

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

FABRICATION OF GRAPHENE OXIDE/ZINC OXIDE NANOCOMPOSITE THROUGH SPRAYING METHOD FOR SOLAR CELL **APPLICATION**

FATIATUN

🕓 05-4506832 🔮 pustaka.upsi.edu.my 📑

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

PustakaTBainun

ptbupsi

THESIS SUBMITTED IN FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER OF SCIENCE (PHYSICS) (MASTER BY RESEARCH)

FACULTY OF SCIENCE AND MATHEMATICS UNIVERSITI PENDIDIKAN SULTAN IDRIS 2018

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah iv

🕥 ptbupsi

ABSTRACT

This study aimed to fabricate counter electrode (CE) and photoanode for dye sensitized solar cells (DSSCs) application. The method used to synthesize graphene oxide (GO) was electrochemical exfoliation which assisted by custom-made triple-tails sodium 1, 4-bis (neopentyloxy)-3-(neopentyloxycarbonyl)-1, 4-dioxobutane-2-silphonate (TC14) and commercially available single-tail sodium dodecyl sulphate (SDS) surfactants. The GO was then reduced by reduction process in order to produce reduced GO (rGO). The samples of TC14-GO, TC14-rGO, SDS-rGO and hybrid of TC14-rGO with carbon nanotubes (CNTs) were used as CE. The CE thin films were fabricated by using spraying method on fluorine doped tin oxide (FTO) substrate. The platinum (Pt) was then coated on TC14-rGO and TC14-rGO/CNTs hybrid thin films. For the photoanode, the zinc oxide nanorods (ZnO NRs) and nanowires (NWRs) with the titanium dioxide (TiO₂) coating were fabricated via sol-gel immersion and squeegee method. The samples were characterized using electron microscopy, energy dispersive X-ray, high resolution transmission electron microscopy, X-ray diffraction, micro-Raman, ultraviolet visible spectroscopy and four-point probes measurement. Solar simulator, electrochemical impedance spectroscopy and cyclic voltammetry measurement were used to analyze DSSCs performances. The finding shows that the highest energy conversion efficiency for DSSCs application was found to be 0.0842% by using TC14rGO/CNTs/Pt hybrid as CE and ZnO NWRs (24h)/TiO₂ bilayer as photoanode. The open circuit voltage, short circuit density and fill factor of the sample exhibited 0.608 V, 0.285 mA/cm² and 0.397, respectively. In conclusion, the rGO assisted by custommade TC14 surfactant and its hybrid with CNTs and Pt was good material to be applied as CE for DSSCs application. In addition, ZnO NWRs (24h)/TiO₂ bilayer also demonstrated good candidates for photoanode due to large surface area thus improve the dye adsorption. Implication of this study is a novel, low cost and green approach for CE fabrication by using rGO assisted custom-made TC14 surfactant with CNTs.

v

FABRIKASI NANOKOMPOSIT GRAFIN OKSIDA/ZINK OKSIDA MELALUI KAEDAH SEMBURAN UNTUK APLIKASI SEL SURIA

ABSTRAK

Kajian ini bertujuan memfabrikasi elektrod kaunter (EK) dan fotoanod untuk aplikasi sel suria terpeka warna (SSTW). Kaedah yang digunakan untuk mensintesis grafin oksida (GO) adalah pengelupasan elektrokimia yang dibantu oleh surfaktan buatan rantaian bercabang tiga sodium 1, 4-bis (neopentiloksi) -3- (neopentiloksikarbonil) -1. 4-dioksobutana-2-sulfonat (TC14) dan komersial rantaian tunggal sodium dodesil sulfat (SDS). GO kemudiannya diturun menggunakan proses pengurangan untuk menghasilkan penurunan GO (pGO). Sampel TC14-GO, TC14-pGO, SDS-pGO dan hibrid TC14-pGO dengan nanotiub karbon (NTK) digunakan sebagai EK. Filem tipis EK difabrikasi melalui kaedah semburan ke atas substrat timah oksida didop fluorin. Platinum (Pt) kemudian disalut pada filem tipis TC14-pGO dan hibrid TC14pGO/NTK. Untuk fotoanod, zink oksida-batangnano (ZnO-BN) dan wayarnano (ZnO-WN) dengan lapisan titanium dioksida (TiO2) difabrikasi melalui perendaman sol-gel dan kaedah squeegee. Sampel-sampel tersebut dicirikan dengan menggunakan mikroskop elektron, penyerakan tenaga sinar-X, mikroskop elektron penghantaran resolusi tinggi, pembelauan sinar-X, spektroskopi mikro-Raman, cahaya nampak ultralembayung dan pengukuran prob empat titik arus-voltan. Pengukuran solar simulator, spektroskopi impedans elektrokimia dan voltammetri berkitar digunakan untuk menganalisis potensi SSTW. Hasil kajian menunjukkan bahawa kecekapan penukaran tenaga yang paling tinggi untuk aplikasi SSTW adalah 0.0842% dengan menggunakan hibrid TC14-pGO/NTK/Pt sebagai EK dan ZnO-WN (24jam)/TiO2 dua lapis sebagai fotoanod. Voltan litar terbuka, kepadatan litar pintas dan faktor pengisi sampel menunjukkan angka masing-masing 0.608 V, 0.285 mA/cm² dan 0.397. Kesimpulannya, pGO dibantu oleh surfaktan buatan TC14 dan hibridnya dengan NTK dan Pt merupakan bahan yang sesuai digunakan sebagai EK untuk aplikasi SSTW. Tambahan pula, dua lapis ZnO-WN (24jam)/TiO₂ juga menunjukkan yang baik untuk fotoanod disebabkan luas permukaan yang besar seterusnya meningkatkan penyerapan pewarna. Implikasi kajian ini adalah ianya merupakan pendekatan baharu, kos rendah dan hijau untuk fabrikasi EK dengan menggunakan pGO dibantu surfaktan buatan TC14 dengan NTK.

(L)

05-4506832

ptbupsi

CONTENTS

			Page
DECLARATIO	ONS		ii
ACKNOWLE	DGEM	ENTS	111
ABSTRACT			iv
ABSTRAK			v
CONTENT			vi
LIST OF TAB	LES		XV
LIST OF FIGU	JRES		xviii
S 05-LIST OF ABB	REVIA	TIONS Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah	pt XXI V
CHAPTER 1	1 INTRODUCTION		
	1.1	Introduction	1
	1.2	Research Background	2
	1.3	Problem Statement	7
	1.4	Research Objectives	10
	1.5	Scope and Limitations of Study	10
	1.6	Thesis Organization	11
CHAPTER 2	LITE	CRATURE REVIEW	
	2.1	Introduction	13

2.2 Fabrication of Zinc Oxide-based Photoanode 14

05-4506832

f

ptbupsi

PustakaTBainun

\bigcirc		3.
\bigcirc	05-4506832	

T	pustaka.upsi.edu.mv	

2.3

pustaka.upsi.edu.my **F** Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

i.edu.	my f	Perpustakaa Kampus Sult	n Tuanku Bainun tan Abdul Jalil Shah 🛛 💟 PustakaTBainun 👘 P	tbupsi
	2.2.1	Introduc	ction of Zinc Oxide	14
		2.2.1.1	Structures and Properties of Zinc Oxide	14
		2.2.1.2	Synthesis Method of Zinc Oxide	17
	2.2.2	Introduc	ction of Titanium Dioxide	22
		2.2.2.1	Structures and Properties of Titanium Dioxide	22
	2.2.3	Introduc Dioxide	etion of Zinc Oxide/Titanium Bilayer	24
		2.2.3.1	Structures and Properties of Zinc Oxide/Titanium Dioxide Bilayer	24
		2.2.3.2	Fabrication Method of Zinc Oxide/Titanium Dioxide Bilayer	25
	2.2.4	Introduc Graphen	tion of Zinc Oxide/Reduced e Oxide/Titanium Dioxide	26
i.edu.	my f	2°2 uztahaa Kampus Suh	Structures and Properties of Zinc Oxide/Reduced Graphene Oxide/Titanium Dioxide	tb 2;6 i
	Fabricat Electrod	ion of e	Graphene Oxide-based Counter	27
	2.3.1	Introduc	tion of Graphene Oxide	27
		2.3.1.1	Structures and Properties of Graphene Oxide	27
		2.3.1.2	Synthesis Method of Graphene Oxide	31
	2.3.2	Introduc	tion of Reduced Graphene Oxide	33
		2.3.2.1	Structures and Properties of Reduced Graphene Oxide	33
		2.3.2.2	Synthesis Method of Reduced Graphene Oxide	33
	2.3.3	Introduc	tion of Carbon Nanotubes	34

O5-4506832 Dustaka.ups

05-4506832

			vii	i
05-4506832	pustaka.upsi.ed	łu.my f	Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah 🛛 🚺 PustakaTBainun 👘 p	tbups
			2.3.3.1 Structures and Properties of Carbon Nanotubes	34
		2.3.4	Introduction of Reduced Graphene Oxide- Carbon Nanotubes Hybrid	36
			2.3.4.1 Structures and Properties of Reduced Graphene Oxide-Carbon Nanotubes Hybrid	36
		2.3.5	Transfer process of Graphene Oxide-based Counter Electrode	36
	2.4	Dye Sei	nsitized Solar Cells	37
		2.4.1	Theory of Dye Sensitized Solar Cells	38
			2.4.1.1 Transparent Conductive Film	39
			2.4.1.2 Photoanode	40
			2.4.1.3 Photo-Sensitizer	41
05-4506832	pustaka.upsi.ec	lu.my f	2.4.1.4 Electrolyte Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah 2.4.1.5 Counter Electrode	43 tbups 45
		2.4.2	Operational Principle of Dye Sensitized Solar Cells	47
	2.5	Characte Electroc	erizations of Photoanode and Counter le Material	48
		2.5.1	Field Emission Scanning Electron Microscopy and Energy Dispersive X-Ray	48
		2.5.2	High Resolution Transmission Electron Microscopy	49
		2.5.3	Micro-Raman Spectroscopy	50
		2.5.4	X-Ray Diffraction	53
		2.5.5	Four-Point Probe	56
		2.5.6	Ultraviolet-Visible Spectroscopy	58
		2.5.7	Solar Simulator	59

05-4506832

pustaka.upsi.edu.my **f** Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

PustakaTBainun

ptbupsi

D	pusta	ka.up	DSI.e	du.my
\ 🖶 /				

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah Õ PustakaTBainun ptbupsi 2.5.7.1 Open Circuit Voltage 59 2.5.7.2 Short Circuit Current 60 2.5.7.3 Fill Factor 60 2.5.7.4 Energy Conversion Efficiency 61 2.5.8 Electrochemical Impedance Spectroscopy 62 2.5.9 Cyclic Voltammetry 63 Summary 65

CHAPTER 3 METHODOLOGY

2.6

	3.1	Introduc	ction		67
	3.2	Fabricat	ion of Zi	nc Oxide-based Photoanode	68
		3.2.1	Preparat	ion of Substrates	68
05-4506832	gy pustaka.upsi.edu	3.2.2 f	Preparat Dioxide	ionanku of un Zinc Oxide/Titanium	otb 69 i
			3.2.2.1	Procedures to Synthesize Magnesium Zinc Oxide Seeded Layer using Spin Coating Technique	69
			3.2.2.2	Procedures to Synthesize of Zinc Oxide Nanostructures	73
			3.2.2.3	Procedures to Synthesize of Zinc Oxide/Titanium Dioxide Bilayer Nanostructures	76
		3.2.3	Preparat Grapher	ion of Zinc Nanorods/Reduced e Oxide/Titanium Dioxide	77
			3.2.3.1	Procedures to Transfer Process of Reduced Graphene Oxide on Zinc Oxide Nanorods Layers using Spray Coating Method	77
			3.2.3.2	Procedures to Synthesis of Zinc Oxide Nanorods/Reduced	78
05-4506832	pustaka.upsi.edu	my f	Perpustakaa Kampus Sul	an Tuanku Bainun tan Abdul Jalil Shah 🛛 💟 PustakaTBainun	otbupsi

ix

pustaka.upsi.edu.my Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

Graphene Oxide/Titanium Dioxide

PustakaTBainun

3.3	Fabrication of Graphene Oxide-based Counter Electrode				
	3.3.1	Synthesis of Graphene Oxide	78		
	3.3.2	Reduction of Graphene Oxide	79		
	3.3.3	Preparation of Reduced Graphene Oxide- Carbon Nanotubes Hybrid	81		
	3.3.4	Transfer Process of Graphene Oxide, Reduced Graphene Oxide and Reduced Graphene Oxide/Carbon Nanotubes Hybrid	81		
	3.3.5	Fabrication of Platinum and Reduced GrapheneOxide/Platinum Hybrid as Counter Electrode	83		
3.4	Fabrica Oxide- based (ation of Dye Sensitized Solar Cells from Zinc based Photoanode and Graphene Oxide- Counter Electrode	84		
ustaka.upsi.e 3.5	sdu.my Sample	Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah es Characterizations	ptbupsi 87		
	3.5.1	Field Emission Scanning Electron Microscopy and Energy Dispersive X-Ray	88		
	3.5.2	High Resolution Transmission Electron Microscopy	89		
	3.5.3	Micro-Raman Spectroscopy	90		
	3.5.4	X-Ray Diffraction	93		
	3.5.5	Four-Point Probe	94		
	3.5.6	Ultraviolet-Visible Spectroscopy	96		
	3.5.7	Solar Simulator	97		
	3.5.8	Electrochemical Impedance Spectroscopy	98		
	3.5.9	Cyclic Voltammetry	99		
3.6	Brief D	escription of Experimental Work	100		

ptbupsi

05-4506832 pustaka.upsi.edu.my Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

xi

101

ptbupsi

CHAPTER 4 RESULTS AND DISCUSSIONS

Summary

	4.1	Introdu	ction	104
	4.2	Charact Nanostr Solar C	erizations of Various Zinc Oxide actures as Photoanode for Dye Sensitized ells Application	105
		4.2.1	Field Emission Scanning Electron Microscopy Analysis of Zinc Oxide Nanostructures Photoanode	105
			4.2.1.1 Zinc Oxide Nanorods/Reduced Graphene Photoanode	110
			4.2.1.2 Procedures to Synthesize of Zinc Oxide/Titanium Dioxide Bilayer Nanostructures	113
05-4506832	pustaka.upsi.ed	lu.my f	4.2.1.3 Zinc Oxide Nanorods/Reduced Perpustak Graphene Oxide/Titanium Dioxide Photoanode	117 tbupsi
		4.2.2	Micro-Raman Spectroscopy Analysis of Zinc Oxide Nanostructures Photoanode	120
			4.2.2.1 Micro-Raman Spectroscopy Analysis of Zinc Oxide Nanorods/Reduced Graphene Oxide Photoanode	122
		4.2.3	X-Ray Diffraction Analysis of Zinc Oxide Nanostructures Photoanode	127
			4.2.3.1 X-Ray Diffraction of Zinc Oxide Nanostructures/Titanium Dioxide Photoanode	130
		4.2.4	Ultraviolet-Visible Spectroscopy Analysis of Zinc Oxide Nanostructures Photoanode	135
			4.2.4.1 Ultraviolet-Visible Spectroscopy Analysis of Zinc Oxide Nanorods/Reduced Graphene Oxide Photoanode	138

pustaka.upsi.edu.my **f** Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

o ptbupsi

xii

aka.upsi.ed	u.my f	Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah	ptbupsi
		4.2.4.2 Ultraviolet-Visible Spectroscopy Analysis of Zinc Oxide Nanostructures/Titanium Dioxide Photoanode	141
		4.2.4.3 Ultraviolet- Visible Spectroscopy Analysis of Zinc Oxide Nanorods/Reduced Graphene Oxide/Titanium Dioxide Photoanode	144
	4.2.5	Four-Point Probe Analysis of Zinc Oxide Nanostructures Photoanode	147
		4.2.5.1 Four- Point Probe Analysis of Zinc Oxide Nanorods/Reduced Graphene Oxide Photoanode	149
4.3	The Ch based C Cells ap	aracterization of Various Graphene Oxide- counter Electrode for Dye Sensitized Solar plication	150
aka.upsi.ed	4.3.1 u.my f	Field Emission Scanning Electron Microscopy Analysis of Graphene Oxide- based Counter Electrode	151 ptbupsi
		4.3.1.1 Field Emission Scanning Electron Microscopy Analysis of Reduced Graphene Oxide/Platinum Counter Electrode	154
	4.3.2	High Resolution Transmission Electron Microscopy Analysis of Graphene Oxide- based Counter Electrode	155
	4.3.3	Micro-Raman Spectroscopy Analysis of Graphene Oxide-based Counter Electrode	158
		4.3.3.1 Micro-Raman Spectroscopy Analysis of Reduced Graphene Oxide /Platinum Counter Electrode	161
	4.3.4	Ultraviolet-Visible Spectroscopy Analysis of Graphene Oxide-based Counter Electrode	163
		4.3.4.1 Ultraviolet-Visible Spectroscopy Analysis of Reduced Graphene Oxide/Platinum Counter Electrode	166

05-4506832

pustaka.upsi.edu.my **f** Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah **y** PustakaTBainun

05-4506832

	nustak	a un	si ed	u mv
127	pustur	a.ap.	51.00	a.my

PustakaTBainun

xiii

ptbupsi

	4.3.5	Four-Point Probe Analysis of Graphene Oxide-based Counter Electrode	169
		4.3.5.1 Four-Point Probe Analysis of Graphene Oxide/Platinum Counter Electrode	171
4.4	The Per Electroc via Sola	formance of Graphene Oxide-based Counter de in Dye Sensitized Solar Cells Application or Simulator	173
	4.4.1	Zinc Oxide Nanorods (4h)/Titanium Dioxide Bilayer Photoanode	174
	4.4.2	Zinc Oxide Nanowires (12h)/Titanium Dioxide Bilayer Photoanode	179
	4.4.3	Zinc Oxide Nanowires (24h)/Titanium Dioxide Bilayer Photoanode	182
	4.4.4	Zinc Oxide Nanorods (4h)/TC14-Reduced Graphene Oxide/Titanium Dioxide	187
taka.upsi.ec	lu.my f	Kampus Sultan Abdul Jalil Shah	ptbupsi
	4.4.5	Zinc Oxide Nanorods (4h)/SDS-Reduced Graphene Oxide/Titanium Dioxide Photoanode	190
	4.4.6	Zinc Oxide Nanorods (8h)/TC14-Reduced Graphene Oxide/Titanium Dioxide Photoanode	193
	4.4.7	Zinc Oxide Nanorods (8h)/SDS-Reduced Graphene Oxide/Titanium Dioxide Photoanode	195
4.5	The Per Electroc via El Analysis	formance of Graphene Oxide-based Counter le in Dye Sensitized Solar Cells Application ectrochemical Impedance spectroscopy	200
4.6	The Per- Electrod via Cycl	formance of Graphene Oxide-based Counter le in Dye Sensitized Solar Cells Application lic Voltammetry Analysis	204

05-4506832 😵 pustak

05-4506832

(\mathbf{L})	05-4506832
\ ~/	

PustakaTBainun

xiv ptbupsi

215

243

CHAPTER 5 CONCLUSIONS AND FUTURE WORKS

5.1	Conclusions	208
5.2	Future Work	214

REFERENCES

AI	PF	INI	DIX

O5-4506832 Spustaka.upsi.edu.my Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

ptbupsi

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

PustakaTBainun

ptbupsi

LIST OF TABLES

	Table I	No.	Page
	2.1	Physical Properties of ZnO Wurtzite Structure at T=300 K	16
	2.2	The Summarize of ZnO Photoanode Performance for DSSCs Application	22
	3.1	The Production and Characterization of MgZnO Seeded Catalyst Thin Film via Sol-Gel Spin Coating Technique	72
	3.2	The Chemicals Used to Grow ZnO NRs on the MgZnO Seeded Catalyst	74
	3.3	The Chemicals Used to Grow ZnO NWRs on the MgZnO Seeded Catalyst	75
C	4.1 05-4506832	Summary of Average Diameter and Thickness of ZnO NRs (4 and 8h) and ZnO NWRs (12 and 24h) mpus Sultan Abdul Jalil Shah	110 ptDupsi
	4.2	Thickness Summary of ZnO NRs (4 and 8h)/TiO ₂ Bilayer and ZnO NWRs (12 and 24h)/TiO ₂ Bilayer	117
	4.3	Thickness Summary of ZnO NRs (4 and 8h)/TC14-rGO/TiO ₂ and ZnO NRs (4 and 8h)/SDS-rGO/TiO ₂	119
	4.4	Micro-Raman Peak Positions of ZnO NRs (4 and 8h) and ZnO NWRs (12 and 24h)	122
	4.5	Summary of Micro-Raman Analysis of Pure TC14-rGO and SDS-rGO	124
	4.6	Micro-Raman Peak Positions and I_D/I_GRatio of ZnO NRs (4 and 8h) Coated with TC14- and SDS-rGO	126
	4.7	Summary of XRD Analysis of ZnO NRs (4 and 8h) and ZnO NWRs (12 and 24h) at (002) Plane	129
	4.8	Summary of XRD Analysis of ZnO NRs (4 and 8h) and ZnO NWRs (12 and 24h) at (002) Plane	130
	4.9	Summary of XRD Analysis of ZnO NRs (4 and 8h)/TiO ₂ and ZnO NWRs (12 and 24h)/TiO ₂ Bilayer at (101) Plane	132
C	05-4506832	2 💱 pustaka.upsi.edu.my 🕇 Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah 🎔 PustakaTBainun	ptbupsi

C	05-4506832 4.10	Summary of XRD Analysis of ZnO NRs (4 and 8h)/TiO ₂ and ZnO NWRs (12 and 24h)/TiO ₂ Bilayer at (101) Plane	ptbupsi 134
	4.11	Summary of Transmittance and Band Gap Energy of ZnO NRs (4 and 8h) and ZnO NWRs (12 and 24h)	137
	4.12	Summary of Transmittance and Band Gap Energy of ZnO NRs (4 and 8h)/TC14-rGO and ZnO NRs (4 and 8h)/SDS-rGO	141
	4.13	Summary of Transmittance and Band Gap Energy of ZnO NRs (4h)/TiO ₂ and ZnO NWRs (12 and 24h)/TiO ₂ Bilayer	144
	4.14	Summary Transmittance and Band Gap Energy of ZnO NRs (4 and 8h)/TC14-rGO/TiO ₂ and ZnO NRs (4 and 8h)/SDS-rGO/TiO	146
	4.15	Summary of Electrical Properties of ZnO NRs (4 and 8h) and ZnO NWRs (12 and 24h)	148
	4.16	Summary of Electrical Properties of ZnO NRs (4 and 8h)/TC14-rGO and ZnO NRs (4 and 8h)/SDS-rGO	150
	4.17	Summary of Micro-Raman Analysis of TC14-GO, TC14-rGO, SDS-rGO and TC14-rGO/CNTs Hybrid CE Thin Films	161
C	4.18 05-4506832	Summary of Micro-Raman-Analysis of BTC14-rGO/Pt and TC14 rGO/CNTs/Pt Hybrid CE Thim Films ^{n Abdul} Jalil Shah	163 ptoupsi
	4.19	Summary of Transmittance and Band Gap Energy of TC14-GO, TC14- rGO, SDS-rGO and TC14-rGO/CNTs Hybrid CE Thin Films	166
	4.20	Summary of Transmittance and Band Gap Energy of Pt, TC14-rGO/Pt Hybrid and TC14-rGO/CNTs/Pt Hybrid CE Thin Films	169
	4.01		
	4.21	Electrical Properties of TC14-GO, TC14-rGO, SDS-rGO and TC14-rGO/CNTs Hybrid CE Thin Films	171
	4.21	Electrical Properties of TC14-GO, TC14-rGO, SDS-rGO and TC14- rGO/CNTs Hybrid CE Thin Films Electrical Properties of Pt, TC14-rGO/Pt hybrid and TC14- rGO/CNTs/Pt Hybrid CE Thin Films	171 172
	4.21 4.22 4.23	Electrical Properties of TC14-GO, TC14-rGO, SDS-rGO and TC14- rGO/CNTs Hybrid CE Thin Films Electrical Properties of Pt, TC14-rGO/Pt hybrid and TC14- rGO/CNTs/Pt Hybrid CE Thin Films Summary DSSCs Performance with ZnO NRs (4h)/TiO ₂ Bilayer as ZnO-based Photoanode and Various GO-based CE	171 172 178
	4.214.224.234.24	Electrical Properties of TC14-GO, TC14-rGO, SDS-rGO and TC14- rGO/CNTs Hybrid CE Thin Films Electrical Properties of Pt, TC14-rGO/Pt hybrid and TC14- rGO/CNTs/Pt Hybrid CE Thin Films Summary DSSCs Performance with ZnO NRs (4h)/TiO ₂ Bilayer as ZnO-based Photoanode and Various GO-based CE Summary DSSCs Performance with ZnO NWRs (12h)/TiO ₂ Bilayer as ZnO-based Photoanode and Various GO-based CE	171 172 178 181
	 4.21 4.22 4.23 4.24 4.25 	Electrical Properties of TC14-GO, TC14-rGO, SDS-rGO and TC14- rGO/CNTs Hybrid CE Thin Films Electrical Properties of Pt, TC14-rGO/Pt hybrid and TC14- rGO/CNTs/Pt Hybrid CE Thin Films Summary DSSCs Performance with ZnO NRs (4h)/TiO ₂ Bilayer as ZnO-based Photoanode and Various GO-based CE Summary DSSCs Performance with ZnO NWRs (12h)/TiO ₂ Bilayer as ZnO-based Photoanode and Various GO-based CE Summary DSSCs Performance with ZnO NWRs (24h)/TiO ₂ bilayer as ZnO-based Photoanode and Various GO-based CE	171 172 178 181 185

O5-4506832 Spustaka.upsi.edu.my Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

PustakaTBainun ptbupsi

xvi

4.26	The Comparison DSSCs Performance of ZnO NRs (4h)/TiO ₂ , ZnO NWRs (12h)/TiO ₂ and ZnO NWRs (24h)/TiO ₂ Bilayer as ZnO-based Photoanode and TC14-rGO/CNTs/Pt Hybrid as GO-based CE	ptbupsi 186
4.27	Summary DSSCs Performance with ZnO NRs (4h)/TC14-rGO/TiO ₂ as ZnO-based Photoanode and Various GO-based CE	189
4.28	Summary DSSCs Performance with ZnO NRs (4h)/SDS-rGO/TiO ₂ as ZnO-based Photoanode and Various GO-based CE	192
4.29	Summary DSSCs Performance with ZnO NRs $(8h)/TC14$ -rGO/TiO ₂ as ZnO-based Photoanode and Various GO-based CE	195
4.30	Summary DSSCs Performance with ZnO NRs (8h)/SDS-rGO/TiO ₂ as ZnO-based Photoanode and Various GO-based CE	198
4.31	The Comparison DSSCs Performances of ZnO NRs (4 and 8h)/TC14- rGO/TiO ₂ and ZnO NRs (4 and 8h)/SDS-rGO/TiO ₂ as ZnO-based Photoanode and TC14-rGO/CNTs/Pt Hybrid as GO-based CE	199
4.32	Summary Fitting Results of EIS Analysis in DSSCs Application with ZnO NWRs (24h)/TiO ₂ Bilayer as ZnO-based Photoanode and Various GO-based CE	203

4.33 Summary of *Epp. Jpa* and *Ipc* of Various GO-based CE and ZnO NWRs 207psi (24h)/TiO₂ Bilayer as ZnO-based Photoanode (\mathbf{C})

O 05-2 4

Page

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

PustakaTBainun

ptbup

LIST OF FIGURES

No. Figures

- 2.1 Hexagonal Wurtzite Structure of ZnO (Fu et al., 2009) 15
- 2.2 Morphology Structure of Various ZnO Nanostructures (a) NRs 19 (Alfarisa, 2015), (b) Flower-like (Shi et al., 2013), (c) Flake-like (Hassan & Hashim, 2013), (d) Spheres (X. B. Li et al., 2013), (e) Nanotubes (Han et al., 2010), (f) Nanobelts (Yang et al., 2008), (g) Nanorings (Jung et al., 2009), (h) Nanosheets (Sun et al., 2008) and (i) NWRs (Baxter et al., 2006)
- 2.3 TiO₂ Phases of (a) Anatase, (b) Rutile and (c) Brookite (Attaf, 2011) 23
- 2.4 FESEM Images of (a) ZnO NRs on Seeded Catalyst and (b) ZnO 25 NRs/TiO₂ Bilayer Nanostructures (Manthina et al., 2012)
- 2.5 Graphitic Forms (a) 0-D Buckyballs, (b) Roll of 1-D of CNTs and (c) 28 Stack of 1-D Graphite (Geim & Novoselov, 2007)
 - 2.6 Timeline History of Graphene Based Materials (Dreyer et al., 2010) 30
 - Electrochemical Exfoliation Method to Synthesize GO (Saidin et al., 33 2013)
 - 2.8 The Structures of (a) Graphene, (b) SWCNTs, (c) DWCNTs and (d) 34 MWCNTs (Jackson et al., 2013)
 - 2.9 Schematic Diagram and Components of DSSCs (Sengupta et al., 2016) 40
 - 2.10 Band Gap Energy Positions of Various Semiconducting Metal Oxides 41 (Yang et al., 2013)
 - 2.11 Schematic Representation on the Operating Principle of Dye 48 Sensitized Solar Cell (Sengupta et al., 2016)
 - 2.12 HRTEM Images of The (a) Layers of Graphene Nanosheets and (b) 50 Folded in GO (Liu et al., 2015)
 - 2.13 Micro-Raman Spectra of GO and rGO (Kim et al., 2014)

52

C	05-4506832 2.14	Micro-Raman Spectra of ZnO NRs (Marie et al., 2015)	ptbupsi 53
	2.15	Schematic Diagram of Bragg's Diffraction at Atomic Distance (d) and Incident Beam (θ) (Fultz & Howe, 2013)	56
	2.16	The Schematic Diagram of Four-Point Probe Measurement on the Substrate	57
	2.17	Current-Voltage (J-V) Curves of ZnO with Various Thickness in DSSCs Application (Chandiran et al., 2014)	62
	2.18	EIS Nyquist Spectra of The Quasi-Solid-State DSSCs Application, Inset (top) Is The Equivalent Circuit Model (Tao et al., 2015)	63
	2.19	CV Curve of PEDOT-PSS, Pt and Mangosteen Peel Carbon (MPC) as CE in DSSCs with Scan Rate 20 mV/s (Maiaugree et al., 2015)	64
	2.20	CV Curve of PtMo Alloy as CE In DSSCs at Various Scan Rates (Zhang et al., 2015)	65
	3.1	Flowchart of Cleaning Procedures for FTO Substrates	69
	3.2	Spin Coating Technique of MgZnO onto FTO Substrates by Using Spin Coater Laurell-WS-400BZ-GNPP/A1/AR1	71
C	05-4506832 3.3	Water Bath (Memmert, Operate at 230 V, 50-60 Hz and 2000 W) Used in Order to Synthesize ZnO NRs and ZnO NWRs Using Sol-Gel Immersion Method	ptbupsi 73
	3.4	Schematic of Sol-Gel Immersion Method Used in Order to Grow ZnO NRs and NWRs.	76
	3.5	Squeegee Method Process Used in Order to Fabricate ZnO NRs/TiO ₂ and ZnO NWRs/TiO ₂ Bilayer	77
	3.6	Synthesis of TC14-GO and SDS-GO via Electrochemical Exfoliation Method	79
	3.7	Schematic Diagram of Reduction Process of TC14- and SDS-GO Used in Order to Produce TC14- and SDS-rGO Solution	80
	3.8	The Reduction Process of TC14- and SDS-GO Used in Order to Produce TC14- and SDS-rGO Solution	81
	3.9	The Schematic Diagram of Transfer Process of TC14-GO, TC14-rGO, SDS-rGO and TC14-rGO/CNTs Hybrid on the FTO Substrates via Spray Coating Method	82

O5-4506832 Spustaka.upsi.edu.my Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

PustakaTBainun ptbupsi

- 05-4506832
 3.10 The TC14-GO, TC14-rGO, SDS-rGO and TC14-rGO/CNTs Hybrid
 Sprayed on the FTO Substrates via Spray Coating Method
 - 3.11 Sputter Coater Instrument (Quorum Q150R S) Used To Coat Pt and 84 TC14-rGO/Pt Hybrid as GO-based CE
 - 3.12 Illustration of ZnO-based Photoanode and GO-based CE in DSSCs 85 Application
 - 3.13 Immersion Process of ZnO-based Photoanode in N719 Dye for 24 86 Hours
 - 3.14 Measurement Process of ZnO-based Photoanode and GO-based CE in 87 DSSCs Measurement via Solar Simulator
 - 3.15 FESEM (Hitachi SU8020) and EDX (Horiba EMAX) Instruments 89 Were Used in Order to Investigate the Morphology and Elemental Compositions of the ZnO NRs (4h)/TiO₂ Bilayer, ZnO NRs (4h)/TC14-rGO/TiO₂, ZnO NRs (4h)/SDS-rGO/TiO₂, ZnO NRs (8h)/TC14-rGO/TiO₂, ZnO NRs (8h)/SDS-rGO/TiO₂, ZnO NWRs (12h)/TiO₂ Bilayer, ZnO NWRs (24h)/TiO₂ Bilayer, TC14-GO, TC14-rGO, SDS-rGO, Pt, TC14-rGO/Pt Hybrid, TC14-rGO/CNTs Hybrid and TC14-rGO/CNTs/Pt Hybrid
- of the TC14-GO, TC14-rGO and SDS-rGO
 - 3.17 Micro-Raman Spectroscopy (Renishaw InVia) Used in Order to 92 Characterize the Crystallinity of the ZnO NRs (4h), TC14-GO, TC14rGO, SDS-rGO and TC14-rGO/Pt Hybrid
 - 3.18 Micro-Raman Spectroscopy (Horiba Scientific) Used in Order to 92 Characterize the Crystallinity of ZnO NRs (4h)/TC14-rGO, ZnO NRs (4h)/SDS-rGO, ZnO NRs (8h), ZnO NRs (8h)/TC14-rGO, ZnO NRs (8h)/SDS-rGO, ZnO NWRs (12h), ZnO NWRs (24h), TC14rGO/CNTs Hybrid and TC14-rGO/CNTs/Pt Hybrid
 - 3.19 XRD (D8 Advance) Measurement Utilized in Order to Identify the 94 Crystallinity of ZnO NRs (4h), ZnO NRs (4h)/TiO₂ Bilayer, ZnO NRs (8h), ZnO NRs (8h)/TiO₂ Bilayer, ZnO NWRs (12h), ZnO NWRs (12h)/TiO₂ Bilayer, ZnO NWRs (24h) and ZnO NWRs (24h)/TiO₂ Bilayer
 - 3.20 Four-Point Probe (Keithley 2636A) Equipment Utilized in Order to 95 Measure the Electrical Properties of ZnO NRs (4h), ZnO NRs (4h)/TC14-rGO, ZnO NRs (4h)/SDS-rGO, ZnO NRs (8h), ZnO NRs (8h)/TC14-rGO, ZnO NRs (8h)/SDS-rGO, ZnO NWRs (12h), ZnO NWRs (24h), TC14-GO, TC14-rGO, SDS-rGO, Pt, TC14-rGO/Pt Hybrid, TC14-rGO/CNTs Hybrid and TC14-rGO/CNTs/Pt Hybrid

f

05-4506832

C.

pustaka.upsi.edu.my

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

🤇 PustakaTBainun

ptbupsi

	05-450683 3.21	¹² UV-Vis Spectroscopy (Cary 60) Used in Order to Investigate the Optical Properties of ZnO-based Photoanode Materials (ZnO NRs (4h), ZnO NRs (4h)/TC14-rGO, ZnO NRs (4h)/SDS-rGO, ZnO NRs (4h)/TC14-rGO/TiO ₂ , ZnO NRs (4h)/SDS-rGO/TiO ₂ , ZnO NRs (4h)/TC14-rGO, ZnO NRs (8h), ZnO NRs (8h)/SDS-rGO, ZnO NRs (4h)/TC14-rGO, ZnO NRs (8h), ZnO NRs (8h)/SDS-rGO, ZnO NRs (8h)/SDS-rGO, ZnO NRs (8h)/SDS-rGO, ZnO NRs (8h)/TC14-rGO/TiO ₂ , NRs (8h)/SDS-rGO/TiO ₂ , ZnO NRs (2h), ZnO NWRs (12h)/TiO ₂ Bilayer, ZnO NWRs (24h)/TiO ₂ Bilayer) and GO-based CE Materials (TC14-GO, TC14-rGO, SDS-rGO, Pt, TC14-rGO/Pt Hybrid, TC14-rGO/CNTs Hybrid and TC14-rGO/CNTs/Pt Hybrid)	97
	3.22	Solar Simulator (Oriel Sol1A) Instrument Used in Order to Measure Energy Conversion Efficiency in DSSCs Application	98
	3.23	EIS Instrument Used in Order to Determine the Charge Transfer Resistance and Interfacial Capacitances in DSSCs Application	99
	3.24	CV Instrument Used in Order to Determine the Electrochemical Properties in DSSCs Application	100
	3.25	Flow Chart of Research Methodology of this Study	103
	4.1	(a) FESEM Image of MgZnO Seeded Catalyst, (b)-(c) FESEM Images and (d) EDX Analysis of ZnO NRs (4h), and (e)-(f) FESEM Images and (g) EDX Analysis of ZnO NRs (8h)nku Bainun	108 othuosi
G	4.2	FESEM Images with EDX Analysis of (a)-(c) ZnO NWRs (12h) and (d)-(f) ZnO NWRs (24h)	110
	4.3	FESEM Images with EDX Analysis of (a)-(b) ZnO NRs (4h)/TC14- rGO, (c)-(d) ZnO NRs (4h)/SDS-rGO, (e)-(f) ZnO NRs (8h)/TC14- rGO and (g)-(h) ZnO NRs (8h)/SDS-rGO	113
	4.4	FESEM Images with EDX Analysis of (a)-(c) ZnO NRs (4h)/TiO ₂ Bilayer, (d)-(e) ZnO NRs (8h)/TiO ₂ Bilayer, (f)-(h) ZnO NWRs (12h)/TiO ₂ Bilayer and (i)-(j) ZnO NWRs (24h)/TiO ₂ Bilayer	116
	4.5	FESEM Images with EDX Analysis of (a)-(b) ZnO NRs (4h)/TC14- rGO/TiO ₂ , (c) ZnO NRs (4h)/SDS-rGO/TiO ₂ , (d)-(e) ZnO NRs (8h)/TC14-rGO/TiO ₂ and (f) ZnO NRs (8h)/SDS-rGO/TiO ₂	119
	4.6	Micro-Raman Spectra of ZnO NRs (4 and 8h) and ZnO NWRs (12 and 24h)	121
	4.7	Micro-Raman Spectra of Pure TC14- and SDS-rGO	123
	4.8	Micro-Raman Spectra of ZnO NRs (4 and 8h) Coated with TC14- and SDS-rGO	125

PustakaTBainun ptbupsi

	٠	٠
YY	1	1
1772	T	T.

C	05-450683 4.9	2 Pustaka.upsi.edu.my 2 Repustakaan Tuanku Bainun 2 Repustaka Bainun 2 Repustaka Tuanku Bainun 2 Repustaka Bainun 2 Repustaka Tuanku Bainun 2 Repustaka Bainun 2 Repustaka Tuanku Bainun 2 Repustaka Tuank	ptbupsi 127
	4.10	XRD Pattern of ZnO NRs (4 and 8h) and NWRs (12 and 24h) Coated with the TiO_2 Nanoparticles	131
	4.11	Transmittance Spectra of ZnO NRs (4 and 8h) and ZnO NWRs (12 and 24h)	135
	4.12	Band Gap Energy of (a) ZnO NRs (4h), (b) ZnO NRs (8h), (c) ZnO NWRs (12h) and (d) ZnO NWRs (24h)	137
	4.13	Transmittance Spectra of ZnO NRs (4 and 8h)/TC14-rGO and ZnO NRs (4 and 8h)/SDS-rGO	139
	4.14	Transmittance Spectra of TC14-rGO and SDS-rGO Films	139
	4.15	Band Gap Energy of (a) ZnO NRs (4h)/TC14- and SDS-rGO and (b) ZnO NRs (8h)/TC14- and SDS-rGO	140
	4.16	Transmittance Spectra of ZnO NRs (4h)/TiO ₂ and ZnO NWRs (12 and 24h)/TiO ₂ bilayer	142
	4.17	Band Gap Energy of (a) ZnO NRs (4h)/TiO ₂ , (b) ZnO NWRs (12h)/TiO ₂ and (e) ZnO NWRs (24h)/TiO ₂ Bilayer	143
C	05-450683 4.18	² Pustaka.upsi.edu.my Perpustakaan Tuanku Bainun Transmittance Spectra of ZnO NRs (4 and 8h)/TC14-rGO/TiO ₂ and ZnO NRs (4 and 8h)/SDS-rGO/TiO ₂	ptbupsi 145
	4.19	Band Gap Energy of (a) ZnO NRs (4h)/TC14-rGO/TiO ₂ and ZnO NRs (4h)/SDS-rGO/TiO ₂ and (b) ZnO NRs (8h)/TC14-rGO/TiO ₂ and ZnO NRs (8h)/SDS-rGO/TiO ₂	146
	4.20	I-V Curves of ZnO NRs (4 and 8h) and ZnO NWRs (12 and 24h)	148
	4.21	<i>I-V</i> Curves of ZnO NRs (4 and 8h)/TC14-rGO and ZnO NRs (4 and 8h)/SDS-rGO	149
	4.22	FESEM Images with EDX Analysis of (a)-(b) TC14-GO, (c)-(d) TC14-rGO, (e)-(f) SDS-rGO and (g)-(h) TC14-rGO/CNTs Hybrid CE Thin Films	153
	4.23	FESEM Images with EDX Analysis of (a)-(b) Pt, (c)-(d) TC14-rGO/Pt Hybrid and (e)-(f) TC14-rGO/CNTs/Pt Hybrid CE Thin Films	155
	4.24	HRTEM Images of (a)-(b) TC14-GO, (c)-(d) TC14-rGO and (e)-(f) SDS-rGO CE Thin Films	157
	4.25	Micro-Raman Spectra of TC14-GO, TC14-rGO, SDS-rGO and TC14-rGO/CNTs Hybrid CE Thin Films	159
C	05-4506832	2 😵 pustaka.upsi.edu.my f Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah Ӯ PustakaTBainun	ptbupsi

C	05-450683 4.26	Micro-Raman Spectra of TC14-GO/Pt and TC14-rGO/CNTs/Pt Hybrid CE Thin Films	ptbupsi 162
	4.27	UV-Vis Spectra of TC14-GO, TC14-rGO, SDS-rGO and TC14-rGO/CNTs Hybrid CE Thin Films	164
	4.28	Band Gap Energy of (a) TC14-GO, (b) TC14-rGO, (c) SDS-rGO and (d) TC14-rGO/CNTs Hybrid CE Thin Films	165
	4.29	UV-Vis Spectra of Pristine Pt, TC14-rGO/Pt Hybrid and TC14-rGO/CNTs/Pt Hybrid CE Thin Films	167
	4.30	Band Gap Energy of (a) Pt, (b) TC14-rGO/Pt Hybrid and (c) TC14-rGO/CNTs/Pt Hybrid CE Thin Films	168
	4.31	<i>I-V</i> Curves of TC14-GO, TC14-rGO, SDS-rGO and TC14-rGO/CNTs Hybrid CE Thin Films	170
	4.32	<i>I-V</i> Curves of Pristine Pt, TC14-GO/Pt Hybrid and TC14-rGO/CNTs/Pt Hybrid CE Thin Films	172
	4.33	<i>J-V</i> Curves of DSSCs with Various GO-Based CE Thin Films and ZnO NRs (4h)/TiO ₂ Bilayer Photoanode	174
C	4.34 03-450683	J-V Curves of DSSCs with Various GO-based CE and ZnO NWRs (12h)/TiO ₂ Bilayer Photoanode	180 ptoupsi
	4.35	J-V Curves of DSSCs with Various GO-based CE and ZnO NWRs $(24h)/TiO_2$ Bilayer Photoanode	183
	4.36	J-V Curves of DSSCs with Various GO-based CE and ZnO NRs (4h)/TC14-rGO/TiO ₂ Photoanode	188
	4.37	J-V Curves of DSSCs with Various GO-based CE and ZnO NRs (4h)/SDS-rGO/TiO ₂ Photoanode	191
	4.38	J-V Curves of DSSCs with Various GO-based CE and ZnO NRs (8h)/TC14-rGO/TiO ₂ Photoanode	194
	4.39	J-V Curves of DSSCs with Various GO-based CE and ZnO NRs (8h)/SDS-rGO/TiO ₂ Photoanode	196
	4.40	Nyquist Plots of DSSCs with Various GO-based CE and ZnO NWRs (24h)/TiO ₂ Bilayer Photoanode	201
	4.41	CV Curves of Iodide/Tri-iodide Redox Species for GO-based CE and ZnO NWRs (24h)/TiO ₂ Bilayer Photoanode	205

O5-4506832 Spustaka.upsi.edu.my Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

O5-4506832 Spustaka.upsi.edu.my Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

PustakaTBainun

ptbupsi

xxiv

LIST OF ABBREVIATIONS

	AlZnO	Aluminium Zinc Oxide
	AOT4	Double-Tails Sodium Bis (3,5,5-Trimethyl-1-Hexyl) Sulfosuccinate
	Au	Aurum
	CdTe	Cadmium Telluride
	CIS	Copper Indium (Gallium) Selenide
	CE	Counter Electrode
	cm	Centimetre
C	CNTs 05-4506832 <i>C-V</i> pustaka.ups	Carbon Nanotubes si.edu.my f Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah PustakaTBainun Otbupsi Cyclic Voltammetry
	CVD	Chemical Vapour Deposition
	C ₂ H ₇ NO	Mono-Ethanolamine
	$C_3H_8O_2$	2-Metoxyethanol
	D	Defect and Disorder Peak
	DC	Direct Current
	DLG	Double Layer Graphene
	DI-water	De-Ionized Water
	DMPII	1,2-Dymethyl-3-Propylimidazolium Iodide
	DSSCs	Dye Sensitized Solar Cells
	DWCNTs	Double-Walled Carbon Nanotubes
	EDX	Energy Dispersive X-Ray

05-4506832 vstaka.upsi.edu.my Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

XXV

C	05-4506832 💮 pr EIS	ustaka.upsi.edu.my f Perpustakaan Tuanku Bainun Kamatu Sultan Abdul Jali Shah Electrochemical Impedance Spectroscopy
	eV	Electron Volt
	F	Faraday
	FESEM	Field Emission Scanning Electron Microscopy
	FLG	Few Layer Graphene
	FF	Fill Factor
	FRA	Frequency Response Analyzer
	FTO	Fluorine Doped Tin Oxide
	FWHM	Full Width at Half Maximum
	G	Crystalline Graphite Peak
	GO	Graphene Oxide
	HiPCO	High-pressure Carbon Monoxide
	im ee	
C	HRTEM	ustaka.ups:High Resolution Transmission Electron Microscopy or ptbupsi
¢	HRTEM	ustaka.upsHigh Resolution Transmission Electron Microscopy or ptbupsi Hexametylenetramine
¢	HRTEM	High Resolutions Transmission Electron Microscopy of ptbupsi Hexametylenetramine Hertz
	HRTEM OF HMT HZ	High Resolution Transmission Electron Microscopy of proupsi Hexametylenetramine Hertz Current
	HRTEM CO HRTEM CO HMT Hz I ITO	High Resolution Transmission Electron Microscopy roupsi Hexametylenetramine Hertz Current Indium Tin Oxide
C	HRTEM CO HRTEM CO HMT HZ I I ITO I _D /I _G	High Resolution Transmission Electron Microscopy in the provided in the second descent of the second descent des
C	HRTEM OF HRTEM P HMT Hz I I ITO ID/IG Isc	High Resolution Transmission Electron Microscopy Corbupsi Hexametylenetramine Hertz Current Indium Tin Oxide Ratio of D and G peak Short Circuit Current
S	HRTEM CO HRTEM CO HMT HZ I I ITO I _D /I _G I _{sc} I-V	High Resolution Transmission Electron Microscopy Corrections Hexametylenetramine Hertz Current Indium Tin Oxide Ratio of D and G peak Short Circuit Current Current-Voltage
	HRTEM \bigcirc P HMT HZ I ITO I_D/I_G I_{sc} I-V Γ/Γ^{3-}	High Resolution Transmission Electron Microscopy Correct Hexametylenetramine Hertz Current Indium Tin Oxide Ratio of D and G peak Short Circuit Current Current-Voltage Dimethyl-Propyl-Benzimidiazole Iodide/Tri-Iodide
S	HRTEM \bigcirc P HMT HZ I ITO I_D/I_G I_{sc} I-V Γ/I^{3-} J_{sc}	High Resolution Transmission Electron Microscopy Correct Hexametylenetramine Hertz Current Indium Tin Oxide Ratio of D and G peak Short Circuit Current Current-Voltage Dimethyl-Propyl-Benzimidiazole Iodide/Tri-Iodide Short Circuit Current Density
	HRTEM \bigcirc P HMT HZ I ITO I_D/I_G I_{sc} I-V Γ/Γ^{3-} J_{sc} J-V	High Resolution Transmission Electron Microscopy Control to a to a second secon

xxvi

C	05-4506832 Spustaka.up	si.edu.my f Perpustakaan Tuanku Bainun Magnesium Öxide Sultan Abdul Jalil Shah
	MgZnO	Magnesium Zinc Oxide
	MLG	Many Layer Graphene
	ml	Mililitres
	Mins	Minutes
	MWCNTs	Multi-Walled Carbon Nanotubes
	Nb ₂ O ₅	Niobium Pentaoxide
	nm	Nanometer
	NRs	Nanorods
	NWRs	Nanowires
	N3	Cis-Bis(Isothi Cis Ocyanato) Bis(2,2'-Bipyridyl-4,4' Dicarboxylato) Ruthenium(II)
C	N719 05-4506832	Di Tetrabutylammonium Cis-Bis (Isothiocyanato) Bis (2,2' Bipyridyl-4,4'-Dicarboxylato) Ruthenium (II) ainun ptbupsi
	0	Oxygen
	°C	Degree Celsius
	PE-CVD	Plasma-Enhanced Chemical Vapour Deposition
	РН	Potential of Hydrogen
	PLD	Pulsed Laser Deposition
	PSS	Single-Tail Poly (Sodium 4-Styrenesulfonate)
	Pt	Platinum
	PVD	Physical Vapour Deposition
	rGO	Reduced Graphene Oxide
	rpm	Radians Per Minute
	S	Second

