

A NEW METHODOLOGY FOR EVALUATION AND BENCHMARKING OF SKIN DETECTOR BASED ON AI MODEL USING MULTI CRITERIA ANALYSIS

QAHTAN MAJEED YAS

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

ptbupsi

THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENT FOR DOCTOR OF PHILOSOPHY (ARTIFICIAL INTELLIGENCE)

FACULTY OF ART, COMPUTING & CREATIVE INDUSTRY UNIVERSITI PENDIDIKAN SULTAN IDRIS

2018

iii

ABSTRACT

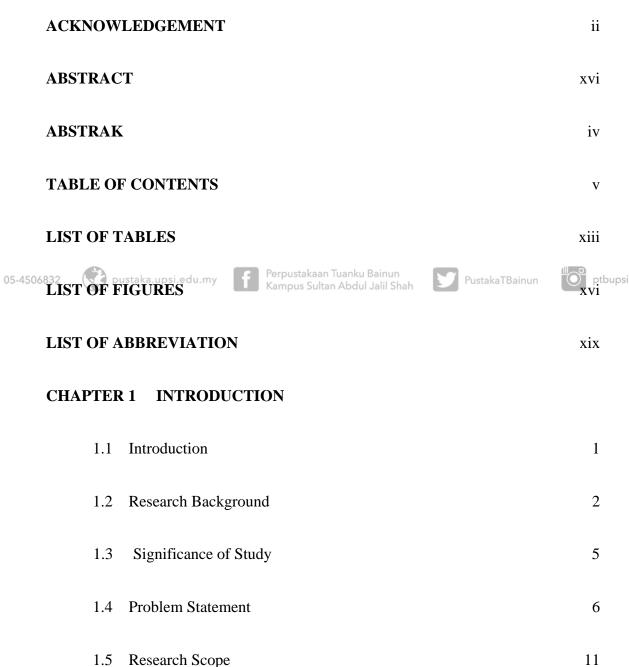
This study aims to develop a new multi-criteria decision analysis methodology for skin detector evaluation and benchmarking based on artificial intelligence models. Two experiments were conducted. The first experiment comprised two stages: (1) Adaptation of the best previous case of skin detection approach utilizes multi-agent learning based on different color spaces. This stage aimed to create a decision matrix of various color spaces, and three groups of criteria (i.e., reliability, time complexity, and error rate within dataset) to test, evaluate and benchmark the adapted skin detection approaches. (2) Performance of multiple evaluation criteria for skin detection engines, this stage included two key stages. First, the correlation between criteria to investigate their relationship and determine their degree of correlation. Second, the performance analysis of criteria to identify the factors that affect the behavior of each criterion. The second experiment utilized a new multi-criteria decision-making by adopting the integration of TOPSIS and AHP to benchmark the results of skin detection approaches. In the validation process, multi-criteria measurement was used to calculate the trade-⁰⁵⁻⁴⁵⁰⁶ off for different criteria. Color spaces assessment were conducted to determine the best^{bupsi} color spaces with adaptive skin detection engines. Moreover, mean and standard deviation values for thresholds were calculated to select the best color space. Two groups of findings were provided. First, the overall comparison of external and internal aggregation values in selecting the best color space, that is the norm RGB at the sixth threshold. Second, (1) the process proves that the distribution of color spaces with its threshold values affects the behavior of the criteria determined as a trade-off between the criteria according to their weight distribution. (2) The YIQ color space obtains the lowest value and is the worst case, whereas the norm RGB color space receives the highest value and is the most recommended. (3) The best result achieved at the threshold = 0.9. Thus, the implications of this study benefit individuals, research centers, and organizations interested in skin detection applications. Moreover, it provides benefits to software developers working in industrial companies and institutions in developing different techniques and algorithms with different applications.

iv

METODOLOGI BARU UNTUK PENILAIAN DAN PENYELESAIAN DETEKSI KULIT BERDASARKAN MODEL AI MENGGUNAKAN ANALISIS KRITERIA MULTI

ABSTRAK

Kajian ini bertujuan untuk membangunkan metodologi baharu bagi menilai dan menanda aras pengesanan kulit berdasarkan model kecedasan buatan menggunakan analisis pelbagai kriteria. Untuk tujuan ini, dua eksperimen telah dijalankan. Eksperimen pertama terdiri daripada dua peringkat: (1) Adaptasi kes terbaik terdahulu dalam mengesan kulit menggunakan pendekatan multi-agen berdasarkan ruang warna yang berbeza. Peringkat ini bertujuan untuk membuat matriks keputusan pelbagai ruang warna dan tiga kumpulan kriteria (iaitu, kebolehpercayaan, kerumitan masa, dan kadar kesilapan dalam set data) untuk menilai dan menanda aras pendekatan pengesanan kulit yang telah disesuaikan. (2) Prestasi kriteria pelbagai penilaian bagi enjin pengesanan kulit, di mana peringkat ini melibatkan dua peringkat kekunci. Pertama, korelasi antara 05-4506 kriteria untuk menyiasat hubungan dan menentukan darjah korelasi. Kedua, analisis bursi prestasi kriteria untuk mengenal pasti faktor kriteria yang mempengaruhi kelakuan setiap kriteria. Eksperimen kedua menggunakan pendekatan membuat-keputusan multi-kriteria baharu melalui integrasi antara TOPSIS dan AHP untuk menanda aras keputusan pendekatan pengesanan kulit. Di dalam proses pengesahan, pengukuran pelbagai kriteria digunakan untuk mengira keseimbangan bagi pelbagai kriteria. Penilaian ruang warna dijalankan untuk menentukan ruang warna yang terbaik dengan enjin pengesanan kulit yang telah diadaptasi. Seterusnya, nilai min dan sisihan piawai dikira untuk memilih ruang warna yang terbaik. Hasil dapatan daripada dua kumpulan adalah seperti berikut. Pertama, perbandingan keseluruhan nilai agregasi luaran dan dalaman dalam memilih ruang warna terbaik, iaitu RGB norma pada ambang keenam. Kedua, (1) proses membuktikan bahawa penagihan ruang warna dengan nilai ambangnya mempengaruhi kelakuan kriteria yang ditentukan sebagai keseimbangan antara kriteria berpandukan pengagihan berat masing-masing. (2) Ruang warna YIQ memperoleh nilai terendah dan merupakan kes terburuk, manakala ruang warna norm-RGB memperoleh nilai tertinggi dan paling disyorkan. (3) Dapatan terbaik dicapai pada ambang = 0.9. Oleh itu, implikasi kajian ini memberi manfaat kepada individu, pusat penyelidikan dan organisasi yang berminat dalam aplikasi pengesanan kulit. Kajian ini turut memberi manfaat kepada pembangun perisian yang bekerja di industri dan institusi dalam membangunkan teknik dan algoritma yang berbeza bagi aplikasi yang berbeza.



WORK

TABLE OF CONTENTS

INSTITUTE OF GRADUATE STUDIES DECLARATION OF ORIGINAL

v

i

	vi
1.6 Research Objectives	12
1.7 General View and Scope of the Research	13
1.8 Organization of Thesis	15
1.9 Chapter Summary	17
CHAPTER 2 LITERATURE REVIEW	
2.1 Introduction	19
2.2 Evaluation and Benchmarking for Skin Detector Approaches	21
2.2.1 Criteria of Evaluation	21
O5-4506832 Pr2:2:1.1Psi. Reliability Groupus Sultan Abdul Jalil Shah	25tbupsi
	24
2.2.1.1.1 Matrix of Parameters (MP) Section	26
2.2.1.1.1 Matrix of Parameters (MP) Section2.2.1.1.2 Relationship of Parameters (RP) Section	26 28
2.2.1.1.2 Relationship of Parameters (RP) Section	28
2.2.1.1.2 Relationship of Parameters (RP) Section2.2.1.1.3 Behaviour of Parameters (BP) Section	28 32
 2.2.1.1.2 Relationship of Parameters (RP) Section 2.2.1.1.3 Behaviour of Parameters (BP) Section 2.2.1.1.4 Summary of Relationships among Reliability Grou 	28 32 34

		vii
	2.2.1.3.2 Training Pattern	51
	2.3 Benchmarking Techniques/ Tools	57
	2.3.1 Data Mining Tools Group	58
	2.3.2 Computer Vision Tools Group	63
	2.4 Open Issues and Challenge for Evaluation and Benchmarking Process	71
	2.4.1 Concern for Evaluation Criteria	72
	2.4.2 Concern for Criteria Trade-off	73
	2.4.3 Concern for Criteria Importance	75
05-4506832	2.5 Theoretical Background about Multi Criteria Decision Making techniques	77tbupsi
	2.5.1 Analytical study of MCDM Techniques	79
	2.5.2 Analytic Hierarchy Process (AHP) Method	83
	2.5.3 Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method	86
	2.6 Survay of Skin Detection Models	87
	2.6.1 Parametric Skin Modelling	88
	2.6.1.1 Neural Network Method	90
	2.6.2 Non-Parametric Skin Modelling	92

	viii
2.5.2.1 Naive Bayes Classifier	94
2.5.3 Why Selected the Case Study?	96
2.6 Chapter Summary	100
CHAPTER 3 METHODOLOGY AND DESIGN OF EXPERIMENTS	
3.1 Introduction	102
3.2 Preliminary Phase	104
3.3 Identification and Performance Phase	104
3.3.1 Identification of the Decision Matrix	104
© 05-4506832 93.3.1.1 ^{ps} Development Skin Detector using Multi-Agent Learning based on AI models using different Color Spaces	905 tbupsi
3.3.1.1.1 Multi-Agent Learning Technique	105
3.3.1.1.2 Color Space Adapted	106
3.3.1.1.3 Training operation of Neural Network Model	115
3.3.1.1.4 Training operation of the Bayesian Model	116
3.3.1.1.5 Detection Step of the Skin Detector	119
3.3.1.2 Crossing between Developed Skin Detector and Different Criteria	123
3.3.1.2.1 Procedure for Computation Reliability Group Elements	125
3.3.1.2.2 Procedure Computation for Time Complexity Criterion	128

	ix
3.3.1.2.3 Error Rate Computation within Dataset Elements	130
3.3.1.3 Evaluation and Testing Skin Detector Based on Three Groups Criteria	130
3.3.2 Performance of Decision Matrix	131
3.3.2.1 Correlation between Criteria	132
3.3.2.2 Performance Analysis of Criteria	133
3.4 Development Phase	134
3.4.1 Development of Decision-making Solution for Skin Detectio Approach Based on Integrated ML-AHP&TOPSIS	n 135
3.4.2 Adaptation of ML-AHP Technique for Weight Investigation Different Evaluators	of 137
05-4506832 p.3.4.2.1 si Pairwise Comparisons for Each Criterion PustakaTBainun	138tbupsi
3.4.2.2 Design of the ML-AHP measurement Structure	141
3.4.2.3 Weight Calculation of Criteria and Validation of Consist Value	ency144
3.4.3 Utilization of the TOPSIS Method for Skin Detection Evalua and Benchmarking	tion 145
3.4.3.1 Decision Making Context	148
3.5 Validation Phase	151
3.5.1 Validity of the Multi Criteria Measurement Process	151
3.5.2 Comparison between Color Spaces	152
3.5.3 Statistical Measurement for Color Spaces	152
3.6 Chapter Summary	153

05-4506832

	х
CHAPTER 4 MULTI CRITERIA ANALYSIS AND COMPARISON	
4.1 Background	155
4.2 Results of the Proposed Decision Matrix	156
4.3 Correlation Coefficient	161
4.3.1 Correlation Measurement of the Criteria	161
4.3.1.1 Correlation Analysis in Layer 1	163
4.3.1.2 Correlation Analysis in Layer 2	164
4.3.1.3 Correlation Analysis in Layer 3	167
4.3.1.4 Summery	171
4.4 Performance Analysis of Criteria	171
05-4506832 OS-4506832 Pustaka.upsi.edu.my F Perpustakaan Tuanku Bainun 4.4.1 Reliability Group ^{Kam} pus Sultan Abdul Jalil Shah	72 ^{tbupsi}
4.4.1.1 Matrix of Parameters	172
4.4.1.2 Relationshep of Parameters	179
4.4.1.3 Behavior of Parameters	186
4.4.2 Time Complexity Criterion	189
4.4.3 Error Rate within Dataset	191
4.4.4 Summary	193
4.5 Chapter Summery	194

CHAPTER 5 **RESULTS AND DISCUSSION**

5.1 Introduction	196
------------------	-----

	٠	
v	1	

	X1
5.2 Multi-Layer Weight Measurement using AHP	197
5.3 TOPSIS Performance based on Different Evaluator's Weights	199
5.4 Group TOPSIS with Internal and External Aggregation	214
5.5 Chapter Summary	217
CHAPTER 6 VALIDATION AND COMPARISON	
6.1 Introduction	219
6.2 Validity of the Multi Criteria Measurement Process	220
6.2.1 Discussion and Evaluation Trade-off for Multi Criteria Measurment	221
6.2.1.1 Scenario Tradeoff for the Reliability Group	222
O 05-4506832 O pusta 6.2,1,1,1, Employment of Paired Sample Test of Scenario Reliability Group	224tbupsi
6.2.1.2 Scenario Tradeoff of the Time Complexity Group	226
6.2.1.2.1 Employment of Paired SampleTest of Scenario Time Complexity Group	e 228
6.2.1.3 Scenario Tradeoff of Error Rate Group	230
6.2.1.3.1 Employment of Paired Sample Test of Scenario Error Rate Group	r .232
6.2.1.4 Summary of Scenarios	234
6.3 Color Spaces Measurement	235
6.4 Threshold Measurements	237
6.5 Chapter Summary	239

CHAPTER 7 CONCLUSIONS AND FUTURE WORK

		xii
7.1	Introduction	240
7.2	Conclusions	241
7.3	Research Limitation and Issues	242
7.4	Future work	244
REFEREN	CES	247
LIST OF P	UBLICATION	271

APPENDIXES

🕓 05-4506832 🔮 pustaka.upsi.edu.my

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

PustakaTBainun

xiii

LIST OF TABLES

Table I	No.	Page
2.1	Literature review of evaluation criteria.	23
2.2	Confusion Matrix	27
2.3	Reliability Group for Skin Detection Approach	38
2.4	Time Complexity group for Skin Detection Approaches	44
2.5	Error Rate within Dataset Group for Skin Detection Approach	52
2.6	Summary of Weaknesses of the Tools	67
2.7	Trade-off Problem in the Academic Literature	75
2.8	Example of Multi-Criteria problem	79
05-450682.9	Diterature Survey for Various studies in Skin Detection Domain	96 ^{tbupsi}
3.1	Establishment of the Decision Matrix	124
3.2	Sample Pairwise Comparison Matrix	139
3.3	Intensity Scale of Criteria	141
3.4	Random Index (Saaty, T.L and Ozdemir, M.S.2003)	145
4.1	Implementation of the Decision Matrix	158
4.2	Comparison of Reliability, Time Complexity, and Error Rate Criteria	163
4.3	Comparison among Matrix of Parameters, Relationship of Parameters, and Behavior of Parameter Sub-Criteria	165
4.4	Comparison Training and Validation Sub-Criteria	166
4.5	Comparison among TP, FP, TN, and FN Sub-Sub-Criteria	167
4.6	Comparison of Accuracy, Precision, Recall and Specificity Sub-Sub -Criteria	169

4.7

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

pustaka.upsi.edu.my

05-4506832

1.1	
	PustakaTBainun

5.1	ML-AHP measurement for Weights Preferences	199
5.2	First Evaluator Result to Evaluate and Benchmark for Different Color Space Algorithm	201
5.3	Second Evaluator Result to Evaluate and Benchmark for Different Color Space Algorithms	203
5.4	Third Evaluator Result to Evaluate and Benchmark for Different Color Space Algorithms	205
5.5	Fourth Evaluator Result to Evaluate and Benchmark for Different Color Space Algorithms	207
5.6	Fifth Evaluator Result to Evaluate and Benchmark for Different Color Space Algorithms	209
5.7	Sixth evaluator Result to Evaluate and Benchmark for Different Color Space Algorithms	211
) 05-4506835.8	Group Decision-maker of TOPSIS method with Internal and External Aggregations	215 ^{tbupsi}
6.1	Implementing Numerical Sequence Process for Reliability Criterion	222
6.2	P-value for Different Weights of the Reliability Criterion	224
6.3	Results of the Correlation between Different Weights for Reliability Criterion	225
6.4	Implementing Numerical Sequence Process for Time Complexity Criterion	226
6.5	P-value for Different Weights of the Time Complexity Criterion	228
6.6	Results of the Correlation between Different Weights for Time Complexity Criterion	229

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

Comparison between F-measure and G-measure Sub-Sub-Criteria

6.7 Implementation of Multi Criteria Measurements in Error Rate 230 Criterion

ptbupsi

 \mathbf{O}

PustakaTBainun

170

XV

6.8	P-value for Different Weights of the Error Rate Criterion	232
6.9	Results of the Correlation between Different Weights for Error Rate Criterion	233
6.10	Mean and Stander Division for Threshold values	238

O5-4506832 😵 pustaka.upsi.edu.my

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

PustakaTBainun

ptbupsi

05-4506832

I.	Bainun	
.1	Jalil Shah	- E .

LIST OF FIGURES

No. Fi	gures	page
1.1	Significance of Study	6
1.2	Research Problem and Gap	8
1.3	Magic triangle of skin detection requirement	9
1.4	General View of the Research	14
2.1	Taxonomy for Chapter Direction of the Research	20
2.2	Sections Reliability Group	37
2.3	Time Complexity process for Skin Segmentation	44
2.4	Presentation of the Example in Table (2.8)	79
2.5	Initial Decision in the Hierarchical Structure	84
05-4506832.1	Research Methodology of Design Phases inun PustakaTBainun	103tbupsi
3.2	Multi-Agent Learning of Skin Detection	106
3.3	Development of Case Study using Different Color Spaces	114
3.4	Training Process of the Bayesian Model (Zaidan, A.A.et al. 2014b)	117
3.5	Skin Segmentation and Detection Processes	120
3.6	Matching Process for Different Objects	127
3.7	Procedure of Time Complexity	129
3.8	New Methodology for Skin Detector	134
3.9	Integration of ML-AHP and TOPSIS methods for Skin Detection Approaches	136
3.10	AHP method based on Multi-Layer Structure	138
3.11	Pairwise Answer from Evaluators	140
3.12	ML-AHP Steps Used to Account for Multi-layer Matrix	143

~ ~ ~

xvi

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

			xvii
	3.13	Group Decision Maker Process	149
	3.14	Individual Decision Maker Process	150
	4.1	Overview of the Results and Evaluation of Different Criteria	156
	4.2	Taxonomy of Criteria Distribution into Three Layers	162
	4.3	Behavior of True Negative Criterion with Different Colors	173
	4.4	Behavior of the True Positive Criterion with Different Color Spaces	174
	4.5	Behavior of the False Positive Criterion with Different Color Spaces	176
	4.6	Behavior of the False Negative Criterion with Different Color Spaces	178
	4.7	Behavior of the Accuracy Criterion with Different Color Spaces	180
	4.8	Behavior of the Recall Criterion with Different Color Spaces	182
	4.9	Behavior of the Precision Criterion with Different Color Spaces	184
05-4506	4.10	Behavior of the Specificity Criterion with Different Color Spaces	185 ptbupsi
0	4.11	Behavior of the F-measure Criterion with Different Color Spaces	187
	4.12	Behavior of the G-measure Criterion with Different Color Spaces	189
	4.13	Behavior of the Time Complexity Criterion with Different Color Spaces	190
	4.14	Behavior of the Error Rate of Validation Criterion with Different Color Spaces	191
	4.15	Behavior of the Error Rate of Training Criterion with Different Color Spaces	192
	5.1	Overview of Results and Evaluation of the skin detector	197
	5.2	Virtualize Ranking for Six Evaluators	213
	5.3	Internal and External Aggregation Ranking	217
	6.1	Overview of the Design and Implementation of the validation process	220

xviii

6.2	Trade-off Scenario for Reliability Group in Comparison with Other groups	223
6.3	Trade-off Scenario for Time Complexity Group in Comparison with Other groups	227
6.4	Tradeoff Scenario for Error Rate Group in Comparison with Other groups	231
6.5	Color Space Measurement	235

O5-4506832 😵 pustaka.upsi.edu.my

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

PustakaTBainun

ptbupsi

xix

LIST OF ABBREVIATION

Perpustakaan Tuanku Bainun

ANN Artificial Neural Network

pustaka.upsi.edu.my

05-4506832

- AHP **Analytic Hierarchy Process**
- ANP Analytic Network Process
- CPU **Central Processing Unit**
- CIE Commission International de L'Eclairage
- CR **Consistency Ratio**
- DM **Decision Matrix**
- EM **Evaluation Matrix**

FP

FN

GH

05-4506832

False Positive pustaka.upsi.edu.my

Grouping Histogram

False Negative

Perpustakaan Tuanku Bainun . Kampus Sultan Abdul Jalil Shah PustakaTBainun

- GDM Group Decision Making
- HAW Hierarchical Adaptive Weighting
- IT Information Technology
- **KNIME** Konstanz Information Miner
- **KEEL** Knowledge Extraction based on Evolutionary Learning
- LUT Lookup Table
- **MCDM** Multi- Criteria Decision Making
- MADM Multi- Attribute Decision Making
- **MCDA** Multi-Criteria Decision Analysis

05-4506832

XX

MEW	Multiplicative Exponential Weighting
RI	Random Index
SVM	Support Vector Machine
SAN	Segment Adjacent-Nested
SAW	Simple Additive Weighting
TP	True Positive
TN	True Negative
TOPSIS	Technique for Order Preference by Similarity to Ideal Solution
WEKA	Waikato Environment for Knowledge Analysis
WSM	Weighted Sum Model

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

PustakaTBainun

CHAPTER 1

INTRODUCTION

1.1 Introduction

This chapter introduces the research direction, research background, and a statement 05-4506 of the problem. This chapter also presents the ambitions, motivations, and objectivestoupsi of this research are also presented.

Section 1.2 presents a brief background of the research components. Section 1.3 introduces the statement of the problem, which is the basis of the research direction. Section 1.4 discusses the scope of the research. Section 1.5 describes the research objectives. Section 1.6 presents a general view of the research. Finally, Section 1.7 briefly outlines the main structure of the research.

1.2 Research Background

Decades ago, the skin detection approach has been considered an important platform for various fields, such as medical and several scientific disciplines (L. Huang et al. 2015). In other words, skin detection has gained an important function in a wide range of image or video processes for various applications. A few factors that directly impact skin appearance include illumination, background, camera characteristics, and ethnicity (Kakumanu, Makrogiannis, and Bourbakis 2007). Elgammal, Muang, and Hu (2009) defined the skin detection approach as a process of finding skin-colored pixels and regions in an image or a video into a specific region. This process is typically used as a preprocessing step to finding regions in images that potentially detect the human face and limbs. The skin detection approach includes various 05-4506832 🚺 pustaka.upsi.edu.my ptbupsi PustakaTBainun applications, such as face detection, (Zhipeng, C., Junda, H., & Wenbin 2010), face tracking (Tsai 2012), gesture analysis (Hussain, I., Talukdar, A. K., & Sarma 2014), Internet pornographic image filtering (Lee, Kuo, and Chung 2010), surveillance systems (Zui Zhang 2009), content-based image retrieval systems (Patil, C. G., Kolte, M. T., Chatur, P. N., & Chaudhari 2014), and various human-computer interaction domains (Hollender et al. 2010). The most practical and effective techniques are used in developing skin detector artificial intelligence (AI) algorithms according to the literature on skin detection for skin pixel and non-skin pixel features based on color features. On the contrary, many researchers have applied hybrid algorithms in AI models (Singh Sisodia and Verma 2011; (Shruthi, M. L. J., & Harsha 2013; Zaidan et al. 2014b). However, with the current rapid development of the skin detection approach in various applications, finding an evaluation and benchmarking

ptbupsi

methodology that is reliable, effective, and comprehensive has become critical (Jones and Rehg 1999; Phung, Bouzerdoum, and Chai, D. 2005; Gamage, Akmeliawati, and Chow 2009; Taqa and Jalab 2010a).

Considering the basic criteria evaluation of reliability, time complexity, and error rate within the dataset in the design of any skin detector application, (Jones and Rehg (1999) adapted three criteria, namely reliability, computational cost, and error rate of skin detection. In one of the earliest works that highlight the problem of skin detection evaluation and benchmarking, three general requirements for the skin detection approach are reported: adapted reliability (i.e., the obtained skin detection rate and false positives) and datasets (i.e., the obtained equal error rate comparison of

AI models) with less time-consuming requirements to process web images. 05-4506832 pustaka.upsi.edu.my

Despite the importance of the remaining criteria, Phung, Bouzerdoum, and Chai, D. (2005) highlighted the dataset criterion by comparing two algorithms. The dataset is represented by training and testing for skin and non-skin pixels for skin segmentation images. However, the output images created through a classifier are compared pixel-wise with the ground truth of skin segmentation. Gamage, Akmeliawati, and Chow (2009) reported a skin detection algorithm that has been tested with images through independent databases. They investigated the size of the image, which has a significant impact on time complexity. Thus, they proved that increasing image size leads to low accuracy than increase time complexity of the experiment. Finally, Taqa and Jalab (2010a) stated that reliability is a prerequisite for

skin detection evaluation. They highlighted a reliability criterion based on accuracy, precision, and recall of the image color despite the importance of the remaining criteria. However, the quality assessment of skin detection requires attention.

Consequently, two key problems are encountered by skin detection developers. One is the evaluation of skin detection approaches based on the abovementioned evaluation criteria and benchmark new skin detection approach versus existing approaches. Therefore, the evaluation and benchmarking process need to consider these requirements. Despite the tradeoff among various criteria, (Jones and Rehg (1999); Phung, Bouzerdoum, and Chai, D. (2005); Gamage, Akmeliawati, and Chow (2009); Taqa and Jalab (2010a) have adopted each of the proposed criteria.

They attempted to evaluate the reliability criterion for a given time complexity based pustaka.upsi.edu.my of propustakan badulahi Shah on different datasets. However, the term "reliability" is unclearly defined in the literature. According to the preceding studies mentioned, the percentage of reliability varies depending on different adapted algorithms and thus exhibit an inconsistent level. Meanwhile, Fernandes, Cavalcanti, and Ren (2013) reported time complexity variation between the algorithms, which depend on the CPU time. Consequently, the processing time of an image is affected, but this aspect is excluded in the scope of the present research. Therefore, the calculation should be the highest percentage of reliability compared with the lowest time complexity of the output image. Kawulok (2013) mentioned that the dataset can be divided into two classes, namely training and validation data, to find the minimum detection error. In general, all these studies have

proven the evaluation and benchmarking process of each of these criteria based on independent guidelines.

Therefore, conducting further investigations and developing a clear methodology for testing, evaluation, and benchmarking are necessary to standardize basic and advanced requirements for the skin detection approach. Redefining the problem of evaluation and benchmarking need is also necessary. Moreover, the new evaluation methodology must be flexible to handle the conflicting criteria problem and must have the capability to maintain the current criteria.

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

The evaluation and benchmarking of skin detection approaches are important areas for many researchers and organizations interested in their applications. Many individuals and organizations are interested in the applications of skin detection approaches, such as researchers working in scientific research centers, developers working in industrial companies and institutions, and graduate students enrolled in schools that develop various applications of skin detection approaches. Thus, the importance of the study is the development of multiple applications of skin detection approaches, including face detection, face tracking, gesture analysis, Internet pornographic image filtering, surveillance systems, content-based image retrieval systems, and various human-computer interaction domains. Moreover, this study

