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ABSTRACT 

  

 

 

This study aims to develop a voltammetric sensors of acetaminophen, dopamine and 

hydroquinone using zinc layered hydroxide-L-phenylalanate/multiwalled carbon 

nanotubes, zinc layered hydroxide-sodium dodecyl sulphate-isoprocarb/multiwalled 

carbon nanotubes and zinc layered hydroxide-ferulate/multiwalled carbon nanotubes, 

respectively. The surface morphology of these layered materials and multiwalled 

carbon nanotubes were determined using scanning electron microscope and 

transmission electron microscope, while the rate of electron transfer on the surface of 

these electrodes were determined by electrochemical impedance spectroscopy. The 

square wave voltammetry method was used to study the performance of these 

electrodes. Several experimental conditions influencing the voltammetric responses 

such as percentage of modifiers, type and concentration of supporting electrolyte, pH 

of the solutions and square wave voltammetry parameters were optimized. Under 

optimum conditions, these electrodes showed linear response ranges for the 

determination of acetaminophen, dopamine and hydroquinone from 0.3
 µM to 0.1 

mM (correlation coefficient: 0.9965), 1.0 µM to 0.3 mM (correlation coefficient = 

0.9971) and 10.0 µM to 1.0 mM (correlation coefficient = 0.9957) with the limit of 

detection was obtained at 0.83
 
nM, 0.43 µM and 5.7 µM, respectively. Interferences 

of several ions and compounds were studied and most of them did not interfere on the 

voltammetric responses. As a conclusion, the fabricated electrodes displayed excellent 

analytical performance with wider linear range, lower limit of detection and also 

exhibited good reproducibility, repeatability and stability. In its implication, these 

proposed electrodes were successfully applied for determination of acetaminophen, 

dopamine and hydroquinone in pharmaceutical tablet, dopamine hydrochloride 

injection, water samples and cosmetic cream, respectively. 
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PENDERIA VOLTAMMETRI UNTUK FARMASEUTIKAL 

MENGGUNAKAN PES ZINK BERLAPIS HIDROKSIDA/KARBON 

NANOTIUB BERBILANG DINDING TERUBAHSUAI 

 

 

 

 ABSTRAK 

 

 

 

Kajian ini bertujuan membangunkan masing-masing penderia voltammetri 

asetaminofen, dopamina dan hidrokuinon menggunakan zink berlapis hidroksida-L-

fenilalanat/karbon nanotiub berbilang dinding, zink berlapis hidroksida-natrium 

dodekil sulfat-isoprokarb/karbon nanotiub berbilang dinding dan zink berlapis 

hidroksida-ferulat/karbon nanotiub berbilang dinding. Morfologi permukaan bahan 

berlapis dan karbon nanotiub berbilang dinding telah ditentukan menggunakan 

mikroskop pengimbas elektron dan mikroskop transmisi elektron, manakala kadar 

pemindahan elektron pada permukaan elektrod-elektrod tersebut telah ditentukan 

menggunakan spektroskopi impedans elektrokimia. Kaedah voltammetri gelombang 

segiempat sama telah digunakan untuk menguji prestasi elektrod-elektrod tersebut. 

Beberapa keadaan eksperimen yang mempengaruhi gerak balas voltammetri seperti 

peratus pengubahsuai, jenis dan kepekatan elektrolit penyokong, pH larutan dan 

parameter-parameter voltammetri gelombang segiempat sama telah dioptimumkan. Di 

bawah keadaan-keadaan optimum, elektrod-elektrod tersebut menunjukkan gerak 

balas linear bagi penentuan asetaminofen, dopamina dan hidrokuinon pada julat 0.3
 

µM hingga 0.1 mM (pekali korelasi = 0.9965), 1.0 µM hingga 0.3 mM (pekali 

korelasi = 0.9971) dan 10.0 µM hingga 1.0 mM (pekali korelasi = 0.9957) dengan had 

pengesanan telah diperolehi masing-masing pada 0.83
 
nM, 0.43 µM dan 5.7 µM. 

Gangguan daripada beberapa ion dan sebatian telah dikaji dan kebanyakannya tidak 

mengganggu gerak balas voltammetri. Sebagai kesimpulannya, elektrod-elektrod 

yang telah direka bentuk ini mempamerkan prestasi analisis yang sangat baik dengan 

julat linear yang lebih luas, had pengesanan yang lebih rendah dan juga menunjukkan 

kebolehasilan, kebolehulangan dan kestabilan yang baik. Implikasinya, elektrod-

elektrod yang dicadangkan tersebut juga telah berjaya diaplikasikan bagi penentuan 

masing-masing asetaminofen, dopamina dan hidrokuinon dalam tablet farmaseutikal, 

suntikan dopamina hidroklorida, sampel air dan krim kosmetik. 
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CHAPTER 1 

 

 

  

 

INTRODUCTION 

 

 

 

 

1.1 Voltammetry 

 

Voltammetry is an electrochemical method that measure the current in dependence of 

an applied potential, and the resulting current versus the potential will be plotted as a 

voltammogram (Svancara, Vytras, Kalcher, & Walcarius, 2012; Wang, 2006). In 

many measurements, the applied potential or the current is measured over a period of 

time (t). Hence, all voltammetry methods can be described as a function of time (t), 

current (I) or potential (E) and have been proven to be a valuable tools for 

determining complexation in organic or inorganic systems, analyzing trace metals in 

solutions and studying diffusion and kinetics. The earliest voltammetric sensor is 

called polarography was developed in 1922 by Heyrovsky, uses the dropping mercury 

electrode (Heyrovsky, 1922). 
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Voltammetry is also an electroactive method because the application of the 

potential will provoke an electrochemical process (reduction or oxidation) of redox 

species (analyte). It is causing a change in the concentration of an analyte at the 

surface of electrode (Settle, 1997). The redox reactions involve the Faradaic or non 

Faradaic processes. The Faradaic process includes the electrons transfer through the 

electrode-solution-interface and obeys Faraday’s Law. Meanwhile, the non Faradaic 

process does not involve the electrons transfer and does not obey Faraday’s Law. 

These include processes where the structure of the electrode solution interface 

changes with changing of potential or solution concentrations  (Bond, 1980). 

 

The basic instrumentation of voltammetric measurement is a potentiostat, 

recorder and electrochemical cell. The function of potentiostat is to apply the potential 

and monitor the current. It can utilize different modes of voltammetry such as square 

wave voltammetry (SWV), cyclic voltammetry (CV), stripping voltammetry, pulse 

voltammetry and chronocoulometry. Each mode will secrete their typical potential – 

current and distinguished by a different form of voltammogram. The most common 

type of electrochemical cell used in voltammetry is the three – electrode cell. These 

three electrodes are working electrode, reference electrode and counter electrode 

which are immersed in a solution containing the analyte and supporting electrolyte. 

The potential is applied between the working and reference electrodes, while the 

current flow is measured between the working and counter electrodes. The schematic 

representation of a basic votammetric system is shown in Figure 1.1 (Otles, 2016; 

Settle, 1997). 
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Figure 1.1 Schematic representation of a basic voltammetric system consisting of 

counter (C), working (W) and reference (R) electrodes (Braungardt, 2015) 

 

The working electrode is an electrode that provides the surface for electron 

transfer to occur for the system under investigation. The materials that used as a 

working electrode is important since it will reflect the selectivity and sensitivity of the 

voltammetric sensor. The working electrodes should be considered based on certain 

characteristics such as able to produce a significant reproducible response, inert, good 

electrical conductivity, wide potential window and surface reproducibility (Wang, 
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