

ELECTROCHEMICAL SENSOR OF COPPER, NICKEL AND MERCURY USING FENCHONE DIAZINE LIGAND COMPLEXES-MODIFIED MULTIWALLED CARBON NANOTUBES PASTE ELECTRODES

MOHAMAD IDRIS BIN SAIDIN

🔾 05-4506832 🔇 pustaka.upsi.edu.my

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

ptbupsi

THESIS SUBMITTED IN FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY (CHEMISTRY)

FACULTY OF SCIENCE AND MATHEMATICS UNIVERSITI PENDIDIKAN SULTAN IDRIS

2017

ABSTRACT

This study aims to develop a modified multiwalled carbon nanotubes paste electrodes based fenchone azine ligand complexes for detecting copper, nickel and mercury. The fenchone diazine ligand complexes were characterized by using nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction spectroscopy, scanning electron microscopy and transmission electron microscopy. electrochemical properties of the modified electrodes were determined using square wave stripping voltammetry, cyclic voltammetry and electrochemical impedance spectroscopy. The results show that under optimal conditions, the electrodes showed a linear range between 0.1 nM and 1.0 μ M, 10 nM and 1.0 μ M, 5.0 μ M and 0.1 mM with the limit of detection of 80 pM, 7.4 nM and 3.7 µM for detection of copper, nickel and mercury respectively. The interferences from Ba²⁺, Ca²⁺, Cd²⁺, Ce³⁺, Co²⁺, Cu²⁺, Pb²⁺, Mn²⁺, Mg²⁺, Ni²⁺, Sr²⁺ and Zn²⁺ were negligible. Cyclic voltammetry and electrochemical impedance spectroscopy indicated that the charge transfer at the electrode-solution interface was excellent. The proposed electrodes were successfully applied for detection of copper, nickel, and mercury in wastewater samples, vegetables, 05-4506 and skin lightening creams, respectively. In conclusion, the developed modified buosi electrodes are able to detect copper, nickel and mercury. By implication, the developed electrodes can be used as a suitable alternative for the determination of copper, nickel and mercury because it has characteristics such as sensitivity, selectivity and high reproducibility.

PENGESAN ELEKTROKIMIA KUPRUM, NIKEL DAN MERKURI MENGGUNAKAN ELEKTROD-ELEKTROD PES KARBON NANOTIUB BERBILANG DINDING TERUBAH SUAI-KOMPLEKS- LIGAN FENCON DIAZINA

ABSTRAK

Kajian ini bertujuan membangunkan elektrod-elektrod pes karbon nanotiub berbilang dinding terubah suai berasaskan kompleks-kompleks ligan fencon diazina bagi mengesan kuprum, nikel dan merkuri. Kompleks-kompleks ligan fencon diazina dicirikan dengan menggunakan spektroskopi resonans magnet nukleus, spektroskopi inframerah transformasi Fourier, spektroskopi fotoelektron sinar-X, spektroskopi penyebaran tenaga sinar-X, spektroskopi pembelauan sinar-X, mikroskopi elektron pengimbas dan mikroskopi elektron penghantaran. Sifat-sifat elektrokimia elektrodelektrod terubah suai telah ditentukan menggunakan kaedah voltammetri perlucutan gelombang segiempat sama, voltammetri berkitar dan spektroskopi impedans elektrokimia. Dapatan kajian menunjukkan bahawa di bawah keadaan optimum, 05-4506 elektrod-elektrod menunjukkan julat linear antara 0.1 nM dan 1.0 µM, 10 nM dan 1.0 µM, 5.0 µM dan 0.1 mM dengan had pengesanan 80 pM, 7.4 nM dan 3.7 µM untuk masing-masing pengesanan kuprum, nikel dan merkuri. Gangguan-gangguan oleh Ba²⁺, Ca²⁺, Cd²⁺, Ce³⁺, Co²⁺, Cu²⁺, Pb²⁺, Mn²⁺, Mg²⁺, Ni²⁺, Sr²⁺ dan Zn²⁺ adalah terabaikan. Voltammetri berkitar dan spektroskopi impedans elektrokimia menunjukkan bahawa pemindahan cas pada antara muka elektrod-larutan adalah sangat baik. Elektrod-elektrod yang dicadangkan telah berjaya digunakan untuk pengesanan kuprum, nikel, dan merkuri masing-masing di dalam sampel-sampel air buangan, sayuran dan krim-krim pencerah kulit. Kesimpulannya, elektrod-elektrod terubah suai yang dibangunkan ini mampu mengesan kuprum, nikel, dan merkuri. Implikasinya, elektrod-elektrod yang telah dibangunkan boleh digunakan sebagai alternatif yang sesuai bagi penentuan kuprum, nikel dan merkuri kerana mempunyai ciri-ciri seperti kepekaan, kepilihan dan kebolehasilan semula yang tinggi.

TABLE OF CONTENTS

				Page
ACKNOWLED	GMENTS	5		iii
ABSTRACT				iv
ABSTRAK				V
TABLE OF CON	NTENTS			vi
LIST OF TABLI	ES			xi
05-4506 LIST OF FIGUR	ES :du.my	Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah	PustakaTBainun	
LIST OF ABBRI	EVIATIO	DNS		xix
LIST OF APPEN	NDIXES			xxi
CHAPTER 1	INTRO	DUCTION		
1.1	Electroc	chemical Sensor		1
	1.1.1	Potentiometric Sensor		3
	1.1.2	Conductometric Sensor		4
	1.1.3	Voltammetric Sensor		5
1.2	Carbon	Paste Electrode		9
1.3	Copper,	Nickel, and Mercury		12
1.4	Problem	n Statement		16

1.5	Significant of Study	17
1.6	Objectives of Study	18
CHAPTER 2	LITERATURE REVIEW	
2.1	Introduction	20
2.2	Spectrochemical Method	21
2.3	Electrochemical Method	22
2.4	Modified CPE for Heavy Metals Analysis	27
2.5	Electrochemical Sensor Modified by Organometallic Compound	32
2.6	Electrochemical Impedance Spectroscopy	37
CHAPTER 3	METHODOLOGY	
🕓 05-4506832 🔮 pusta	Reagents and Chemicals Abdul Jalil Shah	42ptbupsi
3.2	Instrumentations	42
3.3	Synthesis of Fenchone Azine Ligand Complexes	46
	3.3.1 Synthesis of Fenchone Hydrazone	46
	3.3.2 Synthesis of 2,6–Diacetylpyridine –di–(1R)–(-)– Fenchone Diazine Ligand	46
	3.3.3 Synthesis of Tetracarbonylmolybdenum(0) Complex	47
	3.3.4 Synthesis of Chloropalladium(II) Complex	47
	3.3.5 Synthesis of Chloroplatinum(II) Complex	48
3.4	Characterization of Fenchone Diazine Ligand Complexes	48
	3.4.1 FTIR Analysis	48

05-4506832

	3.4.2	¹ H NMR Analysis	49
	3.4.3	XRD Analysis	49
	3.4.4	XPS and SEM Analysis	50
	3.4.5	TEM and EDX Analysis	50
3.5	Fabrica Electroc	tion of Modified and Unmodified MWCNTs Paste les	50
3.6	Analytic	eal Procedure	51
3.7	Optimiz	ation of Experimental Variables	54
	3.7.1	Effect of Composition Ratios	56
	3.7.2	Effect of Supporting Electrolyte	57
	3.7.3	Effect of pH	59
05-4506832 Øpustaka.u	^{psi} 3:7:4 ^{my}	Effect of SWSV Parameters Pustaka TBainun	60ptbupsi
3.8	Calibra Stabilit	tion Data, Limit of Detection, Reproducibility, and y	60
3.9	Interfere	ences Study	63
3.1	0 Real Sai	nples Analysis	64
	3.10.1	Determination of Cu ²⁺ in Wastewater	67
	3.10.2	Determination of Ni ²⁺ in Vegetables	67
	3.10.3	Determination of Hg ²⁺ in Skin Lightening Creams	68
CHAPTER 4	RESUL	T AND DISCUSSION	
		2	

 4.1 Square Wave Stripping Voltammetry Determination of Cu²⁺
 Using Tetracarbonylmolybdenum(0) Complex-Modified MWCNTs Paste Electrode

	4.1.1	Characterization of Tetracarbonylmolybdenum (0) Complex	70
	4.1.2	Electrochemical Characterization	74
	4.1.3	Electrochemical Response of Cu ²⁺	81
	4.1.4	Optimization of Experimental Variables	84
	4.1.5	Calibration Data, Reproducibility, and Stability	93
	4.1.6	Interference Studies	96
	4.1.7	Real Samples Analysis	99
	4.2 Square W Using C Paste Ele	Vave Stripping Voltammetry Determination of Ni ²⁺ hloropalladium(II) Complex-Modified MWCNTs ectrode	101
	4.2.1	Characterization of Chloropalladium(II) Complex	101
	~		
6832	www.ups4o2u2my	Electrochemical Characterization Pustaka TBainun	004tbupsi
6832	pustaka.ups4.2.2my 4.2.3	Electrochemical Characterization Pustaka TBainun Electrochemical Response of Ni ²⁺	004tbupsi 111
6832	pustaka.ups4.2.2my 4.2.3 4.2.4	Electrochemical Characterization PustakaTBainun Electrochemical Response of Ni ²⁺ Optimization of Experimental Variables	111 114
6832	pustaka.ups4.2.2my 4.2.3 4.2.4 4.2.5	Electrochemical Characterization PustakaTBainun Electrochemical Response of Ni ²⁺ Optimization of Experimental Variables Calibration Data, Reproducibility, and Stability	104tbupsi 111 114 123
6832	pustaka.ups4.2.2my 4.2.3 4.2.4 4.2.5 4.2.6 	Electrochemical Characterization PustakaTBainun Electrochemical Response of Ni ²⁺ Optimization of Experimental Variables Calibration Data, Reproducibility, and Stability Interference Studies	104 toupsi 111 114 123 125
6832	pustaka.ups4.2.2my 4.2.3 4.2.4 4.2.5 4.2.6 4.2.7 	Electrochemical Characterization Pustaka TBainun Electrochemical Response of Ni ²⁺ Optimization of Experimental Variables Calibration Data, Reproducibility, and Stability Interference Studies Real Samples Analysis	104 toupsi 111 114 123 125 129
6832	 Pustaka.ups4.2.2ny 4.2.3 4.2.4 4.2.5 4.2.6 4.2.7 4.3 Square Hg²⁺ WWCNT 	Electrochemical Characterization Pustaka TBainun Electrochemical Response of Ni ²⁺ Optimization of Experimental Variables Calibration Data, Reproducibility, and Stability Interference Studies Real Samples Analysis Wave Stripping Voltammetry Determination of Using Chloroplatinum(II) Complex-Modified	104 toupsi 111 114 123 125 129 131
6832	 Pustaka.ups4.2.2ny 4.2.3 4.2.4 4.2.5 4.2.6 4.2.7 4.3 Square Hg²⁺ MWCNT 4.3.1 	Electrochemical Characterization Pustaka TBainun Electrochemical Response of Ni ²⁺ Optimization of Experimental Variables Calibration Data, Reproducibility, and Stability Interference Studies Real Samples Analysis Wave Stripping Voltammetry Determination of Using Chloroplatinum(II) Complex-Modified TS Paste Electrode Characterization of Chloroplatinum(II) Complex	104 toupsi 111 114 123 125 129 131 131
6832	 Pustaka.ups4.2.2ny 4.2.3 4.2.4 4.2.5 4.2.6 4.2.7 4.3 Square Hg²⁺ NWCNT 4.3.1 4.3.2 	Electrochemical Characterization Pustaka TBainun Electrochemical Response of Ni ²⁺ Optimization of Experimental Variables Calibration Data, Reproducibility, and Stability Interference Studies Real Samples Analysis Wave Stripping Voltammetry Determination of Using Chloroplatinum(II) Complex-Modified TS Paste Electrode Characterization of Chloroplatinum(II) Complex	104 toupsi 111 114 123 125 129 131 131 131 138

	4.3.4	Optimization of Experimental Variables	145
	4.3.5	Calibration Data, Reproducibility, and Stability	154
	4.3.6	Interference Studies	156
	4.3.7	Real Samples Analysis	156
CHAPTER 5	CONCI	LUSION	
5.1	Conclus	ion	162
REFERENCES			166
APPENDIXES			190

PustakaTBainun

ptbupsi

LIST OF TABLES

Table No.		Page
2.1	The determination of copper, nickel, and mercury by various modes of voltammetry	28
2.2	Electrochemical performance of modified sensor with various types of modifier	33
3.1	The list of reagents and chemicals used in the study	43
3.2	The list of instrumentations used in the study	45
3.3	The experimental setup for SWSV measurement of modified MWCNTs paste electrodes pustaka.upsi.edu.my Kampus Sultan Abdul Jalil Shah	55 מקו, 10
3.4	The mass of salts required for the preparation of 1000 mL stock solution of analytes	57
3.5	The mass of supporting electrolytes for the preparation of 100 mL of stock solutions	58
3.6	The volume of stock solution of supporting electrolyte at different concentrations	58
3.7	The range of SWSV parameters studied for each modified MWCNTs paste electrodes	61
3.8	The volume of stock solutions for the series concentration of copper(II) chloride	62
3.9	The volume of stock solutions for the series concentration of nickel(II) chloride	62
3.10	The volume of stock solutions for the series concentration of mercury(II) chloride	63

	3.11	Mass of salts for the preparation of 100.0 mL stock solutions of interfering ions	65
	4.1	The comparison of sensor performances with other reported in determination of Cu^{2+}	95
	4.2	Determination of Cu^{2+} in real samples analysis (n =3)	100
	4.3	Recovery of Cu^{2+} in wastewater samples analysis (n = 3)	100
	4.4	The comparison of sensor performances with other reported in determination of Ni^{2+}	126
	4.5	Determination of Ni^{2+} in real samples analysis (n =3)	130
	4.6	Recovery of Ni^{2+} in vegetable samples analysis (n = 3)	130
	4.7	The comparison of sensor performances with other reported in determination of Hg^{2+}	157
	4.8	Determination of Hg^{2+} in real samples analysis (n =3)	161
05-450683	4.9	pustaka.upsi.edu.my Recovery of Hg^{2+} in skin lightening samples analysis (n = 3)	ptbupsi 161

÷Ĩ.

LIST OF FIGURES

Figure No).	Page
1.1	Schematic representation of a basic voltammetric system comprising of three electrodes. WE: working, RE: reference, and AE: auxiliary/ counter (Braungardt, 2015)	6
1.2	The example of nanoscale carbonaceous materials (Mauter & Elimelech, 2008)	11
2.1	(A) Bode plot and (B) Nyquist plot of EIS. Inset: Randle's equivalent electrical circuit for the system	39
3.1	The fabrication of the modified MWCNTs paste electrode	52
O5-45068323.2	Perpustakaan Tuanku Bainun PThe diagram of a cell for electrochemical measurements	53
4.1	(A) Chemical structure and (B) FTIR spectrum of tetracarbonylmolybdenum(0) complex	71
4.2	¹ H NMR spectrum of tetracarbonylmolybdenum(0) complex	72
4.3	(A) EDX spectrum and (B) wide scan XPS spectrum of tetracarbonylmolybdenum(0) complex	73
4.4	(A) SEM and (B) TEM image of the tetracarbonylmolybdenum(0) complex on the wall of MWCNT	75
4.5	The XRD pattern of tetracarbonylmolybdenum(0) complex	76
4.6	Cyclic voltammogram of (a) unmodified and (b) tetracarbonylmolybdenum(0) complex-modified MWCNTs paste electrode in 4.0 mM K ₃ [Fe(CN) ₆] containing 0.1 M KCl. Scan rate 100 mVs^{-1}	78

79 4.7 Nyquist unmodified plot of (a) and (b) tetracarbonylmolybdenum(0) complex-modified **MWCNTs** paste electrode in 4.0 mM K₃[Fe(CN)₆] containing 0.1 M KCl. Frequency: 1.0 MHz to 1.0 Hz. Inset: Randel's equivalent electrical circuit for the system The SWSV of 1.0 μ M Cu²⁺ in 0.1 M KCl (pH 2.0) at (a) 4.8 82 unmodified and (b) tetracarbonylmolybdenum(0) complexmodified MWCNTs paste electrode. Accumulation time: 60 s; accumulation potential: 0.0 V; equilibrium time: 10 s; frequency: 100 Hz; pulse size: 25 mV; step size: 2 mV The possible reaction mechanism of Cu²⁺ detection at 4.9 83 tetracarbonylmolybdenum(0) complex-modified **MWCNTs** paste electrode 85 The SWSV of 1.0 µM Cu²⁺ at modified MWCNTs paste 4.10 electrode with different composition ratios (% w/w) of tetracarbonylmolybdenum(0) complex. Other conditions are similar as in Figure 4.8 87 4.11 (A) The effect of different types of supporting electrolyte and (B) KCl concentration on the peak current of $1.0 \,\mu M \,Cu^{2+}$. Other PustakaTBainun ^o conditions are similar as in Figure 4.8 89 4.12 (A) The effect of the pH solution and (B) different frequency on the peak current of $1.0 \,\mu M \, Cu^{2+}$. Other conditions are similar as in Figure 4.8 90 4.13 (A) The effect of pulse size and (B) step size on the peak current of 1.0 μ M Cu²⁺. Other conditions are similar as in Figure 4.8 4.14 (A) Effect of accumulation time and (B) accumulation potential 92 on the peak current of $1.0 \,\mu M \, Cu^{2+}$. Other conditions are similar as in Figure 4.8 (A) The SWSV and (B) calibration curve of Cu^{2+} having 94 4.15 concentration of 0.1 nM to 1.0 µM in 0.1 M KCl (pH 2.0) at optimum conditions 97 4.16 (A) Reproducibility **(B)** stability and of tetracarbonylmolybdenum(0) complex-modified **MWCNTs** paste electrode at peak response of $1.0 \,\mu M \, Cu^{2+}$

05-4506832

si

4.17	The effect of interfering ions to I_{pa} response of 1.0 μ M Cu ²⁺ at tetracarbonylmolybdenum(0) complex-modified MWCNTs paste electrode	98
4.18	(A) Chemical structure and (B) FTIR spectrum of chloropalladium(II) complex	102
4.19	¹ H NMR spectrum of chloropalladium(II) complex	103
4.20	(A) EDX spectrum and (B) wide scan XPS spectrum of chloropalladium(II) complex	105
4.21	SEM (A) and TEM (B) image of the chloropalladium(II) complex on the wall of MWCNTs	106
4.22	The XRD pattern of chloropalladium(II) complex	107
4.23	Cyclic voltammogram of (a) unmodified and (b) chloropalladium(II) complex-modified MWCNTs paste electrode in 4.0 mM K_3 [Fe(CN) ₆] containing 0.1 M KCl. Scan rate 100 mVs ⁻¹	108
05-4506832 <u>4.24</u>	Nyquist plot of (a) unmodified and (b) chloropalladium(II) complex-modified MWCNTs paste electrode in 4.0 mM K_3 [Fe(CN) ₆] containing 0.1 M KCl. Frequency: 1.0 MHz to 1.0 Hz. Inset: Randel's equivalent electrical circuit for the system	110
4.25	The SWSV of 1.0 μ M Ni ²⁺ in 0.5 M NaCl (pH 5.0) at (a) unmodified and (b) chloropalladium(II) complex-modified MWCNTs paste electrode. Accumulation time: 60 s; accumulation potential: 0.3 V; equilibrium time: 10 s; frequency: 90 Hz; pulse size: 50 mV; step size: 5 mV	112
4.26	The possible reaction mechanism of Ni ²⁺ detection at chloropalladium(II) complex-modified MWCNTs paste electrode	113
4.27	The SWSV of 1.0 μ M Ni ²⁺ at modified MWCNTs paste electrode with different composition ratios (% w/w) of chloropalladium(II) complex. Other conditions are similar as in Figure 4.24	115

4	1.28	(A) The effect of different types of supporting electrolyte and (B) NaCl concentration on the peak current of 1.0 μ M Ni ²⁺ . Other conditions are similar as in Figure 4.25	117	
4	1.29	(A) The effect of the pH solution and (B) different frequency on the peak current of $1.0 \ \mu M \ Ni^{2+}$. Other conditions are similar as in Figure 4.25	119	
4	4.30	(A) The effect of step size and (B) pulse size on the peak current of $1.0 \ \mu M \ Ni^{2+}$. Other conditions are similar as in Figure 4.25	121	
4	.31	(A) Effect of accumulation time and (B) accumulation potential on the peak current of $1.0 \mu M Ni^{2+}$. Other conditions are similar as in Figure 4.25	122	
4	1.32	(A) The SWSV and (B) calibration curve of Ni ²⁺ having concentration of 10 nM to 1.0 μ M in 0.5 M NaCl (pH 5.0) at optimum conditions	124	
4	1.33	(A) Reproducibility and (B) stability of chloropalladium(II) complex-modified MWCNTs paste electrode at peak response of $1.0 \ \mu M \ Ni^{2+}$	127	
05-4506832 4	4.34 P	bustaka.upsi.edu.my for Perpustakaan Tuanku Bainun The effect of interfering ions on I_{pa} response of 1.0 μ M Ni ²⁺ at chloropalladium(II) complex-modified MWCNTs paste electrode	128	psi
4	1.35	(A) Chemical structure and (B) FTIR spectrum of chloroplatinum(II) complex	133	
4	1.36	¹ H NMR spectrum of chloroplatinum(II) complex	134	
4	1.37	(A) EDX spectrum and (B) wide scan XPS spectrum of chloroplatinum(II) complex	135	
4	1.38	SEM (A) and TEM (B) image of chloroplatinum(II) complex on the wall of MWCNTs	136	
4	1.39	The XRD pattern of chloroplatinum(II) complex	137	
4	1.40	Cyclic voltammogram of (a) unmodified and (b) chloroplatinum(II) complex-modified MWCNTs paste electrode in 4.0 mM K_3 [Fe(CN) ₆] containing 0.1 M KCl. Scan rate 100 mVs ⁻¹	139	

	4.41	Nyquist plot of (a) unmodified and (b) chloroplatinum(II) complex-modified MWCNTs paste electrode in 4.0 mM K_3 [Fe(CN) ₆] containing 0.1 M KCl. Frequency: 1.0 MHz to 1.0 Hz. Inset: Randel's equivalent electrical circuit for the system	140	
	4.42	The SWSV of 0.1 mM Hg^{2+} in 0.5 M KCl (pH 3.0) at (a) unmodified and (b) chloroplatinum(II) complex-modified MWCNTs paste electrode. Accumulation time: 500 s; accumulation potential: -0.2 V; equilibrium time: 10 s; frequency: 50 Hz; pulse size: 50 mV; step size: 2 mV	143	
	4.43	The possible reaction mechanism of Hg^{2+} detection at chloroplatinum(II) complex-modified MWCNTs paste electrode	144	
	4.44	The SWSV of 0.1 mM Hg^{2+} at modified MWCNTs paste electrode with different composition ratios (% w/w) of chloroplatinum(II) complex. Other conditions are similar as in Figure 4.42	146	
05-450683	4.45 2	 (A) The effect of different types of supporting electrolyte and (B) KCl concentration on the peak current of 0.1 mM Hg²⁺. Other conditions are similar as in Figure 4.42 Perpustaka.upsi.edu.my 	148	psi
	4.46	(A) The effect of the pH solution and (B) different frequency on the peak current of 0.1 mM Hg^{2+} . Other conditions are similar as in Figure 4.42	150	
	4.47	(A) The effect of pulse size and (B) step size on the peak current of 0.1 mM Hg^{2+} . Other conditions are similar as in Figure 4.42	152	
	4.48	(A) The effect of accumulation time and (B) accumulation potential on the peak current of 0.1 mM Hg^{2+} . Other conditions are similar as in Figure 4.42	153	
	4.49	(A) The SWSV and (B) calibration curve of Hg^{2+} having concentration of 5.0 μ M to 0.1 mM in 0.5 KCl (pH 3.0) at optimum conditions	155	
	4.50	(A) Reproducibility and (B) stability of chloroplatinum(II) complex-modified MWCNTs paste electrode at peak response of 0.1mM Hg ²⁺	158	

The effect of interfering ions on I_{pa} response of 0.1mM Hg^{2+} at chloroplatinum(II) complex-modified MWCNTs paste 4.51 159 electrode

🕓 05-4506832 🔇 pustaka.upsi.edu.my 📑

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

PustakaTBainun

LIST OF ABBREVIATIONS

	AdSV	Adsorptive stripping voltammetry
	ASV	Anodic stripping voltammetry
	CNTs	Carbon nanotubes
	CNTsPE	Carbon nanotubes paste electrode
	CPE	Carbon paste electrode
	CSV	Cathodic stripping voltammetry
	CV	Cyclic voltammetry
	DMG	Dimethylglyoxime
OF 45049	DPV	Differential pulse voltammetry
05-45068	EDX	Energy disperse X-ray
	EIS	Electrochemical impedance spectroscopy
	FTIR	Fourier transform infrared spectroscopy
	GCE	Glassy carbon electrode
	ICP-OES	Inductively coupled plasma-optical emission spectrometry
	IIP	Ion-imprinted polymer
	IL	Ionic liquid
	ISE	Ion selective electrode
	MWCNTs	Multiwalled carbon nanotubes
	NMR	Nuclear magnetic resonance spectroscopy
	NPs	Nanoparticles
	RGO	Reduced graphene oxide

Relative standard deviation
Scanning electron microscope
Square wave adsorptive stripping voltammetry
Single walled carbon nanotubes
Square wave stripping voltammetry
Square wave voltammetry
Transmission electron microscope
X-ray photoelectron spectroscopy
X-ray diffraction spectroscopy

05-4506832

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

PustakaTBainun

LIST OF APPENDIXES

05-4506832 😵 pustaka.upsi.edu.my

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

9 PustakaTBainun

ptbupsi

CHAPTER 1

INTRODUCTION

Electrochemical Sensor

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

Electrochemical sensor is one of the chemical sensor subgroups that is practically using an electrode as the transduction element that converts the various form of energy to into the useful signal (Zhang, Ju, & Wang, 2008). The largest application of electrochemical sensor is widely in medicine, environmental monitoring and industrial analysis (Hanrahan, Patil, & Wang, 2004). The broad range application of electrochemical sensors for fast, simple and low-cost procedures remains over the centuries (Stradiotto, Yamanaka, & Zanoni, 2003). The area of electrochemical sensors also broaden through the development and the modification of sensors technology and sensor materials including nanomaterials (Ganjali et al., 2011; Kim, Yun, & Han, 2009; Pumera, 2014; Pumera, Ambrosi, Bonanni, Chng, & Poh, 2010; Wang, 2005; Wu, He, Tan, Wang, & Zhang, 2013).

Electrochemical sensor is concerned with the interrelation of electrical and chemical effects where the process take place at the electrode-solution interface. The current signal that results from the interaction of the chemical species and the recognition layer provide the desired chemical information such as the concentration or the activity of the chemical species (Privett, Shin, & Schoenfisch, 2010). Electrochemical sensor applied for a variety of reliable real-time information such as obtaining thermodynamic data about a reaction, study the spectroscopic properties or rate of decay of radical ion and investigate trace amounts of metal ions or organic species (Cornelis, 2003). The advantages of using electrochemical sensor are user friendly, simple, robust, selective, sensitive, cost-effectiveness, and allowing fast analysis without disturbing the samples (Brett, 2001; Faridbod, Gupta, & Zamani, 2011; Hanrahan et al., 2004; Kimmel, LeBlanc, Meschievitz, & Cliffel, 2012; Mead et

05-4506@**a**k, 2013).pustaka.upsi.edu.my

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

PustakaTBainun

Most of the electrochemical sensor are categorize into their mode of signal transduction, which are potentiometric, conductometric, and amperometric or voltammetric sensors. The potentiometric sensor measures the potential different between the working electrode and the reference electrode at sensor interface under the conditions of no current flow. Meanwhile, conductometric sensor measured the different electrolyte conductivity at different environments. Amperometric or voltammetric sensor measure the resulting current caused by the redox process of an electroactive species under the applied potential (Skoog, Holler, & Crouch, 2007).

05-4506832

ptbupsi

1.1.1 Potentiometric Sensor

Since early 1930's, potentiometric sensors have found the widest practical applicability due to their simplicity, easy to use, and low-cost. Walter Nernst (1889) was a first person who discovered the potentiometric methods based on Nernst equation (Nernst, 1889). The electrochemical cell for potentiometric sensor consists of two electrodes which are working electrode and reference electrode that connected to the potentiometer. The potentiometer is a sensitive potential measuring device that measures the differential potential in millivolt.

The most representative potentiometric sensor is the ion selective electrodes (ISE). ISE are mainly membrane-based devices, consisting of permselective ionconducting materials, which separate the sample from the internal solution of the the sampus Sultan Abdul Jalil Shah electrode. Under zero current condition, the differential potential that yields at the interface between the permselective ion-conducting materials are measured (Bobacka, Ivaska, & Lewenstam, 2008; Shea, 1998).

The most commonly used reference electrode are silver/silver chloride electrode, mercury/mercury oxide electrode, and saturated calomel electrode, standard hydrogen electrode, and static mercury drop electrode due to their stable, reversible, and reproducible properties (Janata, 2009). In potentiometric sensors, the potential signal is proportional (in a logarithmic fashion) to the concentration (activity) of the ion of interest. The Nernst Equation is typically used to express the potential difference of cell potential (Bakker & Pretsch, 2002).

PustakaTBainun

1.1.2 Conductometric Sensor

📢 pustaka.upsi.edu.my

Conductometric sensor is an electrochemical sensor that operating based on the response from the electrolyte conductivity measurement. Conductometric at a series of frequencies usually operated under alternating current supply. The main advantages of conductometric sensors are simple preparation and procedure, not involve the reference electrode, low production cost, compact and durable. The materials frequently used in conductometric sensors is thin films such as cubic cadmium sulphide thin film (Smyntyna, Golovanov, Kac'iulis, Mattogno, & Righini, 1995), porous films of MnWO₄ (Qu & Meyer, 1997) oxides doped film with copper or copper oxide (Devi, Manorama, & Rao, 1995; Maekawa, Tamaki, & Miura, 1994), and semiconducting gallium oxide thin films (Fleischer & Meixner, 1995).

The operating principle of conductometric sensors is the modulated of electrical conductivity when the electroactive species interact with the operating device. The effect of adsorption, chemical reactions, diffusion, or catalysis reaction on the surface of the sensing layer change the resistance and then, modulate its electrical conductivity. The change in the current is correlated to the concentration of the electroactive species (Wohltjen, Barger, Snow, & Jarvis, 1985).

Perpustakaan Tuanku Bainun

In the conductometric method, the conductivity of the electrolyte is directly proportional to the specific conductivity of electrolyte (Wang, Xu, Zhang, & Li, 2008). Measurement of the conductivity of the liquid usually performed at low voltage due to the charge-transfer process at the electrode surface and polarization of the electrodes at the operating voltage (Fraden, 2016).

05-4506832

1.1.3 Voltammetric Sensor

Voltammetric sensor is an electrochemical sensor that measures the current produced at certain potential when the potential was scanned from one present value to another. The concentration of the electroactive species is directly proportional to the current produced. The applied potential provide the driving force for the electron-transfer reaction of the electroactive species, and the rate of the electron-transfer reaction that occur on the electrode surface is the resulting current (Skoog et al., 2007). The development of voltammetric sensor was started in 1922 by Heyrovsky where the dropping mercury electrode was developed (Heyrovský, 1922).

In voltammetry, the concentration of the redox species and the rate of the reaction were controlled by applied potential. The redox reactions involve the Faradaic process and non-Faradaic process. The Faradaic process includes the transfer of electrons across the electrode-solution-interface and obeys the Faraday's Law. The faradaic current is generated during this process, and its magnitude is governed by the mass transfer process such as diffusion, migration, and convection. Meanwhile, the non-Faradaic processes do not involve a transfer of electrons and hence do not obey Faraday's Law. These include processes where no charge transfer occurs because they are thermodynamically or kinetically unfavourable, or where the structure of the electrode solution interface changes with changing potential or solution concentrations (Bond, 1980).

The basic instrumentation of voltammetric sensor as shown in Figure 1.1 consist of a three-electrode cell immersed in a supporting electrolyte containing the target

