







#### THE DEVELOPMENT OF A WIRELESS MOBILE RFID READER SYSTEM FOR REAL-TIME TRACKING BASED ON EMBEDDED ARCHITECTURE

# SITI NORAINAH BINTI SEMUNAB



pustaka.upsi.edu.my

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah



ptbupsi

THESIS SUBMITTED IN FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER OF SCIENCE (COMPUTER AIDED DESIGN TECGHNOLOGY) (MASTER BY RESEARCH)

## FACULTY OF ART, COMPUTING AND CREATIVE INDUSTRY UNIVERSITI PENDIDIKAN SULTAN IDRIS











#### ABSTRACT

The aims of the study is to develop a system that able to overcome the limitations of keeping track inventories on the manufacturing plant. The proposed system is named Wireless Mobile RFID Reader (WiBRED) in order to improve the accuracy and traceability of materials in the industrial warehouse management process. This novel system was developed based on the Waterfall model involving the integration of active and passive Radio Frequency Identification (RFID) and IOIO is a board specially designed to work with Android 1.5 and later device to support wireless communication over a smart phone running on Android operating system. This system was implemented in a Wireless Mesh Network (WMN) environment in which its performance was assessed in terms of maximum read range for indoor environment, multi tags communication efficiency, power consumption, and tag collection time. The findings of the assessment showed that maximum read range reach up to 3.5meter for passive wireless communication and 74meter for active wireless communication. Multi tags communication efficiency resulted more than 75% of data received. The duration of tags collection time for 25 tags is 192.5millisecond and the power consumption is 96.611milliampere. Conclusion, WiBRED is capable in improving the monitoring of warehouse management and control the material flow in the manufacturing industry when combining passive 05-4506 RFID and active RFID connected to Android smart phone and can perform in WMN platform. The implications of the findings suggest that this system can be used to improve existing practice of material flow monitoring of manufacturing processes through greater flexibility and mobility in eliminating errors and non-productive labor and delays caused by repetitive re-keying production data.







upsi





#### PEMBANGUNAN SENI BINA TERTANAM RFID AKTIF MUDAH ALIH TANPA WAYAR UNTUK SISTEM PENGESANAN MASA NYATA

#### **ABSTRAK**

Tujuan kajian ini adalah untuk membangunkan satu sistem yang dapat mengatasi batasan penyimpanan inventori di kilang pembuatan. Sistem yang dicadangkan ini dinamakan Wireless RFID Reader (WiBRED) adalah untuk meningkatkan ketepatan dan kebolehkesanan bahan dalam proses pengurusan gudang industri. Keaslian sistem ini dibangunkan berdasarkan model Air Terjun yang melibatkan gabungan Radio Frequency Identification (RFID) aktif dan RFID pasif yang tertanam dengan peranti IOIO di mana IOIO adalah papan yang direka khas untuk bekerja dengan peranti Android 1.5 dan ke atas untuk menyokong komunikasi tanpa wayar dengan telefon pintar Android. Sistem ini dilaksanakan dalam persekitaran Wireless Mesh Network (WMN) iaitu prestasinya dinilai dari segi julat bacaan maksimum untuk persekitaran tertutup, kecekapan komunikasi multi tag, anggaran penggunaan kuasa litar sistem dan masa pengumpulan tag yang dicadangkan. Keputusan penilaian menunjukkan bahawa julat bacaan maksimum adalah mencapai 3.5meter untuk komunikasi tanpa wayar pasif, manakala 74meter untuk komunikasi tanpa wayar aktif. Kecekapan 05-4506 komunikasi pelbagai tag menghasilkan lebih daripada 75% data yang diterima. bupsi Tempoh masa pengumpulan tag untuk 25 tag adalah 192.5 milisaat dan penggunaan kuasa adalah 96.611 miliampere. Kesimpulannya, WiBRED mampu meningkatkan pemantauan pengurusan gudang dan mengawal aliran bahan dalam industri perkilangan apabila menggabungkan RFID pasif dan RFID aktif yang boleh disambungkan ke telefon pintar Android dan boleh dilakukan di platfom WMN. Implikasi dari penemuan ini menunjukkan bahawa sistem WIBRED ini boleh digunakan untuk menambahbaik pemantauan aliran bahan yang sedia ada di dalam proses pembuatan kerana sistem *WIBRED* yang lebih fleksibel dan mudah alih dalam menghapuskan kesilapan buruh dan kelewatan yang tidak produktif yang disebabkan oleh data pengeluaran yang berulang.











E

vii

## **TABLE OF CONTENTS**

|      |                                                                                                                             | Pages           |
|------|-----------------------------------------------------------------------------------------------------------------------------|-----------------|
| ]    | DECLARATION OF ORIGINAL WORK                                                                                                | ii              |
| ]    | DECLARATION OF DISSERTATION                                                                                                 | iii             |
| L    | ACKNOWLEDGMENTS                                                                                                             | iv              |
| 1    | ABSTRACT                                                                                                                    | V               |
| 1    | ABSTRAK                                                                                                                     | vi              |
| r    | TABLE OF CONTENTS                                                                                                           | vii             |
| 05-2 | LIST OF TABLES<br>4506832 pustaka.upsi.edu.my f Perpustakaan Tuanku Bainun<br>Kampus Sultan Abdul Jalil Shah PustakaTBainun | xiii<br>ptbupsi |
| ]    | LIST OF FIGURES                                                                                                             | XV              |
| ]    | LIST OF ABBREVIATIONS                                                                                                       | xix             |
| ]    | LIST OF APPENDIXES                                                                                                          | xxii            |
|      |                                                                                                                             |                 |
|      | CHAPTER 1 INTRODUCTION                                                                                                      |                 |
|      | 1.1 Background Research                                                                                                     | 1               |

| 1.2 Problem Statement   | 4 |
|-------------------------|---|
| 1.3 Research Questions  | 7 |
| 1.4 Research Objectives | 7 |
| 1.5 Research Motivation | 8 |





1.6 Research Contributions 10 **CHAPTER 2 LITERATURE REVIEW** 2.1 Research Background 11 2.2 Overview of Embedded System 13 2.3 Introduction of RFID 15 15 2.3.1 History of RFID 2.3.2 RFID System 17 17 2.3.2.1 RFID Tag 21 2.3.2.2 RFID Reader Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah 05-4506832 pustaka.upsi.edu.my PustakaTBainun ptbupsi 2.3.2.3 Host Computer 21 2.4 Wireless Communication 22 23 2.4.1 Wi-Fi Technology 2.4.1.1 Wi-Fi Architecture 25 2.4.2 Bluetooth 26 2.4.2.1 Bluetooth Connections 28 2.4.3 Zigbee 30 32 2.4.3.1 Zigbee Architecture 33 2.4.3.2 Zigbee Topologies 2.4.4 Comparison of Wireless Communication 35



2.5 IOIO OTG Board

2.5.1 USB OTG

2.6.1 Symbian

2.6.2 Blackberry

2.6.3 Windows Phone

2.6 Mobile Device Operating System

2.6.3.1 Windows Phone Architecture

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah



2.6.1.1 Symbian OS Architecture

2.6.2.1 BlackBerry OS Architecture

#### **CHAPTER 3 DESIGN AND DEVELOPMENT**

36

39

43

44

45

48

49

51

52

PustakaTBainun

ix



O5-4506832 Og pustaka.upsi.edu.my Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

| 3.3 Hardware Development Design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 74                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| 3.3.1 Phase 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 79                    |
| 3.3.1.1 IOIO-OTG with Smart Phone Integration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 81                    |
| 3.3.2 Phase 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 86                    |
| 3.3.2.1 Passive Reader                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 87                    |
| 3.3.3 Phase 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 89                    |
| 3.3.3.1 Relay Controller                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 90                    |
| 3.4 Software Design and Development                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |
| 3.4.1 Phase 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 97                    |
| 3.4.2 Phase 2<br>05-4506832  vertical and the second state of the se | 101<br>Ptbupsi<br>101 |
| 3.4.2.2 Thread                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 105                   |
| 3.4.3 Phase 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 106                   |
| 3.4.3.1 Decoding Message                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 110                   |
| 3.4.4 Phase 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 112                   |
| 3.4.4.1 WiBRED Application Layout                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 113                   |
| 3.5 Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 119                   |



# **CHAPTER 4 RESULTS AND DISCUSSIONS**

|            | 4.1 Overview                                                               | 120         |
|------------|----------------------------------------------------------------------------|-------------|
|            | 4.2 Application Interface Setup                                            |             |
|            | 4.3 Anti-Collision Test                                                    | 123         |
|            | 4.3.1 Stationary Mode                                                      | 125         |
|            | 4.3.2 Mobile Mode                                                          | 127         |
|            | 4.4 Comparison of Results of the Anti-Collision Test                       | 128         |
|            | 4.5 Maximum Read Range Measurement                                         | 130         |
| 05-4506832 | 4.5.1 Stationary Mode                                                      | 131         |
|            | 4.5.2 Mobile Mode                                                          | 132         |
|            | 2 pustaka.upsi.edu.my<br>4.5.3 Comparison of Station and Mobile Read Range | 133 ptbupsi |
|            | 4.6 Wireless Mesh Network Test                                             |             |
|            | 4.7 Tags Collection Time                                                   | 137         |
|            | 4.8 Energy Analysis                                                        | 139         |
|            | 4.8.1 Calculated Current Consumption                                       | 142         |
|            | 4.8.2 Measured Current Consumption                                         | 145         |
|            | 4.8.3 Rechargeable Battery Lifetime Estimation                             | 146         |
|            | 4.9 Comparison of WiBRED with Existing Systems                             | 146         |
|            | 4.10 Summary                                                               | 148         |



O5-4506832 Sustaka.upsi.edu.my Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah



### **CHAPTER 5 CONCLUSION AND FUTURE WORK**

| 5.2 Future Work | 153 |
|-----------------|-----|
| 5.1 Conclusion  | 151 |

#### **APPENDICESS**





PustakaTBainun ptbupsi









E



## LIST OF TABLES

| Table No.                |                                                                                                                                                                   | Pages               |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| 2.1                      | The Milestone in the Development of RFID Technology                                                                                                               | 16                  |
| 2.2                      | Differences among the four types of RFID tags                                                                                                                     | 19                  |
| 2.3                      | Frequencies and Data Rates of Zigbee of the Technology                                                                                                            | 32                  |
| 2.4                      | Comparison of Wireless Sensor Network Technologies                                                                                                                | 35                  |
| 2.5                      | USB Connector                                                                                                                                                     | 40                  |
| 2.6                      | Description of USB Pins                                                                                                                                           | 41                  |
| 2.7<br>05-4506832<br>2.8 | The Comparison of Mobile Operating Systems<br>Perpustakaan Tuanku Bainun<br>Kampus Sultan Abdul Jalil Shah<br>Supply Chain Management Processes and RFID Benefits | 61<br>ptbupsi<br>66 |
| 3.1                      | Specifications of the Key Components                                                                                                                              | 70                  |
| 3.2                      | Java Classes                                                                                                                                                      | 101                 |
| 3.3                      | The Details of The ID Channel                                                                                                                                     | 107                 |
| 3.4                      | The Descriptions of The Packet Message                                                                                                                            | 110                 |
| 3.5                      | The Sample Data Stored in The Database                                                                                                                            | 111                 |
| 4.1                      | Antenna Parameters                                                                                                                                                | 124                 |
| 4.2                      | Percentage of Data Received for Stationary Mode                                                                                                                   | 126                 |
| 4.3                      | Percentage of Data Received for Mobile Mode                                                                                                                       | 128                 |
| 4.4                      | The NLOS and LOS Propagations Based on Stationary Mode                                                                                                            | 132                 |
| 4.5                      | The NLOS and LOS Propagations Based on Mobile Mode                                                                                                                | 132                 |
| 4.6                      | Self-Healing Capability of WMN                                                                                                                                    | 137                 |

 $\bigcirc$ 

E





| 4.7  | Tags Collection Time Based on Stationary and Mobile Modes         | 138 |
|------|-------------------------------------------------------------------|-----|
| 4.8  | The Current Consumption During Transmission and Reception         | 142 |
| 4.9  | Calculated Current Consumption Per Circuit                        | 143 |
| 4.10 | Percentage of Time Usage for Each Mode                            | 144 |
| 4.11 | The Calculated Current Consumption of The Tag in a Period of 60 S | 144 |
| 4.12 | The Measured Current Consumption                                  | 145 |
| 4.13 | The Measured Current Consumption Of The Tag In a Period Of 60 S   | 146 |
| 4.14 | Comparison Of Wibred with Existing Systems                        | 147 |



**O** 05-4506832 **O** pustaka.upsi.edu.my



Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

PustakaTBainun

ptbupsi









E

XV

# LIST OF FIGURES

| Figure No. |                                                                                                                      | Pages         |
|------------|----------------------------------------------------------------------------------------------------------------------|---------------|
| 1.1        | The Cost of Materials of Canon's Lens Production Based on<br>Conventional System                                     | 4             |
| 1.2        | The Survey Result of Malaysia Companies Regarding The use of RFID Technology                                         | 9             |
| 2.1        | Block Diagram of a Generic Embedded System                                                                           | 14            |
| 2.2        | Core Component of RFID System                                                                                        | 17            |
| 2.3        | Wi-Fi Network                                                                                                        | 24            |
| 2.4        | Wi-Fi Architecture                                                                                                   | 26            |
| 2.5        | Bluetooth Network<br>pustaka.upsi.edu.my Perpustakaan Tuanku Bainun<br>Kampus Sultan Abdul Jalil Shah PustakaTBainun | 27<br>ptbupsi |
| 2.6        | Bluetooth Topology                                                                                                   | 29            |
| 2.7        | The Zigbee Architecture                                                                                              | 31            |
| 2.8        | Zigbee Topologies                                                                                                    | 33            |
| 2.9        | Ioio Board                                                                                                           | 38            |
| 2.10       | USB OTG Cable Orientation of an a Device and A B Device Acting<br>as a Host a Slave, Respectively                    | 42            |
| 2.11       | USB OTG Cable Orientation af a B Device And an a Device Acting as a Host a Slave, Respectively                       | 42            |
| 2.12       | Symbian OS Architecture                                                                                              | 47            |
| 2.13       | BlackBerry 10 Device Architecture                                                                                    | 50            |
| 2.14       | Microsoft's Windows Phone Architecture                                                                               | 53            |
| 2.15       | The Architecture of Apple's iOS                                                                                      | 55            |
| 2.16       | Android Architecture                                                                                                 | 58            |

 $\bigcirc$ 

O5-4506832 Og pustaka.upsi.edu.my Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah



ptbupsi xvi

|       | 2.17 | The market share of mobile operating systems                   | 60            |
|-------|------|----------------------------------------------------------------|---------------|
|       | 2.18 | The warehouse management process                               | 63            |
|       | 2.19 | The Flows of Materials and Information through a factory       | 64            |
|       | 2.20 | Flowchart for the Basic Material Flow                          | 66            |
|       | 3.1  | The Research Methodology of the Study Based on Waterfall Model | 73            |
|       | 3.2  | The Process of the Hardware Development                        | 75            |
|       | 3.3  | Comparison of Existing System and Proposed System              | 76            |
|       | 3.4  | The Block Diagram of the Proposed System                       | 77            |
|       | 3.5  | The Architectural of Proposed System Design                    | 78            |
|       | 3.6  | The Block Diagram of the Hardware Development                  | 79            |
|       | 3.7  | Phase 1 of Hardware Development                                | 80            |
| 05-45 | 3.8  | IOIO-OTG with Smart Phone Integration                          | 82<br>ptbupsi |
|       | 3.9  | Enabling the Developer Options                                 | 83            |
|       | 3.10 | Enable USB Debugging                                           | 83            |
|       | 3.11 | UART Communication Test                                        | 84            |
|       | 3.12 | Selections of Preferred Application                            | 85            |
|       | 3.13 | Phase 2 of the Hardware Development                            | 86            |
|       | 3.14 | Connection of Passive Reader with PC                           | 87            |
|       | 3.15 | List of Firmware Command                                       | 87            |
|       | 3.16 | Response of SelectTag Command                                  | 88            |
|       | 3.17 | Scanning Tag with the PC using X-CTU firmware                  | 89            |
|       | 3.18 | Phase 3 of the Hardware Development                            | 90            |
|       | 3.19 | Schematic of Relay Controller                                  | 91            |
|       | 3.20 | Communication in Mobile Mode                                   | 92            |
|       |      |                                                                |               |

 $\bigcirc$ 

O5-4506832 Og pustaka.upsi.edu.my Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

ptbupsi xvii

|        | 3.21 | Communication in Stationary Mode                                                   | 92     |
|--------|------|------------------------------------------------------------------------------------|--------|
|        | 3.22 | The Processes of the Software Development                                          | 94     |
|        | 3.23 | The Block Diagram of the Software Development                                      | 97     |
|        | 3.24 | The Android Layout of Development in Phase 1                                       | 98     |
|        | 3.25 | The Flow of Communication between Android Application and Electronic Circuit       | 99     |
|        | 3.26 | Looping Test for Transmit and Reception Process                                    | 100    |
|        | 3.27 | Taxonomy of MainActivity Java Class                                                | 102    |
|        | 3.28 | The Layout of MainActivity.java                                                    | 103    |
|        | 3.29 | The Flowchart of handleMessage class                                               | 104    |
|        | 3.30 | The Taxonomy of Read Tag ID Thread                                                 | 105    |
|        | 3.31 | The Taxonomy of Read Tag Info Thread                                               | 106    |
| 0.5-45 | 3.32 | Details of ID channel Perpustakaan Tuanku Bainun<br>Kampus Sultan Abdul Jalil Shah | 107°si |
|        | 3.33 | The Flow of the Database Development                                               | 109    |
|        | 3.34 | The Parts of the Packet Message                                                    | 110    |
|        | 3.35 | The Descriptions of TR and TD in the Database                                      | 112    |
|        | 3.36 | The WiBRED Icon Displayed on the Interface                                         | 113    |
|        | 3.37 | The WiBRED Application Layout                                                      | 114    |
|        | 3.38 | Red Indicate No Accessory Connected                                                | 115    |
|        | 3.39 | Green Indicate an Accessory is Connected                                           | 115    |
|        | 3.40 | The Flow of Operational Process of the WiBRED Application                          | 117    |
|        | 3.41 | To Scan at Tagged Object                                                           | 118    |
|        | 3.42 | A Display of the Description of a Tagged Object                                    | 118    |
|        | 4.1  | Database Configuration                                                             | 122    |
|        |      |                                                                                    |        |

O5-4506832 Og pustaka.upsi.edu.my Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

ptbupsi xviii

| 4.2                | The General Hardware Setup                                          | 122           |
|--------------------|---------------------------------------------------------------------|---------------|
| 4.3                | Anti-Collision Test Setup                                           | 123           |
| 4.4                | Antenna 1 and Antenna 2 Used in the Test                            | 124           |
| 4.5                | Results of Anti-Collision Test Based on Stationary Mode             | 126           |
| 4.6                | The Results of Anti-Collision Test Based on Mobile Mode             | 127           |
| 4.7                | Comparison of Results of the Anti-Collision Test Based on Antenna 1 | 129           |
| 4.8                | Comparison of Results of the Anti-Collision Test Based on Antenna 2 | 129           |
| 4.9                | Test Setup for Read Range Measurement                               | 130           |
| 4.10               | The Read Range Result of Passive RFID Using Antenna 1               | 133           |
| 4.11               | The Read Range Result of Passive RFID Using Antenna 2               | 134           |
| 4.12<br>05-4506832 | The Read Range Result of Active RFID<br>pustaka.upsi.edu.my         | 134<br>ptbups |
| 4.13               | Layout of Wireless Mesh Sensor Network in Multi-Hop<br>Environment  | 136           |
| 4.14               | Tags Collection Time Based on Stationary and Mobile Modes           | 138           |
| 4.15               | The Setup of the Energy Consumption Measurement                     | 140           |
| 4.16               | The Waveform of Scan Tag Process                                    | 141           |
|                    |                                                                     |               |





# LIST OF ABBREVIATIONS

|            | AES                       | Advanced Encryption Standard                 |
|------------|---------------------------|----------------------------------------------|
|            | AIDC                      | Automatic Identification and Data Capture    |
|            | AP                        | Access Point                                 |
|            | API                       | Application Program Interface                |
|            | ATM                       | Automated Teller Machine                     |
|            | BS                        | Base Station                                 |
|            | BSS                       | Basic Service Set                            |
|            | CE                        | Compact Edition                              |
|            | CPU                       | Central Processing Unit                      |
|            | DES                       | Data Encryption Standard                     |
| 05-4506832 | p <b>DS</b> ka.upsi.edu.m | Distribution Systemul Jalil Shah             |
|            | ESS                       | Extended Service Set                         |
|            | HAL                       | Hardware Adaptation Layer                    |
|            | HNP                       | Host Negotiation Protocol                    |
|            | I2C                       | Inter-Integrated Circuit                     |
|            | IBM                       | International Business Machines              |
|            | ID                        | Identification                               |
|            | IERC                      | Internet of Things European Research Cluster |
|            | IOIO-OTG                  | IOIO-On-The-Go                               |
|            | IoT                       | Internet of Things                           |
|            | IP                        | Internet Protocol                            |
|            | IT                        | Information Technology                       |
|            | JVM                       | Java Virtual Machine                         |

f



XX

| LAN                                    | Local Area Networks                         |
|----------------------------------------|---------------------------------------------|
| LCD                                    | Liquid Crystal Display                      |
| LED                                    | Light Emitting Diode                        |
| LOS                                    | Line-Of-Sight                               |
| MAC                                    | Medium Access Control Layer                 |
| MCU                                    | Microcontroller Unit                        |
| MIDP                                   | Mobile Information Device Profile           |
| NLOS                                   | Non-Line-Of-Sight                           |
| OS                                     | Operating System                            |
| PC                                     | Personal Computer                           |
| PDA                                    | Personal Digital Assistant                  |
| PHY                                    | Physical Layer                              |
| <sup>p</sup> PWM <sup>psi.edu.my</sup> | Pulse Width Modulation Shah                 |
| RAM                                    | Random-Access-Memory                        |
| RF                                     | Radio Frequency                             |
| RFID                                   | Radio Frequency Identification              |
| RIM                                    | Research in Motion                          |
| ROM                                    | Read-Only-Memory                            |
| SCO                                    | Synchronous Connections Oriented            |
| SDK                                    | Software Development Kits                   |
| SIG                                    | Special Interest Group                      |
| SPI                                    | Serial Peripheral Interface                 |
| TCL                                    | Tool Command Language                       |
| UART                                   | Universal Asynchronous Receiver/Transmitter |
| UI                                     | User Interface                              |





xxi

|            | USB                        | Universal Serial Bus              |
|------------|----------------------------|-----------------------------------|
|            | USB-OTG                    | USB On-The-Go                     |
|            | WAP                        | Wireless Application Protocol     |
|            | WiBRED                     | Wireless Mobile RFID Reader       |
|            | Wi-Fi                      | Wireless Fidelity                 |
|            | WIP                        | Work-In-Progress                  |
|            | WLAN                       | wireless local area networks      |
|            | WMN                        | Wireless Mesh Network             |
|            | WPAN                       | Wireless Personal Area Network    |
|            | WSN                        | Wireless Sensor Network           |
|            | WUSB                       | Wireless Universal Serial Bus     |
|            | ZC                         | Zigbee Coordinator                |
| 05-4506832 | PZED <sup>upsi.edu.m</sup> | V Zigbee End Device ul Jalil Shah |
|            | ZR                         | Zigbee Router                     |

 $\bigcirc$ 







xxii

LIST OF APPENDIXES

- А Source Code of MainActivity.java
- В Source Code of Getting Tag ID
- С Source Code of Tag Info Thread
- D Source Code of Tag Info Thread
- Ε Source Code of Tag Description Dialog Box
- F Source Code of Database
- G Measurement Results



pustaka.upsi.edu.my



Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

PustakaTBainun

ptbupsi









## **CHAPTER 1**

## **INTRODUCTION**



#### 1.1 **Background Research**

Internet of Things (IoT) is a global network infrastructure, linking physical and virtual objects through the exploitation of data capture and communication capabilities (Jia, Feng, Fan, & Lei, 2012). It will offer specific object identification and connection capability as the basis for development of independent cooperative services and applications, which is characterized by high degree of autonomous data capture, event transfer, network connectivity and interoperability.







According to the IEEE Journal OF Internet of Things, an IoT system is a network of networks where, typically, a massive number of objects, sensors and devices are connected through communications and information infrastructure to provide valueadded services via intelligent data processing and management for many different applications (Porkodi & Bhuvaneswari, 2014). For example, Radio Frequency Identification (RFID), Zigbee and Wireless Sensor Network (WSN) are used for wireless communication among diverse systems. In addition, The Internet of Things of European Research Cluster (IERC) provides a succinct definition of IoT, stating that it is a dynamic global network infrastructure with self-configuring capabilities based on standard and interoperable communication protocols, where physical and virtual "things" have identities, physical attributes, and virtual personalities and use intelligent interfaces, and os are seamlessly integrated into the information network (Gaikwad, Gabhane, & Professor, 2015).

In this regard, the characteristics of RFID serve as a prerequisite for the IoT. Admittedly, RFID is not new technology since it has been popularly used in the early twentieth century. The popularity of RFID lies in its practicality in a wide variety of applications. As such, it can virtually provide almost limitless potentials for future applications. Specifically, RFID technology can be efficiently used to monitor manufacturing products that constantly moving and have low visibility (Bachelor, 2014). Hence, it is not surprising that the use of RFID technology has been pervasive in many industries. More specifically, the technology has almost been fully utilized in the





manufacturing industry, in view of the diversity and complexity of manufacturing products that need to managed efficiently.

For example Wal-Mart has been using RFID technology since 2003, the impact of which has made the company's operations become more efficient. This technology is poised to become more dominant in this decade as many industries across the globe will experience fast and high growth. For example, the Asia-Pacific region is expected to experience high economic growth in the next 10 years, with many expensive and massive projects being carried out by a strong legion of private companies and government enterprises(Bachelor, 2014). For example, Canon is one of the leading and largest camera producers in the world that is using the RFID technology in their manufacturing process.  $_{0.5}$  In lens production, considerable quantities of waste material resulted from the grinding process. Previously, based on its conventional system, about 1% of defective products could be recorded. Figure 1.1 shows a figure highlighting various costs along the process chain at Canon. For each machining process, the costs of raw materials, system, and the disposal were recorded and distributed between outputs. As shown, 32% of the costs were attributed to material loss. The figure shows that within six months the company managed to cover the cost of deployment of RFID system by only focusing on supervisory labour cost. Clearly, further innovarove use of RFID can lead to fewer downtimes, higher productivity, and reduced maintenance cost.

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

🔰 PustakaTBaint





*Figure 1.1.* The Cost of Materials of Canon's Lens Production Based on Conventional System (Resources, 2013)



Typically, a firm's stocks consist of a variety of inventories, including finished goods, work-in-progress (WIP) materials, and raw materials (Jou, Wee, & Chen, 2009). As such, keeping track of such materials is very critical to the company's operational efficiency. Nevertheless, this has become a major problem to many manufacturing companies, given their inability to gather and control accurate product and process data, causing massive loss of profits and competitiveness (North, 2013). Nowadays, the manufacturing industry is facing many challenges due to a host of problems, notably because of a lack of reliable tracking systems to control, monitor, and manage the flow materials and items (Ruankaew & Williams, 2013). In fact, material tracking and control systems are new to





the manufacturing industry, as many companies strive to improve their manufacturing productivity and quality of products.

Without any anomalies in the expected physical material flows, the amount of good available in an inventory system would increase each time an expected replenishment is received and decrease each time a demand is satisfied. The existence of several unknown outputs and inputs, such as missing, misplaced, or inaccurate items (which are attributable to unreliable suppliers), the actual material flow would differ from the nominal one (Ruankaew & Williams, 2013). Thus, perfect synchronization between the physical flow and the associated data recorded in the information system is needed to verify if events happened as planned (without any loss or delay of products) and to 05 identify the reasons for any deviations that took place.<sup>10</sup>

In recent years, the use of mobile phones has been increasing rapidly, far surpassing the use of personal computers (PCs). Therefore, it is not only appropriate but also timely for manufacturing companies to capitalize on the accessibility and mobility of mobile devices to keep track and obtain product data quickly and accurately. With mobile information system, users are no longer required to physically go to the various process stations of a manufacturing shop floor to collect data or information of product parts, items, or components. In this study, the researcher propose a novel monitoring system, designed and developed using a multi-disciplinary approach with the use of an embedded system, RFID technology, Zigbee technology, wireless mesh network (WMN), android operating system, user interface, and Java Application. Specifically, the development of

