

CHEMICAL CONSTITUENTS FROM THE CALYCES OF HIBISCUS SABDARIFFA LINN. AND ITS α-GLUCOSIDASE INHIBITORY ACTIVITY

NADZIRAH BINTI MOHD JAUAH

🔾 05-4506832 🛛 🜍 pustaka.upsi.edu.my

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

ptbupsi

THESIS SUBMITTED IN FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER OF SCIENCE (NATURAL PRODUCT) (MASTER BY RESEARCH)

FACULTY OF SCIENCE AND MATHEMATICS SULTAN IDRIS EDUCATION UNIVERSITY

2018

v

ABSTRACT

The purpose of this study was to investigate the chemical compounds from the calyces of *Hibiscus sabdariffa* Linn. and their α -glucosidase inhibitory activity. Samples were collected from Balik Pulau, Pulau Pinang. The total of three kilogram of samples were air dried at room temperature, grinded and serially extracted by solid liquid extraction technique using hexane, dichloromethane, methanol, ethanol and water. Compounds were isolated and purified by several chromatographic techniques. Their structures were elucidated with spectroscopic methods including Nuclear Magnetic Resonance (1D-NMR and 2D-NMR), Liquid Chromatography-Mass (LCMS) spectrometry, infrared (IR) spectroscopy, ultraviolet (UV) spectroscopy and compared with data reported in the literature. The α -glucosidase inhibitory activity on the crude extracts and pure compounds was conducted using α -glucosidase inhibitory assay. The finding of this phytochemical study has led to the isolation of seven pure compounds namely squalene, triglyceride fatty acid, ethyl stearate, 4-ethoxy-3-((ethoxycarbonyl)oxy)-4oxobutanoic acid, 2-(1-ethoxy-4-methoxy-1,4-dioxobutan-2-yl)-1,5-dimethyl-3-(2ethoxy-2-oxoethyl)-4-(2-methoxy-2-oxoethyl-3-(methoxycarbonyl)oxy)pentane-1,2,5 ⁰⁵⁻⁴⁵⁰⁶⁸-tricarboxylate, 2-(2-ethoxy-2-oxoethyl)-1,5-dimethyl-3,4-bis-(2-methoxy-2-oxoethyl) -3-((methoxycarbonyl)oxy)pentane-1,2,5-tricarboxylate, 7-((1,5-dimethoxy-1,4-dioxo pentan-3yl)oxy)-3,11-bis(ethoxycarbonyl)-7-(3-methoxy-1-((methoxycarbonyl)oxy)-3 -oxopropyl)-5,9-dioxo-4,6,8,10-tetraoxatridecane-1,8-dioic acid along with two mixture compounds; mixture of stigmasterol with β -sitosterol and mixture of 3hydroxy-4-oxopentanal with 5-hydroxy methylfurfural. The methanol crude extract showed the highest activity among other crude extracts towards α –glucosidase compared to acarbose and quercetin. In addition, the selected isolated compounds were not active against the α -glucosidase inhibitory activity. As a conclusion, inactive compounds which isolated from the calyces of Hibiscus sabdariffa Linn. did not show any α -glucosidase inhibitory activity. Implication of this study is it can be used as future references for phytochemical studies of this species to discover possible potential new drugs in pharmaceutical.

vi

KANDUNGAN KIMIA DARIPADA KELOPAK *Hibiscus sabdariffa* Linn. DAN AKTIVITI PERENCATAN A-GLUKOSIDANYA

ABSTRAK

Tujuan kajian ini ialah untuk mengkaji kandungan kimia daripada kelopak *Hibiscus* sabdariffa Linn. dan aktiviti perencatan α-glukosidanya. Sampel dikumpul dari Balik Pulau, Pulau Pinang. Sebanyak tiga kilogram sampel dikeringkan pada suhu bilik, dikisar dan diekstrak secara bersiri dengan teknik pengekstrakan cecair-pepejal menggunakan heksana, diklorometana, metanol, etanol dan air. Sebatian telah dipencilkan dan ditulenkan melalui beberapa teknik kromatografi. Struktur sebatian telah dikenalpasti dengan kaedah spektroskopik termasuk Resonans Magnetik Nuklear (1D-RMN dan 2D-RMN), kromatografi cecair spektroskopi jisim (LCMS), spektroskopi inframerah (IR) dan spektroskopi ultraviolet (UV) dan dibandingkan dengan kajian leteratur. Aktiviti perencatan α-glukosida pada ekstrak mentah dan sebatian tulen telah dijalankan menggunakan ujian perencatan aktiviti α–glukosida.

tulen iaitu squalena, asid lemak trigliserida, etil stearat, asid 4-etoksi-3-(etoksi karbonil)oksi)-4-oksobutanoik, 2-(1-etoksi-4-metoksi-1,4-dioksobutan-2-il)-1,5-dime til-3-(2-etoksi-2-oksoetil)-4-(2-metoksi-2-oksoetil-3-(metoksikarbonil)oksi)pentana-1, 2,5-trikarboksilat, 2-(2-etoksi-2-oksoetil)-5-dimetil-3,4-bis-(2-metoksi-2-oxoetil)-3-(metoksikarbonil)pentana-1,2,5-trikarbosilat, asid 7-dimetoksi-1,4-dioksopentan-il)-3, 11-bis(etoksikarbonil)-7-(3-metoksi-1-(metoksikarboniloksi)-3-oksopropil)-5,9-

diokso-4,6,8,10-tetraoksatri dekana-1,8-dioik bersama-sama dengan dua sebatian campuran stigmasterol dengan β -sitosterol dan campuran 3-hidroksi-4-oksopentanal dengan 5-hidroksimetilfurfural. Ekstrak mentah metanol menunjukkan aktiviti yang paling tinggi dalam kalangan ekstrak mentah yang lain terhadap α -glukosida berbanding dengan akarbos dan kuersetin. Tambahan pula, sebatian terpencil yang terpilih tidak aktif terhadap aktiviti perencatan α -glukosida. Sebagai kesimpulan, sebatian tidak aktif yang terpencil daripada kelopak *Hibiscus sabdariffa* Linn. tidak menunjukkan sebarang aktiviti perencat α -glukosida. Implikasi kajian ini ialah ia boleh digunakan sebagai rujukan bagi kajian fitokima bagi spesis ini untuk penemuan ubat yang baru dalam bidang farmaseutikal.

vii

CONTENTS

			Page
	DECLARATIO	ON OF ORIGINAL WORK	ii
	DECLARATIO	ON OF THESIS	iii
	ACKNOWLED	DGEMENT	iv
	ABSTRACT		V
	ABSTRAK		vi
	CONTENTS		vii
	LIST OF TAB	LES	xii
	LIST OF FIGU	JRES	xiv
05-45068	LIST OF SCHI	EMES.my f Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah	
	LIST OF SYM	BOLS AND ABBREVIATION	xviii
	CHAPTER 1	INTRODUCTION	
		1.1 General	1
		1.2 Objectives	5
		1.3 Significant of Research	6
		1.4 Family of <i>Malvaceae</i>	7
		1.4.1 Taxonomy	7
		1.4.2 Properties of <i>Malvaceae</i> Family	10
		1.4.3 Uses of <i>Malvaceae</i> Family in Daily Life	10
		1.5 Hibiscus	11
		1.5.1 Hibiscus sabdariffa Linn.	12

C

PustakaTBainun

viii

14

CHAPTER 2 LITERATURE REVIEW

16
17
19
20
21
22
23
25
29
ptbupsi

METHODOLOGY CHAPTER 3

3.1	Chemicals	
3.2	Instrumentation	35
	3.2.1 Nuclear Magnetic Resonance (NMR)	35
	3.2.2 Ultra violet (UV) Spectroscopy	35
	3.2.3 Infrared (IR) Spectroscopy	36
	3.2.4 Liquid Chromatography-Mass (LCMS) Spectrometry	36
	3.2.5 High Performance Liquid Chromatography (HPLC)	36
3.3	Collection and Preparation of Plant Material	37
3.4	Extraction and Isolation	

O 5-4506832 vstaka.upsi.edu.my Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

•		
1	Y	
I	Λ	

	3.5	Chromatographic Separation	39
		3.5.1 Column Chromatography	39
		3.5.2 Thin Layer Chromatography	40
		3.5.3 Preparative Thin Layer Chromatography	41
		3.5.3.1 Adsorbent	41
		3.5.3.2 Sample Application	41
		3.5.3.3 Mobile Phase	42
		3.5.4 Recycle High Performance Liquid Chromatography	42
	3.6	Spectroscopic Characterization	42
	3.7	Isolation on The Crude Extract of Calyces of <i>Hibiscus sabdariffa</i> Linn.	43
	3.8	Bioactivity	
05-4506832	pustaka.upsi.edu	n3.8.1 FGeneral Introduction Shah	450 ptbupsi
		3.8.2 Antidiabetic Activity	45
	3.9	Physical and Spectral Data of Isolated Compounds	47
		3.9.1 Squalene 85	47
		3.9.2 Mixture of Stigmasterol 36 and β- sitosterol 35	48
		3.9.3 Ethyl Stearate 86	49
		3.9.4 Triglyceride 87	49
		3.9.5 4-ethoxy-3-((ethoxycarbonyl)oxy)-4-oxo butanoic acid 88	51
		3.9.6 Mixture of 3-hydroxy-4-oxopentanal 89	51

ptbupsi

Х

ptbupsi

- 3.9.7 2-(1-ethoxy-4-methoxy-1,4-dioxo butan-2-52 yl)-1,5-dimethyl 3-(2-ethoxy-2-oxoethyl)-4-(2-methoxy-2-oxoethyl-3-((methoxy carbonyl)oxy)-pentane-1,2,5-tricarboxylate 91 53 3.9.8 2-(2-ethoxy-2-oxoethyl)-1,5- dimethyl-3,4bis-(2-methoxy-2-oxoethyl)-3-((methoxy carbonyl)oxy)-pentane-1,2,5-tricarboxylate 92 3.9.9 7-((1,5-dimethoxy-1,4-dioxopentan-54 3yl)oxy)-3,11-bis(ethoxycarbonyl)-7-(3methoxy-1-((methoxycarbonyl)oxy)-3oxopropyl)-5,9-dioxo-4,6,8,10-tetraoxa tridecane-1,8-dioic acid 93 **RESULTS AND DISCUSSION** 4.1 Introduction 56 4.2 Terpenes from The Calyces of *Hibiscus* 57 sabdariffa Linn. ikaan Tuanku Bainun pustaka.upsi.edu.my PustakaTBainun Kampus Sultan Abdul Jalil Shah 4.2.1 Squalene 85 57 4.2.2 Mixture of Stigmasterol **36** and β -64 sitosterol 35 4.3 Ethyl Stearate 86 67 4.4 72 Triglyceride Fatty Acids 87 4.5 4-ethoxy-3-((ethoxycarbonyl)oxy)-4-79 oxobutanoic acid 88
 - 4.6 Mixture of 3-hydroxy-4-oxopentanal **89** and 5hydroxymethylfurfural **90**
 - 4.7 2-(1-ethoxy-4-methoxy-1, 4-dioxobutan-2-yl)-1,5-dimethyl 3-(2-ethoxy-2-oxoethyl)-4-(2methoxy-2-oxoethyl-3-((methoxycarbonyl) oxy)pentane-1,2,5-tricarboxylate **91**
 - 4.8 2-(2-ethoxy-2-oxoethyl)-1,5- dimethyl-3,4-bis-(2-methoxy-2-oxoethyl)-3-((methoxycarbonyl) oxy)-pentane-1,2,5-tricarboxylate **92**

05-4506832

CHAPTER 4

05-4506832

xi

4.9	7-((1,5-dimethoxy-1,4-dioxopentan-3yl)oxy)-3, 11-bis(ethoxycarbonyl)-7-(3-methoxy-1- ((methoxycarbonyl)oxy)-3-oxopropyl)-5,9-di oxo-4,6,8,10-tetraoxatridecane-1,8-dioic acid 93	97
4.10	Antidiabetic Activity	103

CHAPTER 5 CONCLUSION

5.1	Introduction	105
5.2	Recommendation	106
REFERENCES		108

APPENDICES

O5-4506832 Sustaka.upsi.edu.my f Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

9 PustakaTBainun

ptbupsi

xii

LIST OF TABLES

	Tabl	e No.	Page
	2.1	Example of The Monoterpenoids	19
	2.2	Classes of Phenolic Compound with Their Example	23
	2.3	Classes of Flavonoids	26
	4.1	The Percentage Yield of Isolated Compounds	57
	4.2	1D (¹ <i>H</i> in CDCl ₃ , 500 MHz and ¹³ C in CDCl ₃ , 125 MHz) and 2D (COSY, HMQC and HMBC) NMR Spectral Data for Compound 85	59
	4.3	Comparison NMR Dpectral data of Compound 85 with Literature Review	60
05-45068	34.4 (The ¹³ C NMR Data for Ccompound 35 and 36 I Shah	65 ptbupsi
	4.5	1D (¹ <i>H</i> in CDCl ₃ , 500 MHz and ¹³ C in CDCl ₃ , 125 MHz) and 2D (COSY, HMQC and HMBC) NMR Spectral Data for Compound 86	69
	4.6	1D (¹ <i>H</i> in CDCl ₃ , 500 MHz and ¹³ C in CDCl ₃ , 125 MHz) and 2D (COSY, HMQC and HMBC) NMR Spectral Data for Compound 87	74
	4.7	1D (¹ <i>H</i> in CDCl ₃ , 500 MHz and ¹³ C in CDCl ₃ , 125 MHz) and 2D (COSY, HMQC and HMBC) NMR Spectral Data for Compound 88	80
	4.8	¹ H NMR and ¹³ C NMR of Mixture Compound 89 and 90	85
	4.9	1D (¹ <i>H</i> in CDCl ₃ , 500 MHz and ¹³ C in CDCl ₃ , 125 MHz) and 2D (COSY, HMQC and HMBC) NMR Spectral Data for Compound 91	89
	4.10	1D (¹ H in CDCl ₃ , 500 MHz and ¹³ C in CDCl ₃ , 125 MHz) and 2D (COSY, HMQC and HMBC) NMR Spectral Data for Compound 92	95

4.11	1D (¹ H in CDCl ₃ , 500 MHz and ¹³ C in CDCl ₃ , 125 MHz) and 2D (COSY, HMQC and HMBC) NMR Spectral Data for Compound 93	100
4.12	α -glucosidase Inhibitory Activity of The Three Crude Extracts	103
4.13	α -glucosidase Inhibitory Activity of Isolated Compounds	104

🕓 05-4506832 🔮 pustaka.upsi.edu.my 📑

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

y PustakaTBainun

xiv

LIST OF FIGURES

I	Figur	re No.	Page
1	1.1	Althaea officinalis L.	8
1	1.2	Corchorus tridens L.	8
1	1.3	Gossypium hirsutum L.	9
1	1.4	Tilia tomentosa L.	9
1	1.5	Leave of Hibiscus sabdariffa Linn	13
1	1.6	Flower of Hibiscus sabdariffa Linn	13
1	1.7	Calyces of Hibiscus sabdariffa Linn	14
05-4506832	3.1 2 3.2	Dried Calyces of <i>Hibiscus sabdariffa</i> Linn Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah Extraction of Ethanol Crude	37 ptbupsi 39
	3.3	Celite Dried with Ethanol Crude	39
3	3.4	Graphical Method of IC ₅₀ Determination	46
4	4.1	¹ H- ¹³ C Correlation Observed in HMBC Spectrum of Compound 85	59
Δ	4.2	¹ H NMR Spectrum of Compound 85	61
2	4.3	¹³ C NMR Spectrum of Compound 85	62
2	4.4	COSY Cpectrum of compound 85	62
4	4.5	HMQC Spectrum of Compound 85	63
4	4.6	HMBC Spectrum of Compound 85	63
4	4.7	¹ H NMR Spectrum of Mixture of Compound 35 and 36	66
4	4.8	¹³ C NMR Spectrum of Mixture of Compound 35 and 36	67
2	4.9	¹ H- ¹³ C Correlation Observed in HMBC Spectrum of Compound 86	69

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

XV

4.10	¹ H NMR Spectrum of Compound 86	70
4.11	¹³ C NMR Spectrum of Compound 86	70
4.12	COSY Spectrum of Compound 86	71
4.13	HMQC Spectrum of Compound 86	71
4.14	HMBC Spectrum of Compound 86	72
4.15	¹ H- ¹³ C Correlation in HMBC Spectrum of Compound 87	74
4.16	¹ H NMR Spectrum of Compound 87	76
4.17	¹³ C NMR Spectrum of Compound 87	77
4.18	COSY Spectrum of Compound 87	77
4.19	HMQC Spectrum of Sompound 87	78
4.20	HMBC Spectrum of Compound 87	78
4.21	¹ H- ¹³ C Correlation in HMBC Spectrum of Compound 88	80
05-4506834.22(H-NMR Spectrum of Compound 88 Tuanku Bainun Pustaka TBainun	80° ptbupsi
4.23	¹³ C NMR Spectrum of Compound 88	81
4.24	COSY Spectrum of Compound 88	82
4.25	HMQC Spectrum of Compound 88	82
4.26	HMBC Spectrum of Compound 88	83
4.27	¹ H- ¹³ C Correlation in HMBC Spectrum of Mixture of Compound 89 and 90	85
4.28	¹ H NMR Spectrum of Mixture of Compound 89 and 90	86
4.29	¹³ C NMR Spectrum of Mixture of Compound 89 and 90	86
4.30	¹ H- ¹³ C Correlation in HMBC Spectrum of Compound 91	89
4.31	¹ H NMR Spectrum of Compound 91	90
4.32	¹³ C NMR Spectrum Compound 91	91
4.33	HMQC Spectrum of Compound91	91

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

xvi

4.34	HMBC Spectrum of Compound 91	92
4.35	¹ H- ¹³ C Correlation in HMBC Spectrum of Compound 92	94
4.36	¹ H NMR Spectrum of Compound 92	95
4.37	¹³ C NMR Spectrum Compound 92	96
4.38	HMQC Spectrum of Compound 92	96
4.39	HMBC Spectrum of Compound 92	97
4.40	¹ H- ¹³ C Correlation in HMBC Spectrum of Compound 93	99
4.41	¹ H NMR Spectrum of Compound 93	101
4.42	¹³ C NMR Spectrum Compound 93	101
4.43	HMQC Spectrum of Compound 93	102
4.44	HMBC Spectrum of Compound 93	102

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

PustakaTBainun

ptbupsi

xvii

LIST OF SCHEMES

Scheme No.		
3.1	Extraction Procedure of Calyces from Hibiscus sabdariffa Linn	38
3.2	Fractionation and Isolation of Compounds from The Crude Extract of Calyces of <i>Hibiscus sabdariffa</i> Linn.	44

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

9 PustakaTBainun

ptbupsi

xviii

LIST OF ABBREVIATIONS

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

🕓 05-4506832 🛛 😵 pustaka.upsi.edu.my

	°C	Degree Celcius
	μL	Microliter
	μm	Micrometer
	¹³ C NMR	Carbon Nuclear Magnetic Resonance
	1D NMR	One Dimension Nuclear Magnetic Resonance
	¹ H NMR	Proton Nuclear Magnetic Resonance
	2D NMR	Two Dimension Nuclear Magnetic Resonance
	ACN	Acetonitrile
	CC	Column Chromatography
	CDCl ₃	Deuterated Chloroform
	CH ₃	Methyl group
05-45068	CHCl pustaka.upsi.	Chloroform Perpustakaan Tuanku Bainun
	cm	Centimeter
	cm ⁻¹	Per centimeter
	COSY	Correlation Spectroscopy
	d	Doublet
	DCM	Dichloromethane
	dd	Doublet of doublet
	DEPT	Distortioness Enhancement by Polarization Transfer
	FTIR	Fourier Transform Infrared
	g	Gram
	H ₂ O	Water
	HMBC	Heteronuclear Multiple Bond Correlation
	HMQC	Heteronuclear Multiple Quantum Correlation
	HPLC	High Performance Liquid Chromatography
	HSQC	Heteronuclear Single Quantum Correlation
	Hz	Hertz
	IC ₅₀	Inhibition Concentration

C

05-4506832

xix

	IR	Infrared		
	J	Coupling Constant		
	K ₂ HPO ₄	Dipotassium Hydrogen Phosphate Anhydrous		
	kg	Kilogram		
	KH ₂ PO ₄	Potassium Dihydrogen Phosphate Anhydrous		
	LC-MS	Liquid Chromatography-Mass Spectrum		
	m	Meter		
	М	Molar		
	т	Multiplet		
	<i>m/z</i> .	Mass per charge		
	MeOD	Deuterated Methanol		
	MeOH	Methanol		
	mg	Milligram		
	MHz	Mega Hertz		
	min	Minute		
	ml	Milliliter		
05-45068	amm 💓 pustaka.upsi.	e Millimeter Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah 🕥 PustakaTBainun 🚺 ptbupsi		
	mM	Milli Molar		
	Na ₂ CO ₃	Sodium Carbonate		
	nm	Nanometer		
	NMR	Nuclear Magnetic Resonance		
	OCH ₃	Methoxyl group		
	ОН	Hydroxyl group		
	PBS	Phosphate buffer solution		
	pNPG	4-nitrophenyl-α-D-glucopyranoside		
	ppm	Part per million		
	PTLC	Preparative Thin-Layer Chromatography		
	Recycled-HPLC	Recycle High Performance Liquid Chromatography		
	S	Singlet		
	t	Triplet		
	TLC	Thin Layer Chromatography		
	UV	Ultra Violet		
	α	Alpha		

XX

β	Beta
γ	Gamma
δ	Chemical shift
λ	Wavelength

O5-4506832 Spustaka.upsi.edu.my

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

PustakaTBainun

CHAPTER 1

INTRODUCTION

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

ptbupsi

Biodiversity play an important role in human daily life. Biodiversity affect us in many ways like in food security, health, fisheries, tourism, forestry, biotechnology and others. Biodiversity can be defined as the variety of life on earth and includes variation at all levels of biological organization from genes to species to ecosystems. Genetic, organism and ecological diversity are all elements of biodiversity with each including a number of components (Gaston & Spicer, 2004; Vere, 2008). According to the World Development Indicators, Malaysia has only 0.2% of the world land mass, but its diversity of flora and fauna species makes it one of the richest countries in the world in terms of biodiversity per unit area (Ministry of Natural Resources and Environment,

2006). The 2001 Global Diversity Outlook recognized Malaysia as one of the 12 megadiversity countries in the world. There are 12,500 species of flowering plants and more than 1,100 species of ferns and fern allies in Malaysia (Hafidh et al., 2009). The basis of most traditional medicines come from the species of plants, animals and microorganism and there are rural communities still depends on it for their health care needs. Research institutes see the rich in biodiversity especially the tropics as a source of new drugs (Ministry of Natural Resources and Environment, 2006).

From the early findings, a lot of drugs discovered in pharmaceutical based on natural products. Natural products can be defined as chemical compounds from nature that usually have a pharmacological or biological activity. (Natural Products Chemistry & Research, 2014). Natural products can be derived from microbial, plant, animal and marine categories. For example, antibacterial agents (cephalosporins 1), anticancer agents (epirubicin 2) and antidiabetic agent (acarbose 3) are derived from microorganism (Chin, Balunas, Chai & Kinghorn, 2006). Natural product derived from microorganism was discovered since the discovery of penicillin 4, in year 1929.

Besides that, natural products also can be derived from marine like coral, sponges, fish and marine microorganism. A study carried out by Heafner B. in 2003, found that compounds from marine potent in antiviral, anticancer and inflammatory activities. For example, spongouridine **5**, and spongothymidine **6**, derived from *Cryptotheca crypta* give potential as anticancer and antiviral agents while curacin A **7**, shows potent antitumor activity that obtained from a marine cyanobacterium (Nautiyal, 2013).

Morphine **8**, quinine **9**, codeine **10**, and reserpine **11** are example of natural product derived from plant used in medical (Pelletier, 1983). Morphine **8** and codeine **10** that isolated from *Papaver somniferum* are used as pain relief while quinine **9** and reserpine **11** are used for the treatment of malaria and antihypertensive, respectively.

1.2 Objectives

This study generally aimed at investigating the chemical constituent from the calyces of *Hibiscus sabdariffa* Linn. and its α -glucosidase inhibitory activity. The specific objectives of this study are;

 to extract, isolate and purify chemical compounds from various crude extracts of *Hibiscus sabdariffa* Linn.) which are hexane, dichloromethane and methanol crude extracts using chromatographic techniques

- 6
- ii. to elucidate the structure of isolated compounds from the calyces of roselle (*Hibiscus sabdariffa* Linn.)
- iii. to investigate the α -glucosidase inhibitory activity of Hibiscus sabdariffa Linn. crude extracts and the isolated compounds

1.3 Significant of Research

Hibiscus sabdariffa Linn. or roselle is a medicinal potential plant which is distributed throughout the tropics and subtropics countries. At Malaysia, it widely planted at Terengganu, Kelantan and Johor. The calyces of roselle had been used among Malaysian as juice, jam, jelly, herbal tea and also used in medical purpose such as for
treatment of diabetes (Seema, 2014). According to study carried out by Rosemary, Rosidah and Ginda in 2014, ethanol extract from the calyces of roselle proven to reduce blood glucose levels in diabetic mice.

The cases of diabetes are increasing worldwide at an alarming rate due to changes in lifestyle. According to World Health Organization in 2016, 2380 cases of deaths due to diabetes were reported among Malaysian people in age range 30 - 69. There are two types of diabetes which are juvenile-onset diabetes (type 1) and non-insulin dependent diabetes (type 2) (International Diabetes Federation, 2018). More than 90% of diabetic population has type 2 diabetes. The maintenance of healthy blood glucose levels is very important for treating this type of diabetes (Tsujita et al., 2008). Therefore, in order to control the blood glucose levels, the patients need to undergo diet, weight control and do physical activities. If blood glucose level remains high, then

ptbupsi

drug such as α -glucosidase inhibitors are usually advised. α -glucosidase inhibitors slow down digestion by blocking enzymes in the small intestine that break down carbohydrates. So that, it can slow down the digestion of carbohydrate, thus reducing the rise in blood glucose levels after eating.

Previous studies on this plant only focusing on the polar crude extracts which are methanol, ethanol and water crude extracts and were adding acid during the extraction process. Thus, this study was carried out to isolate chemical compounds from the calyces of *Hibiscus sabdariffa* Linn. by using non-polar and polar solvent without using an acid during the extraction process to compare any similar structures with previous studies and hopefully, having potential for α -glucosidase inhibitory activities as for discoverable potential new drugs in pharmaceutical.

pustaka.upsi.edu.my

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

o ptbupsi

1.4 Family of Malvaceae

1.4.1 Taxonomy

Malvaceae is a major group in Angiosperm or flowering plant. *Malvaceae* is estimated has 243 genera and 4225 species widely distributed throughout the world and particularly abundant in tropics (Berry, 2013). *Malvaceae* has three members which are herbs, shrubs and trees. It can be categorized based on the characteristics of the flower, leaf and woodiness. There are many genus under *Malvaceae* family for example, *Althaea, Brownlowia, Corchorus, Durio, Gossypium, Heritiera, Mansonia, Ochroma,*

