Lutjanus species (Pisces: Lutjanidae) m

Malaysian fisheries catch.

3) Phylogenetic and historical biogeography analyses of the family

Lutjanidae, using multi-gene approach and fossil-calibrated tree.

Finally, overall discovery was summarized and concluded in Chapter 7 along

with description of future recommendations.
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CHAPTER 2

LITERATURE REVIEW

2.1 Fish diversity in the marine realm

A considerable amount of literature has been published on the importance of marine

sphere. Most research to date has tended to focus on the economic and ecological

values ofmarine biota especially as a source of food and indicator of environmental

health. Furthermore, publications on major threats to marine biodiversity which

include overharvesting, habitat degradation, pollution, global warming, biological

invasions and anthropogenic stressors (Costello et at." 2010) are also increasingly

gaining coverage. Still, much of the literature until today, fails to identify the current

number of marine species in the ocean. Although scientists have estimated the ocean

to contain approximately 2.2 million species (Mora et al., 2011), it is actually

challenging to measure the incredible diversity that lies beneath the waves.

In recent years, scientists have been making serious headway in trying to

understand the marine diversity. One of the most extensively studied groups of

organism in the marine realm is fish (Mora et al., 2003). Fish represent a keystone in

present-day monitoring of environmental health of marine ecosystems (Thomsen et

al., 2012). More than 50,000 available species names of fishes have been

documented, with over 31,000 of them currently regarded as valid species.

Eschmeyer (2010) reported that new marine species are being catalogued at a rate of

about 100-150 per year. For easy access to broad information on fish, there are
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several online websites which can be used. The two most referred sites are the

Catalog of Fishes (Eschmeyer and Fong, 2016) and FishBase (Froese and Pauly,

2016).

2.2 Assessing the diversity through conventional methods

Great effort has been devoted to the study of fish species identification for several

decades. Traditionally, external morphological features, including body shape,

pattern of colours, scale size and count, number and relative position of fins, number

and type of fin rays, or various relative measurements of body parts (Strauss and

Bond, 1990) are utilized for classification. However, major drawbacks from only

using morphological criteria for fish identification is the limited characters for

differentiation purposes in certain taxa (Callejas and Ochando, 2001). Teletchea

(2009) also informed that even with whole specimens, there might be only small

interspecific variations. Although many improvements have been made to

comprehend such weakness especially by adding more phenotypic characters,

morphological ambiguities still persist during species recognition research.

Examples of identication issues regarding dependency on morphological

characters are not uncommon. In 2002, Iff At, demonstrated that number of gill

rakers, can be used to differentiate morphologically similar species of Korangi Creek

mullets. However, in a later study, Lindsey (1981) deduced that gill raker

characteristics is highly influenced by environment through her experiment with

coregonids. She discussed that though gill-raker count is less subject to

phenotypically induced variation from environmental influences than are most

4



morphological characters, it is actually not insusceptible. She advised that when

employing even relatively stable characters such as gill raker counts, one should be

aware of the influence of the biological effect that exists with them. Besides the usage

ofgill rakers, analysis of otoliths is an alternative to describe fish species (Pierce and

Boyle, 1991; Granadeiro and Silva, 2000). Otoliths are commonly referred to as

"earstones" or "fish ear bones". However, the main limitation of this tool are it is

destructive, meaning that the extraction of otoliths kills the fish, and otoliths can

easily break during extraction! manipulation. Moreover, otolith analysis is also very

difficult because of the concave form of the otoliths and overall variability of its

shape.

Vecchione et al. (2000) reported that there are many factors that affect fish

identification. The most significant factors include experience level of identifiers,

reliable taxonomic references, distinction of morphological characters, condition of

specimens, life stages of specimen and cryptic speciation. Based on these, they

suggested that a more uniform system should be developed. It is notably known that

erroneous identification used in analysis or publication can seriously affect future

inferences. As species identification is ofparamount importance especially to monitor

biodiversity (Vecchione et al., 2000), researchers have attempted to improvise

conventional methods for identifying fish species without relying exclusively on

morphological features.
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2.3 Molecular approach for marine fish identification

Knowlton (1993) pointed out that it is no surprise that scientists took the opportunity

provided by the advancement of molecular methods to clarify many ambiguities in

conventional taxonomy. Problems in morphological diagnosis are usually associated

in identification of the early life stages such as eggs and larvae. Furthermore, large

phenotypic plasticity and sexually dimorphic species as well as cryptic species that

are widely distributed in marine systems also contribute to the complications.

At the onset, molecular methods used in species identification, including fish,

were based on the separation and characterization of specific proteins using

electrophoretic techniques, such as isoelectric focusing (lEF) (Rehbein, 1990) and

capillary electrophoresis (CE) (Kvasnicka, 2005), high performance liquid

chromatography (HPLC) (Hubalkova et al., 2007) and even immunoassay systems,

such as EnzymeLinked ImmunoSorbent Assay (ELISA) (Asensio and Montero,

2008). These techniques have been widely reviewed (Mackie et al., 1999; Civera,

2003; Moretti et al., 2003; Hubalkova et al., 2007). Even though most of the

mentioned methods are of considerable value in certain instances, they are not

suitable for routine sample analysis because proteins lose their biological activity

after animal death (Telechea, 2009) and their presence and characteristic depend on

the cell types (Asensio and Montero, 2008). This has now caused attention to turn

towards DNA as a source of information. As an alternative to protein analysis, DNA­

based identification methods have currently been explored and extensively developed

(Teletchea et al., 2005).
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