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ABSTRACT 

This study aims to develop a modified multiwalled carbon nanotubes paste electrodes 

based fenchone azine ligand complexes for detecting copper, nickel and mercury. The 

fenchone diazine ligand complexes were characterized by using nuclear magnetic 

resonance spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron 

spectroscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction spectroscopy, 

scanning electron microscopy and transmission electron microscopy. The 

electrochemical properties of the modified electrodes were determined using square 

wave stripping voltammetry, cyclic voltammetry and electrochemical impedance 

spectroscopy. The results show that under optimal conditions, the electrodes showed a 

linear range between 0.1 nM and 1.0 µM, 10 nM and 1.0 µM, 5.0 µM and 0.1 mM with 

the limit of detection of 80 pM, 7.4 nM and 3.7 µM for detection of copper, nickel and 

mercury respectively. The interferences from Ba2+, Ca2+, Cd2+, Ce3+, Co2+, Cu2+, Pb2+, 

Mn2+, Mg2+, Ni2+, Sr2+ and Zn2+ were negligible. Cyclic voltammetry and 

electrochemical impedance spectroscopy indicated that the charge transfer at the 

electrode-solution interface was excellent. The proposed electrodes were successfully 

applied for detection of copper, nickel, and mercury in wastewater samples, vegetables, 

and skin lightening creams, respectively. In conclusion, the developed modified 

electrodes are able to detect copper, nickel and mercury. By implication, the developed 

electrodes can be used as a suitable alternative for the determination of copper, nickel 

and mercury because it has characteristics such as sensitivity, selectivity and high 

reproducibility. 
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PENGESAN ELEKTROKIMIA KUPRUM, NIKEL DAN MERKURI 

MENGGUNAKAN ELEKTROD-ELEKTROD PES KARBON                  

NANOTIUB BERBILANG DINDING TERUBAH                                                                  

SUAI-KOMPLEKS- LIGAN FENCON                                                      

DIAZINA 

ABSTRAK 

Kajian ini bertujuan membangunkan elektrod-elektrod pes karbon nanotiub berbilang 

dinding terubah suai berasaskan kompleks-kompleks ligan fencon diazina bagi 

mengesan kuprum, nikel dan merkuri. Kompleks-kompleks ligan fencon diazina 

dicirikan dengan menggunakan spektroskopi resonans magnet nukleus, spektroskopi 

inframerah transformasi Fourier, spektroskopi fotoelektron sinar-X, spektroskopi 

penyebaran tenaga sinar-X, spektroskopi pembelauan sinar-X, mikroskopi elektron 

pengimbas dan mikroskopi elektron penghantaran. Sifat-sifat elektrokimia elektrod-

elektrod terubah suai telah ditentukan menggunakan kaedah voltammetri perlucutan 

gelombang segiempat sama, voltammetri berkitar dan spektroskopi impedans 

elektrokimia. Dapatan kajian menunjukkan bahawa di bawah keadaan optimum, 

elektrod-elektrod menunjukkan julat linear antara 0.1 nM dan 1.0 µM, 10 nM dan 1.0 

µM, 5.0 µM dan 0.1 mM dengan had pengesanan 80 pM, 7.4 nM dan 3.7 µM untuk 

masing-masing pengesanan kuprum, nikel dan merkuri. Gangguan-gangguan oleh 

Ba2+, Ca2+, Cd2+, Ce3+, Co2+, Cu2+, Pb2+, Mn2+, Mg2+, Ni2+, Sr2+ dan Zn2+ adalah 

terabaikan. Voltammetri berkitar dan spektroskopi impedans elektrokimia 

menunjukkan bahawa pemindahan cas pada antara muka elektrod-larutan adalah sangat 

baik. Elektrod-elektrod yang dicadangkan telah berjaya digunakan untuk pengesanan 

kuprum, nikel, dan merkuri masing-masing di dalam sampel-sampel air buangan, 

sayuran dan krim-krim pencerah kulit. Kesimpulannya, elektrod-elektrod terubah suai 

yang dibangunkan ini mampu mengesan kuprum, nikel, dan merkuri. Implikasinya, 

elektrod-elektrod yang telah dibangunkan boleh digunakan sebagai alternatif yang 

sesuai bagi penentuan kuprum, nikel dan merkuri kerana mempunyai ciri-ciri seperti 

kepekaan, kepilihan dan kebolehasilan semula yang tinggi. 
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1.1  Electrochemical Sensor 

Electrochemical sensor is one of the chemical sensor subgroups that is practically using 

an electrode as the transduction element that converts the various form of energy to into 

the useful signal (Zhang, Ju, & Wang, 2008). The largest application of electrochemical 

sensor is widely in medicine, environmental monitoring and industrial analysis 

(Hanrahan, Patil, & Wang, 2004). The broad range application of electrochemical 

sensors for fast, simple and low-cost procedures remains over the centuries (Stradiotto, 

Yamanaka, & Zanoni, 2003). The area of electrochemical sensors also broaden through 

the development and the modification of sensors technology and sensor materials 

including nanomaterials (Ganjali et al., 2011; Kim, Yun, & Han, 2009; Pumera, 2014; 

Pumera, Ambrosi, Bonanni, Chng, & Poh, 2010; Wang, 2005; Wu, He, Tan, Wang, & 

Zhang, 2013). 
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Electrochemical sensor is concerned with the interrelation of electrical and 

chemical effects where the process take place at the electrode-solution interface. The 

current signal that results from the interaction of the chemical species and the 

recognition layer provide the desired chemical information such as the concentration or 

the activity of the chemical species (Privett, Shin, & Schoenfisch, 2010). 

Electrochemical sensor applied for a variety of reliable real-time information such as 

obtaining thermodynamic data about a reaction, study the spectroscopic properties or 

rate of decay of radical ion and investigate trace amounts of metal ions or organic 

species (Cornelis, 2003). The advantages of using electrochemical sensor are user 

friendly, simple, robust, selective, sensitive, cost-effectiveness, and allowing fast 

analysis without disturbing the samples (Brett, 2001; Faridbod, Gupta, & Zamani, 

2011; Hanrahan et al., 2004; Kimmel, LeBlanc, Meschievitz, & Cliffel, 2012; Mead et 

al., 2013). 

Most of the electrochemical sensor are categorize into their mode of signal 

transduction, which are potentiometric, conductometric, and amperometric or 

voltammetric sensors. The potentiometric sensor measures the potential different 

between the working electrode and the reference electrode at sensor interface under the 

conditions of no current flow. Meanwhile, conductometric sensor measured the 

different electrolyte conductivity at different environments. Amperometric or 

voltammetric sensor measure the resulting current caused by the redox process of an 

electroactive species under the applied potential (Skoog, Holler, & Crouch, 2007). 
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1.1.1  Potentiometric Sensor 

Since early 1930’s, potentiometric sensors have found the widest practical applicability 

due to their simplicity, easy to use, and low-cost. Walter Nernst (1889) was a first 

person who discovered the potentiometric methods based on Nernst equation (Nernst, 

1889). The electrochemical cell for potentiometric sensor consists of two electrodes 

which are working electrode and reference electrode that connected to the 

potentiometer. The potentiometer is a sensitive potential measuring device that 

measures the differential potential in millivolt. 

The most representative potentiometric sensor is the ion selective electrodes 

(ISE). ISE are mainly membrane-based devices, consisting of permselective ion-

conducting materials, which separate the sample from the internal solution of the 

electrode. Under zero current condition, the differential potential that yields at the 

interface between the permselective ion-conducting materials are measured (Bobacka, 

Ivaska, & Lewenstam, 2008; Shea, 1998). 

The most commonly used reference electrode are silver/silver chloride 

electrode, mercury/mercury oxide electrode, and saturated calomel electrode, standard 

hydrogen electrode, and static mercury drop electrode due to their stable, reversible, 

and reproducible properties (Janata, 2009). In potentiometric sensors, the potential 

signal is proportional (in a logarithmic fashion) to the concentration (activity) of the ion 

of interest. The Nernst Equation is typically used to express the potential difference of 

cell potential (Bakker & Pretsch, 2002). 
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1.1.2  Conductometric Sensor 

Conductometric sensor is an electrochemical sensor that operating based on the 

response from the electrolyte conductivity measurement. Conductometric at a series of 

frequencies usually operated under alternating current supply. The main advantages of 

conductometric sensors are simple preparation and procedure, not involve the reference 

electrode, low production cost, compact and durable. The materials frequently used in 

conductometric sensors is thin films such as cubic cadmium sulphide thin film 

(Smyntyna, Golovanov, Kacˇiulis, Mattogno, & Righini, 1995), porous films of 

MnWO4 (Qu & Meyer, 1997) oxides doped film with copper or copper oxide (Devi, 

Manorama, & Rao, 1995; Maekawa, Tamaki, & Miura, 1994), and semiconducting 

gallium oxide thin films (Fleischer & Meixner, 1995). 

The operating principle of conductometric sensors is the modulated of electrical 

conductivity when the electroactive species interact with the operating device. The 

effect of adsorption, chemical reactions, diffusion, or catalysis reaction on the surface 

of the sensing layer change the resistance and then, modulate its electrical conductivity. 

The change in the current is correlated to the concentration of the electroactive species 

(Wohltjen, Barger, Snow, & Jarvis, 1985). 

In the conductometric method, the conductivity of the electrolyte is directly 

proportional to the specific conductivity of electrolyte (Wang, Xu, Zhang, & Li, 2008). 

Measurement of the conductivity of the liquid usually performed at low voltage due to 

the charge-transfer process at the electrode surface and polarization of the electrodes at 

the operating voltage (Fraden, 2016). 
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1.1.3  Voltammetric Sensor 

Voltammetric sensor is an electrochemical sensor that measures the current produced 

at certain potential when the potential was scanned from one present value to another. 

The concentration of the electroactive species is directly proportional to the current 

produced. The applied potential provide the driving force for the electron-transfer 

reaction of the electroactive species, and the rate of the electron-transfer reaction that 

occur on the electrode surface is the resulting current (Skoog et al., 2007). The 

development of voltammetric sensor was started in 1922 by Heyrovsky where the 

dropping mercury electrode was developed (Heyrovský, 1922). 

In voltammetry, the concentration of the redox species and the rate of the 

reaction were controlled by applied potential. The redox reactions involve the Faradaic 

and non-Faradaic process. The Faradaic process includes the transfer of electrons across 

the electrode-solution-interface and obeys the Faraday's Law. The faradaic current is 

generated during this process, and its magnitude is governed by the mass transfer 

process such as diffusion, migration, and convection. Meanwhile, the non-Faradaic 

processes do not involve a transfer of electrons and hence do not obey Faraday's Law. 

These include processes where no charge transfer occurs because they are 

thermodynamically or kinetically unfavourable, or where the structure of the electrode 

solution interface changes with changing potential or solution concentrations (Bond, 

1980). 

The basic instrumentation of voltammetric sensor as shown in Figure 1.1 consist 

of a three-electrode cell immersed in a supporting electrolyte containing the target  


