

ENRICHMENT OF ANAEROBIC AMMONIUM OXIDATION BACTERIA USING ANAEROBIC UP-FLOW BIOFILM COLUMN REACTOR

MUMTAZAH BINTI IBRAHIM

05-4506832 🛛 🐨 pustaka.upsi.edu.my

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

PustakaTBainun

ptbupsi

THESIS SUBMITTED IN FULLFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER OF SCIENCE (BIOLOGY) (RESEARCH MODE)

FACULTY OF SCIENCE AND MATHEMATICS UNIVERSITI PENDIDIKAN SULTAN IDRIS

2017

ABSTRACT

This research aims to enrich anaerobic ammonium oxidation (anammox) culture which capable of oxidizing ammonium to dinitrogen gas in a laboratory-scale anaerobic up-flow biofilm column reactor. A 16S rDNA gene analysis targeting planctomycetes-anammox bacteria was performed to screen anammox microorganism from sludge samples obtained from five sources of wastewater around Perak and Kuala Selangor. Anammox enrichment was carried out for 180 days in 1.0 L anaerobic up-flow biofilm column reactors with three different mode of feeding; (i) batch, (ii) fed-batch and (iii) continuous. The $N-NH_4^+$, N-NO₂ and N-NO₃ concentrations were monitored throughout the enrichment period. The enriched anammox was identified using 16S rDNA and fluorescence in situ hybridization (FISH) techniques. After amplification using primer pair Pla46F-Amx368R, it was found that the genomic DNA from sludge of Jeram sanitary landfill showed a similarity in 16S rDNA gene to uncultured anammox bacteria clone AMX-MB05-10 and been used in the following enrichment study. Changes in N-NH4⁺ and N-NO₂⁻ concentrations indicated the feasibility of anammox culture enrichment in all reactors. Reactor with continuous feeding mode showed an effective consumption of $N-NH_4^+$ and $N-NO_2^-$ with the highest specific N-NH₄⁺ removal of 0.34 g N-NH₄+g/VSS/d at NLR of 0.33 kg N/m³/d. The enriched anammox culture showed closed similarity to "Candidatus Kuenenia sp." "Candidatus Jettenia sp." genus. FISH analysis with rhodamine-stained and oligonucleotide probes targeting 16S rDNA gene of anammox bacteria further confirmed the existence of anammox population in the enriched culture for all feeding mode. os Ino conclusion, the anammox culture was successfully enriched in anaerobic up-flow biofilm column reactor by appropriate selection of seeding sludge. Reactor with continuous feeding mode is the most effective for anammox enrichment. The implication of this study is a strategic way to enrich the anammox culture for application in biological nitrogen removal of wastewater.

05-4506832

ipsi V

PENGAYAAN BAKTERIA PENGOKSIDAAN AMMONIUM SECARA ANAEROBIK MENGGUNAKAN REAKTOR ANAEROBIC UP-FLOW BIOFILM COLUMN

ABSTRAK

Kajian ini bertujuan untuk memperkaya kultur pengoksidaan ammonium secara anaerobik (anammox) yang mampu mengoksida ammonium kepada gas dinitrogen di dalam reaktor anaerobic up-flow biofilm column berskala makmal. Analisis gen 16S rDNA yang menyasarkan bakteria *planctomycetes-anammox* telah dijalankan bagi menyaring mikroorganisma anammox daripada enapcemar yang diperoleh dari lima sumber air buangan sekitar Perak dan Kuala Selangor. Pengayaan anammox telah dijalankan selama 180 hari di dalam reaktor *anaerobic up-flow biofilm column* 1.0 L dengan tiga mod suapan yang berbeza; (i) kelompok, (ii) sesekelompok dan (iii) selanjar. Kepekatan N-NH₄⁺, N-NO² and N-NO³ telah dipantau sepanjang tempoh pengayaan. Bakteria anammox yang diperkaya telah dikenalpasti menggunakan analisis 16S rDNA dan teknik *fluorescence in*situ hybridization (FISH). Selepas amplifikasi menggunakan pasangan primer Pla46F-Amx368R, DNA genomik daripada enapcemar tapak pelupusan sanitari Jeram menunjukkan persamaan kepada klon tidak kultur bakteria anammox AMX-MB05-10 dan telah digunakan dalam kajian pengayaan seterusnya. Perubahan pada kepekatan N-NH4⁺ and N-NO₂ menunjukkan keberkesanan pengayaan kultur *anammox* di dalam semua reaktor. Reaktor dengan mod suapan selanjar menunjukkan penggunaan N-NH4⁺ and Solution N-NO₂ yang berkesan dengan penyingkiran N-NH4⁺ spesifik tertinggi sebanyak Solution Soluti 0.34 g N-NH₄⁺/gVSS/d pada NLR 0.33 kg N/m³/d. Kultur *anammox* yang telah diperkaya menunjukkan persamaan rapat dengan genus "Candidatus Kuenenia sp." dan "Candidatus Jettenia sp.". Analisis FISH menggunakan prob oligonukleotida diwarna-rhodamine yang menyasarkan gen 16S rDNA bakteria *anammox*, seterusnya membuktikan kehadiran populasi *anammox* di dalam kultur untuk kesemua mod suapan. Kesimpulannya, kultur anammox telah berjaya diperkaya menggunakan reaktor anaerobic up-flow biofilm column melalui pemilihan enapcemar yang sesuai. Reaktor dengan mod suapan selanjar adalah paling efektif bagi pengayaan bakteria *anammox*. Implikasi kajian ini adalah satu kaedah strategik untuk memperkaya kultur anammox bagi penggunaan dalam penyingkiran nitrogen dari air buangan secara biologi.

vi

TABLE OF CONTENTS

			Page
ACKNOWLEDGEN	IENT		iii
ABSTRACT			iv
ABSTRAK			V
TABLE OF CONTE	INTS		vi
LIST OF TABLES			xii
LIST OF FIGURES			xiv
LIST OF ABBREVI	ATION	IS	xvii
LIST OF APPENDI	CES		xviii
05-4506832 CHAPTER 1 INT		f Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah CTION	ptbupsi
1.1	Backg	round of study	1
1.2	Proble	m statement	5
	1.2.1	Nitrification-denitrification system requires high cost of operation	5
	1.2.2	Anammox process requires long start up period	7
	1.2.3	Anammox bacteria is sensitive to various environmental factors	9
1.3	Object	ives	9-10
1.4	Signifi	cance of the study	10
	1.4.1	Provide strategy for a short anammox enrichment process	10

E.

ptbupsi Vii

1.4.2 Potential application of anammox process 12 for biological nitrogen removal (BNR) of various type of wastewater in Malaysia

CHAPTER 2 LITERATURE REVIEW

	2.1	Anaer proces	obic ammonium oxidation (Anammox)	14
		2.1.1	The discovery of anammox	14
		2.1.2	Cell structure and physiology of anammox	17
		2.1.3	Application of anammox process	20
	2.2	Select	ion of inocula for anammox enrichment	23
		2.2.1	Inoculum source	23
		2.2.2	Molecular detection of anammox for	26
05-4506832	pustaka.upsi.	edu.my	inoculum selection Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah 2.2.2.1 Polymerase chain reaction (PCR)	26 ptbups
			2.2.2.2 Real-time polymerase chain reaction (rt-PCR)	27
			2.2.2.3 Denaturing gradient gel electrophoresis (DGGE)	29
			2.2.2.4 Fluorescence in-situ hybridization	30
	2.3	Anam	mox enrichment technique	32
		2.3.1	Anammox enrichment in batch experiments	32
		2.3.2	Anammox enrichment in bioreactor systems	33
			2.3.2.1 Sequencing batch reactor (SBR)	38
			2.3.2.2 UASB reactor	40
			2.3.2.3 Membrane bioreactor (MBR)	42

	2.3.2.4 Gas-lift reactor	44
	2.3.2.5 Fluidized bed reactor (FBR)	46
	2.3.2.6 Rotating biological contactor (RBC)	48
	2.3.2.7 Up-flow biofilter (UBF)	49
2.3	.3 Carrier material for anammox bioreactor	51
2.3	.4 Monitoring anammox performance during enrichment	55
	ctors influencing anammox enrichment in preactors	56
2.4	.1 pH	56
2.4	.2 Temperature	56
2.4 05-4506832 pustaka.upsi.edu.r 2.4	ny f Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah	58 ptbupsi

METHODOLOGY CHAPTER 3

3.1	Sample collection		
3.2	Chemi	cal analysis	67
	3.2.1	Measurement of NH_4^+ , NO_2^- , and NO_3^- concentration using ion chromatography	67
	3.2.2	Measurement of NH_4^+ , NO_2^- , and NO_3^- concentration using HACH reagent testing kits	69
	3.2.3	Chemical oxygen demand (COD)	70
	3.2.4	Total suspended solid (TSS) concentration	70
	3.2.5	Volatile suspended solid (VSS) concentration	71

E

	3.3	Molecu	ular analysis of 16S rDNA gene	72
		3.3.1	Genomic DNA extraction	72
		3.3.2	Polymerase chain reaction (PCR) amplification	74
		3.3.3	PCR purification	75
		3.3.4	DNA sequencing	76
	3.4		ment of anammox in anaerobic up-flow a column reactor	77
		3.4.1	Anaerobic up-flow biofilm column reactor	77
		3.4.2	Enrichment medium	79
		3.4.3	Enrichment condition and feeding strategy	80
05-4506832	pustaka.upsi	.edu.my 3.4.4	 3.4.3.1 Feeding strategy of anaerobic up-flow biofilm column reactor Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah PustakaTBainun Operational parameter for anammox 	81 ptbupsi
			reactor	
			3.4.4.1 Nitrogen loading rate (NLR) and specific N-NH ₄ ⁺ removal of anammox activity	82
	3.5	Fluores	scence in-situ hybridisation (FISH) analysis	84
		3.5.1	Samples preparation and fixation	84
		3.5.2	Hybridisation and observation using fluorescence microscope	85

4.3.2 Fluorescence in situ hybridisation

129

CHAPTER 4 RESULTS AND DISCUSSION

O5-4506832 Sustaka.upsi.edu.my Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

	4.1		ning of anammox bacteria from sludge es using 16S rDNA gene analysis	88
		4.1.1	Characteristics of sludge samples	88
		4.1.2	Genomic DNA extraction	92
		4.1.3	Amplification of 16S rDNA gene by polymerase chain reaction (PCR)	94
		4.1.4	DNA sequencing	99
	4.2		mox enrichment in anaerobic up-flow biofilm n reactor applying different kind of feeding	102
		4.2.1	Batch feeding mode	102
		4.2.2	Fed-batch feeding mode	109
05-4506832 (pustaka.upsi.e	4.2.3	Continuous feeding mode VustakaTBainun	1 ptbupsi
		4.2.4	Anammox enrichment in different reactor system	119
		4.2.5	Change in sludge colour after enrichment process	124
	4.3	using	fication of the enriched anammox bacteria partial 16S rDNA gene analysis and scence <i>in-situ</i> hybridisation	125
		4.3.1	Identification of anammox bacteria by partial 16S rDNA analysis	125

PustakaTBainun

Х

E

ptbupsi xi

CONCLUSIONS AND RECOMMENDATIONS **CHAPTER 5**

APPENDICES		
REFERENCES		
5.2	Recommendation	140
5.1	Conclusions	137

PustakaTBainun ptbupsi

PustakaTBainun

E

LIST OF TABLES

No. o	f Table	Page
2.1	Taxonomy of anammox bacteria	16
2.2	Physiological characteristics of <i>Brocadia anammoxidans</i> , <i>Brocadia sinica, Kuenenia stuttgartiensis, Scalindua</i> sp., and <i>Jettenia caeni</i> modified from (Kartal et al., 2012)	20
2.3	The fast start-up of the anammox process in anammox enrichment according to type of inoculum and reactor used	24
2.4	List of primers for PCR amplification of the 16S rRNA genes for anammox identification, modified from (Li & Gu, 2011)	28
2.5	List of commonly used probes for FISH targeting of the 16S rRNA gene in anammox identification, modified from (Li & Gu, 2011)	31
2.6	Operational condition of anammox batch experiments	34
05-4 206 832	Operational condition of anammox enrichment in bioreactor systems	36 . 37 _{si}
2.8	Performance of anammox enrichments in different reactor systems	54
3.1	Sludge samples from different wastewater treatment plants (WWTPs)	66
3.2	Global Positioning System (GPS) coordinates of sampling location	66
3.3	Ion chromatography specification process for ion analysis	68
3.4	List of primers for amplification of the 16S rDNA genes	74
3.5	Composition of medium for Anammox enrichment, modified from (Banihani et al., 2012)	79
3.6	Operational condition of anammox enrichment in anaerobic up-flow biofilm column reactor	81
3.7	Applied NLR for anaerobic up-flow biofilm column reactor	84
3.8	Hybridisation condition and oligonucleotide probes for FISH analysis	88
4.1	Physiochemical of sludge samples used in this study	89

 \bigcirc

E

f

- BLAST result of maximum identification and sequences similarity 4.2 100
- 4.3 Performance of anammox enrichment in different reactor system 120
- BLAST result with the maximum identification and highest sequence 4.4 130 similarity

🕓 05-4506832 🔮 pustaka.upsi.edu.my 👖

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

PustakaTBainun

ptbupsi

E

LIST OF FIGURES

	No. of	f Figure	Page
	2.1	Schematic drawing comparing the Gram-negative cell plan (left) and anammox bacteria cell plan (right)	17
	2.2	Anammox granules in UASB reactor after 400 days enrichment	25
	2.3	Configuration of a SBR	38
	2.4	Configuration of an UASB reactor	40
	2.5	Configuration of a submerged MBR	43
	2.6	Configuration of gas-lift reactor	45
	2.7	Reactor configuration of FBR	46
	2.8	Configuration of RBC	48
05-4	⁵⁰⁶⁸³² 2.9	Schematic diagram of UBF system ^{Sultan} Abdul Jalil Shah	50 ^{ptbupsi}
	2.10	String-shaped three-dimensional-plastic media used as the packing media in UBF system	50
	2.11	Non-woven ring carriers used to support biomass attachment in anammox enrichment	52
	3.1	Sources of sludge samples for anammox screening analysis	65
	3.2	Maps of five sampling locations around Perak and Kuala Selangor	67
	3.3	Sample preparation of diazotization and cadmium reduction method	70
	3.4	Schematic diagram of anaerobic up-flow biofilm column reactor	77
	3.5	Set-up of anaerobic up-flow biofilm column reactor in cupboard frame covered with black cloth	78
	3.6	Non-woven fabric material for biomass attachment	78
	3.7	Flushing medium with nitrogen gas to eliminate oxygen gas	80

 \bigcirc

E

3.8	Procedure for fluorescence in-situ hybridisation	86
4.1	Extracted genomic DNA from sludge samples viewed under ultraviolet light after electrophoresed on 1.0 $\%$ w/v agarose gel and stained with ethidium bromide	92
4.2	Extracted genomic DNA from sludge samples viewed under ultraviolet light after electrophoresed on 1.0% w/v agarose gel and stained with ethidium bromide	93
4.3	Gel electrophoresis of PCR products amplified by using pair of universal primer 27F and 1492R at annealing temperature of 56°C	95
4.4	Gel electrophoresis of PCR products amplified by using universal primer 27F and 1492R at annealing temperature of 56 °C	96
4.5	Gel electrophoresis of PCR products amplified by using Pla46 and Amx368 at annealing temperature of 54 $^{\circ}$ C	97
4.6	Gel electrophoresis of PCR products amplified by using Pla46 and Amx368 at annealing temperature of 54 $^{\circ}$ C	98
4.7 05-4506832	Concentration of N-NH ₄ ⁺ , N-NO ₂ ⁻ and N-NO ₃ ⁻ during anammox bacteria enrichment for batch feeding mode ultan Abdul Jalil Shah	104 ptbupsi
4.8	Removal percentage of $N-NH_4^+$ and $N-NO_2^-$ throughout enrichment period for batch mode of feeding	108
4.9	Concentration of N-NH ₄ ⁺ , N-NO ₂ ⁻ and N-NO ₃ ⁻ during anammox bacteria enrichment for fed-batch feeding mode	110
4.10	Removal percentage of $N-NH_4^+$ and $N-NO_2^-$ throughout enrichment period for fed-batch mode of feeding	113
4.11	Concentration of N-NH ₄ ⁺ , N-NO ₂ ⁻ and N-NO ₃ ⁻ during anammox bacteria enrichment for continuous feeding mode	115
4.12	Removal percentage of $N-NH_4^+$ and $N-NO_2^-$ throughout enrichment period for continuous mode of feeding	118
4.13	The changes in sludge colour after anammox enrichment	125
4.14	Extracted genomic DNA from enrichment cultures viewed under ultraviolet light after electrophoresed on 1.0% w/v agarose gel and stained with ethidium bromide	127

 \bigcirc

- 4.15 Gel electrophoresis of PCR products after electrophoresed on 1.0 % w/v 128 agarose gel and stained with ethidium bromide
- 131 4.16 Fluorescence *in-situ* hybridisation of *E. coli* cells as control negative species
- Fluorescence in-situ hybridisation of anammox culture during enrichment 133 4.17 process for column reactor 1 (batch feeding mode)
- 4.18 Fluorescence *in-situ* hybridisation of anammox culture during enrichment 134 process for column reactor 2 (fed-batch feeding mode)
- 4.19 Fluorescence in-situ hybridisation of anammox culture during enrichment 135 process for column reactor 3 (continuous feeding mode)

05-4506832 📢 pustaka.upsi.edu.my

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

PustakaTBainun

Ũ ptbupsi

LIST OF ABBREVIATIONS

AnMBR Anaerobic membrane bioreactor AOB Ammonia-oxidizing bacteria BLAST Basic local alignment search tool **BNR** Biological nitrogen removal CANON Completely autotrophic nitrogen removal over nitrite COD Chemical oxygen demand DGGE Denaturing gradient gel electrophoresis DHS Down flow hanging sponge DNA Deoxyribonucleic acid DO 05-4506832 Dissolved oxygenerpustakaan Tuanku Bainun PustakaTBainun ptbupsi Kampus Sultan Abdul Jalil Shah EGSB Expanded granular sludge bed FBR Fluidized bed reactor FISH Fluorescence in situ hybridization HDPE High density polyethylene HRT Hydraulic retention time LDPE Low density polyethylene MBR Membrane bioreactor **MSBR** Membrane sequencing batch reactor MSW Municipal solid waste NCBI National center for biotechnology information NLR Nitrogen loading rate

O5-4506832 Og pustaka.upsi.edu.my Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

	NOB	Nitrite-oxidizing bacteria
	NRR	Nitrogen removal rate
	PBS	Phosphate buffered saline
	PCR	Polymerase chain reaction
	POME	Palm oil mill effluent
	PVDF	Polyvinylidene fluoride
	RBC	Rotating biological contactor
	SBR	Sequencing batch reactor
	SEM	Scanning electron microscopy
	SHARON	Single reactor system for high rate ammonium removal over nitrite
	TEM	Transmission electron microscope
05-450	6 EN 😯 pustal	ka Total nitrogen Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah Y Pustaka TBainun ptbupsi
	TSS	Total suspended solid
	UASB	Up-flow anaerobic sludge blanket
	UBF	Up-flow biofilter
	VSS	Volatile suspended solid
	WWTP	Wastewater treatment plant

ptbupsi

xix

LIST OF APPENDICES

- Α Anion standard curves
- В Cation standard curves
- Calculation of N-NH4⁺, N-NO2⁻, N-NO3⁻ from NH4⁺, NO2⁻, NO3⁻ С
- D Lists of chemicals for FISH and preparation of stock solutions

f

Е Procedure for inverted fluorescence microscope observation

🕓 05-4506832 🔮 pustaka.upsi.edu.my 📑

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

9 PustakaTBainun

ptbupsi

CHAPTER 1

INTRODUCTION

1.1 **Background of study**

Municipal solid waste (MSW) landfills and industrial activities have contributed to the gradual increase of ammoniacal nitrogen rich wastewater which is a toxic pollutant to the aquatic life. Excessive nitrogen level in water promotes excessive growth of green algae and cyanobacteria. Disposal of the highly nitrogenous wastewater into surface water bodies may lead to serious environmental problems such as eutrophication and oxygen depletion (Banihani, Hadadin, & Jamrah, 2012). These problems have become a major threat towards aquatic organisms. Therefore the removal of the wastewater constituents is a major concern in environmental engineering and ecosystem protection.

05-4506832

05-4506832

📢 pustaka.upsi.edu.my

Wastewater constituents from treatment plants can be removed either by chemical, biological or physical approaches. Biological nitrogen removal (BNR) process is more favoured for nitrogen removal due to its advantages from economic and environmental point of view. The commonly practiced BNR system for wastewater treatment involves sequential autotrophic nitrification and heterotrophic denitrification that requires separate aerobic and anaerobic units for treatment. This process is highly dependent on the supply of organic carbon source. The conventional nitrification-denitrification process is suitable in treating wastewaters with high concentration of biodegradable carbon, however it is uneconomical in treating wastewaters with low ratios of carbon and nitrogen, for example in anaerobic sludge digestion effluent.

Nitrification is a two steps biological process that involves the oxidation of ammonium to nitrite followed by the oxidation of nitrite to nitrate in aerobic condition (Equations 1 and 2). This aerobic process was aided by ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB). Meanwhile, denitrification is a nitrate reduction process which is facilitated by heterotrophic anaerobic (denitrifying) bacteria to produce dinitrogen gas (Equation 3). This heterotrophic process requires organic carbon sources as electron donor (Koeve & Kähler, 2010).

$$NH_4^+ + 1.5O_2 \xrightarrow{AOB} NO_2^- + 2H^+ + H_2O \tag{1}$$

$$NO_2^- + 0.5O_2 \xrightarrow{NOB} NO_3^-$$
 (2)

$$6NO_3 + 5CH_3OH + H_2CO_3 \xrightarrow{denitrifiers} 3N_2 + 8H_2O + 6HCO_3^{-}$$
(3)

Anaerobic ammonium oxidation (anammox) process was first discovered in a denitrifying fluidized bed reactor in the early 21st century in Netherlands (Mulder, Van de Graaf, Robertson, & Kuenen, 1995). It is a novel process of BNR from wastewater which offers a more sustainable, promising and economical alternative compared to the conventional nitrification-denitrification system (Mulder et al., 1995; Van de Graaf et al., 1995). Anammox process is performed by autotrophic planctomycetes bacteria which uses ammonium as electron donor (energy source) and nitrite as electron acceptor in the process of ammonium oxidation to produce dinitrogen gas in anaerobic condition (Equation 4).

$$NH_4^+ + NO_2^- \xrightarrow{Anammox} N_2 + NO_3^-$$
(4)

O 05-4506832 The process is capable of removing nitrite and ammonium simultaneously from wastewater without the presence of organic carbon supplementation and aeration system. In fact, low yield of the anammox bacteria due to its long doubling time (10-12 days) (Ibrahim, Yusof, Mohd Yusoff, & Hassan, 2016) has contributed to lower sludge production compared to conventional nitrification-denitrification system and hence contributes to the substantially lower operational costs of the system (Banihani et al., 2012).

Anammox has been applied in laboratory scale as well as full scale anammox reactor to treat various kind of wastewater such as landfill leachate (Scaglione, Ruscalleda, Ficara, Balaguer, & Colprim, 2012), digester liquor (Furukawa et al., 2009), pig manure effluents (Molinuevo, García, Karakashev, & Angelidaki, 2009), turtle breeding wastewater (Chen, Huang, Lei, Zhang, & Wu, 2013) and pharmaceutical wastewater

(Tang et al., 2011). Most recent data indicated that there are more than 100 full-scale anammox reactors which have been successfully implemented in the early 2015 worldwide (Ali et al., 2015; Lackner et al., 2014).

Anammox application has been reported for a super high-rate anammox performance with nitrogen removal rate of up to 76.7 kg/m³/d in an up-flow anaerobic sludge bed (UASB) reactors (Tang et al., 2011). Despite the advantages, long start-up time of anammox reaction due to its extremely slow growth rate of the bacteria (0.072/days at 32 °C) has contributed to the difficulty in application of the system in wastewater treatment (Anjali & Sabumon, 2014). Thus the eminent challenge is to deal with the slow-growing bacteria.

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

Many efforts have been made by researchers to accelerate the start-up time of anammox reaction during anammox enrichment. It is believed that proper selection of inoculum, appropriate reactor configuration system and optimal operational conditions are capable to enhance the anammox reaction therefore shorten the start-up time of the anammox activity (Li, Zhou, Ma, Huang, & Xu, 2012). Enrichment of anammox bacteria was carried out by monitoring the chemical nitrogen transformations (Dapena-Mora, 2004) and by studying the microbial eco-physiology through molecular biology techniques (Penton, Devol, & Tedje, 2006).

The present study practiced anammox enrichment in anaerobic up-flow biofilm reactor with non-woven fabric as biomass carrier by applying three different feeding

05-4506832

05-4506832

📢 pustaka.upsi.edu.my

pustaka.upsi.edu.my

PustakaTBainun

o ptbupsi

modes; batch, fed-batch and continuous. These feeding modes were studied in order to shorten the start-up duration of anammox activity. The experimental design comprises of three main stages of the experiment: (i) selection of seeding sludge for anammox enrichment, (ii) monitoring the feasibility of anammox enrichment in anaerobic up-flow biofilm reactor, and (iii) identification of the enriched anammox bacteria.

1.2 Problem statement

💽 🕽 pustaka.upsi.edu.my

05-4506832

1.2.1 Nitrification-denitrification system requires high cost of operation

Source Conventional nitrification-denitrification system can be costly and complicated especially when dealing with high strength nitrogenous wastewater. High-strength ammonium wastewater is believed could inhibit the nitrification process since high concentration of free ammonia (N-NH₃) potentially inhibits nitrification. Municipal landfill leachate typically contain extremely high ammonium concentration that may reach up to ~1000 mg/l N-NH₄+ (Kim, Lee, & Keller, 2006). AOB and NOB which aids the conversion of ammonia and nitrite to nitrate and nitrogen in nitrogen removal process is altered when exposed to high ammonia concentration. NOB was reported to be more sensitive to high concentration of free ammonia in comparison to AOB. N-NH₃ concentration of 0.1-1.0 mg/l can possibly inhibit the NOB whereas 10-150 mg/l of N-NH₃ can negatively affect the AOB (Kim et al., 2006).

Consequently, the inhibition of the AOB and NOB activity leads to ammonium and nitrite accumulation in nitrification-denitrification system and thus promotes an inefficient operating system. This problem limits the application of nitrification-denitrification when dealing with strong wastewater with high ammonium concentration. For that reason, ammonia concentration should be maintained at low levels in this system in order to avoid the inhibition effect and optimization of the nitrification process. Moreover, nitrification and denitrification process requires two separate subunits since the process demands for a different operational conditions. Nitrification requires oxygen while denitrification process take place in anaerobic condition.

Apart from that, among the shortcomings of the conventional nitrificationdenitrification system include the requirement of oxygen supply for nitrification and supplementation of organic carbon source for the subsequent denitrification step. High power of energy is also required for aeration in nitrification step, meanwhile the denitrification step depends on supplementation of readily biodegradable organic carbon. Supplementation of organic carbon is an important factor for a successful denitrification process especially when dealing with high strength nitrogenous wastewater with low carbon to nitrogen (C/N) ratio in which only small amounts of biologically-degradable carbon compounds are available (Chamchoi, Nitisoravut, & Schmidt, 2008; Kim et al., 2006).

The conventional BNR system demands a high operational cost to comply with the requirement of nitrification-denitrification process. Anaerobic process is an alternative

solution to replace the conventional nitrification-denitrification system as it is more promising, cost-effective and sustainable. According to an energy balance comparison study for a treatment of high-strength wastewater at 20 °C, 1.9 x 10⁶ kJ/d of electrical energy is required for aerobic process (Metcalf & Eddy, 2003; Chen et al., 2011) whereas the anaerobic process produces a total energy of 12.5 x 10⁶ kJ/d. Anaerobic process itself is a net energy producer instead of energy consumer, as in the case of aerobic process (Metcalf & Eddy, 2003).

1.2.2 Anammox process requires long start up period

Recently, research on anammox system has been developing rapidly due to its advantages. Despite of its arising popularity, the extremely slow growth rate of the anammox bacteria has contributed to the difficulty in its enrichment process. Anammox enrichment process takes a very long start-up time for anammox activity to take place which may take between 105 to 420 days to occur due to the long doubling time of the anammox bacteria (10-12 days) even at its optimal condition (Ibrahim et al., 2016; Zhou & Yao, 2010). This limitation may be a frustrating effort for researchers especially for those dealing with it for the first time.

Moreover, anammox enrichment application is practically limited due to sludge wash-out problem. A continuous bioreactor system with improper reactor configuration and without the application of supporting material for biomass retaining process will lead to the loss of anammox bacteria in sludge together with the effluent. Loss of sludge fraction

05-4506832

📢 pustaka.upsi.edu.my

