

VOLTAMMETRIC SENSORS FOR PHARMACEUTICAL USING ZINC LAYERED HYDROXIDE/MULTIWALLED CARBON NANOTUBES PASTE

MOHAMAD SYAHRIZAL BIN AHMAD

🔾 05-4506832 🛛 🚱 pustaka.upsi.edu.my

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

ptbupsi

THESIS SUBMITTED IN FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY (CHEMISTRY)

FACULTY OF SCIENCE AND MATHEMATICS UNIVERSITI PENDIDIKAN SULTAN IDRIS

2018

ABSTRACT

This study aims to develop a voltammetric sensors of acetaminophen, dopamine and hydroquinone using zinc layered hydroxide-L-phenylalanate/multiwalled carbon nanotubes, zinc layered hydroxide-sodium dodecyl sulphate-isoprocarb/multiwalled carbon nanotubes and zinc layered hydroxide-ferulate/multiwalled carbon nanotubes, respectively. The surface morphology of these layered materials and multiwalled carbon nanotubes were determined using scanning electron microscope and transmission electron microscope, while the rate of electron transfer on the surface of these electrodes were determined by electrochemical impedance spectroscopy. The square wave voltammetry method was used to study the performance of these electrodes. Several experimental conditions influencing the voltammetric responses such as percentage of modifiers, type and concentration of supporting electrolyte, pH of the solutions and square wave voltammetry parameters were optimized. Under optimum conditions, these electrodes showed linear response ranges for the determination of acetaminophen, dopamine and hydroquinone from 0.3 μ M to 0.1 mM (correlation coefficient: 0.9965), 1.0 μ M to 0.3 mM (correlation coefficient = 0.9971) and 10.0 μ M to 1.0 mM (correlation coefficient = 0.9957) with the limit of detection was obtained at 0.83 nM, 0.43 μ M and 5.7 μ M, respectively. Interferences of several ions and compounds were studied and most of them did not interfere on the voltammetric responses. As a conclusion, the fabricated electrodes displayed excellent analytical performance with wider linear range, lower limit of detection and also ⁰⁵⁻⁴⁵⁰⁶⁸exhibited good reproducibility, repeatability and stability. In its implication, these thupsi proposed electrodes were successfully applied for determination of acetaminophen, dopamine and hydroquinone in pharmaceutical tablet, dopamine hydrochloride injection, water samples and cosmetic cream, respectively.

PENDERIA VOLTAMMETRI UNTUK FARMASEUTIKAL MENGGUNAKAN PES ZINK BERLAPIS HIDROKSIDA/KARBON NANOTIUB BERBILANG DINDING TERUBAHSUAI

ABSTRAK

Kajian ini bertujuan membangunkan masing-masing penderia voltammetri asetaminofen, dopamina dan hidrokuinon menggunakan zink berlapis hidroksida-Lfenilalanat/karbon nanotiub berbilang dinding, zink berlapis hidroksida-natrium dodekil sulfat-isoprokarb/karbon nanotiub berbilang dinding dan zink berlapis hidroksida-ferulat/karbon nanotiub berbilang dinding. Morfologi permukaan bahan berlapis dan karbon nanotiub berbilang dinding telah ditentukan menggunakan mikroskop pengimbas elektron dan mikroskop transmisi elektron, manakala kadar pemindahan elektron pada permukaan elektrod-elektrod tersebut telah ditentukan menggunakan spektroskopi impedans elektrokimia. Kaedah voltammetri gelombang segiempat sama telah digunakan untuk menguji prestasi elektrod-elektrod tersebut. Beberapa keadaan eksperimen yang mempengaruhi gerak balas voltammetri seperti peratus pengubahsuai, jenis dan kepekatan elektrolit penyokong, pH larutan dan parameter-parameter voltammetri gelombang segiempat sama telah dioptimumkan. Di bawah keadaan-keadaan optimum, elektrod-elektrod tersebut menunjukkan gerak 05-4506 balas linear bagi penentuan asetaminofen, dopamina dan hidrokuinon pada julat 0.3 bupsi μ M hingga 0.1 mM (pekali korelasi = 0.9965), 1.0 μ M hingga 0.3 mM (pekali korelasi = 0.9971) dan 10.0 µM hingga 1.0 mM (pekali korelasi = 0.9957) dengan had pengesanan telah diperolehi masing-masing pada 0.83 nM, 0.43 μ M dan 5.7 μ M. Gangguan daripada beberapa ion dan sebatian telah dikaji dan kebanyakannya tidak mengganggu gerak balas voltammetri. Sebagai kesimpulannya, elektrod-elektrod yang telah direka bentuk ini mempamerkan prestasi analisis yang sangat baik dengan julat linear yang lebih luas, had pengesanan yang lebih rendah dan juga menunjukkan kebolehasilan, kebolehulangan dan kestabilan yang baik. Implikasinya, elektrodelektrod yang dicadangkan tersebut juga telah berjaya diaplikasikan bagi penentuan masing-masing asetaminofen, dopamina dan hidrokuinon dalam tablet farmaseutikal, suntikan dopamina hidroklorida, sampel air dan krim kosmetik.

TABLE OF CONTENTS

		Page
DECLARATION		ii
DECLARATION OF THESIS		iii
ACKNOWLEDGEMENTS		iv
ABSTRACT		V
ABSTRAK		vi
TABLE OF CONTENTS		vii
LIST OF TABLES		xiii
LIST OF FIGURES		xvii
LIST OF ABBREVIATIONS		xxii
05-4506 EIST OF APPENDIXES f Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah	PustakaTBainun	xxiv ptbupsi

INTRODUCTION CHAPTER 1

1.1	Voltammetry	1
1.2	Introduction to Layered Metal Hydroxide	5
1.3	Introduction to Ferulic Acid, Isoprocarb and L-Phenylalanine	7
1.4	Introduction to Acetaminophen, Dopamine and Hydroquinone	9
1.5	Carbon Paste Electrode	14
1.6	Problem Statement	16
1.7	Significant of the Study	18
1.8	Objectives of the Study	18

05-4506832

CHAPTER 2 LITERATURE REVIEW

05-4506832

	2.1	Introduction	19
	2.2	Conventional Techniques	21
	2.3	Electrochemical Techniques	22
	2.4	Modified Carbon Nanotubes (CNT) for Determination of Acetaminophen, Dopamine and Hydroquinone	25
	2.5	Electrochemical Sensor Modified with Layered Metal Hydroxide	28
	2.6	Electrochemical Impedance Spectroscopy	31
_			

CHAPTER 3 METHODOLOGY

	3.1	Chemicals and Reagents	33
05-4506832	pustaka.upsi. 3.2	edu.my f Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah y PustakaTBainun Instrumentations	ptbupsi 34
	3.3	Fabrication of the Zinc Layered Hydroxide Modified MWCNT and the Unmodified MWCNT Paste Electrodes	37
	3.4	Surface Morphology of the Zinc Layered Hydroxide Modified MWCNT	37
		3.4.1 SEM Analysis of the Zinc Layered Hydroxide Modified MWCNT	39
		3.4.2 TEM Analysis of the Zinc Layered Hydroxide Modified MWCNT	39
	3.5	Procedure of Analysis	40
	3.6	Optimization of the Experimental Variables	41
		3.6.1 The Effect of Modifier Percentages	42

	3.6.2	The Effect of Supporting Electrolyte Type	43
	3.6.3	The Effect of Supporting Electrolyte Concentration	45
	3.6.4	The Effect of pH	45
	3.6.5	The Effect of Square Wave Voltammetry Parameters	46
3.7	Calibra	ation Curve and Limit of Detection	49
3.8	Chrone	ocoulometry Study	52
3.9	Repro	ducibility, Repeatability and Stability	53
3.10	0 Interfe	rence Study	53
3.1	1 Analys	sis of Real Samples	54
3.12 05-4506832 vustaka.upsi.	2 Summ edu.my	ary f Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah DustakaTBainun	59 Itop ptbupsi
CHAPTER 4 RE	SULTS A	AND DISCUSSION	
4.1	Detern Layere MWC	nination of Acetaminophen Using the Zinc ed Hydroxide-L-Phenylalanate Modified NT Paste Electrode	61
	4.1.1	Characterization of the Zinc Layered Hydroxide-L-Phenylalanate Modified MWCNT	62
	4.1.2	Electrochemical Characterization of the Zinc Layered Hydroxide- <i>L</i> -Phenylalanate Modified MWCNT Paste Electrode	62

- 4.1.3 Voltammetric Behaviour of Acetaminophen 68
- 4.1.4 Optimization of the Experimental 71 Conditions for Determination of Acetaminophen

	4.1.5	Calibration Curve and Limit of Detection of the ZLH-LP/MWCNT Paste Electrode	78
	4.1.6	Chronocoulometry Study of the ZLH- LP/MWCNT Paste Electrode	81
	4.1.7	Reproducibility, Repeatability and Stability of the ZLH-LP/MWCNT Paste Electrode	83
	4.1.8	Interference Study for Determination of Acetaminophen	85
	4.1.9	Analysis of Real Sample for Determination of Acetaminophen	87
4.2	Determ Hydrox Modifie	ination of Dopamine Using the Zinc Layered ide-Sodium Dodecyl Sulphate-Isoprocarb ed MWCNT Paste Electrode	89
	4.2.1	Characterization of the Zinc Layered Hydroxide-Sodium Dodecyl Sulphate- Isoprocarb Modified MWCNT	89
ustaka.upsi.ed	lu.my 4.2.2	Electrochemical Characterization of the Zinc Layered Hydroxide-Sodium Dodecyl Sulphate-Isoprocarb Modified MWCNT Paste Electrode	91
	4.2.3	Voltammetric Behaviour of Dopamine	95
	4.2.4	Optimization of the Experimental Conditions for Determination of Dopamine	98
	4.2.5	Calibration Curve and Limit of Detection of the ZLH-SDS-ISO/MWCNT Paste Electrode	105
	4.2.6	Chronocoulometry Study of the ZLH-SDS- ISO/MWCNT Paste Electrode	108
	4.2.7	Reproducibility, Repeatability and Stability of the ZLH-SDS-ISO/MWCNT Paste Electrode	110

05-4506832

ptbupsi

Dopamine

Interference Study for Determination of

ptbupsi

112

			-	
		4.2.9	Analysis of Real Sample for Determination of Dopamine	113
	4.3	Determ Layere Paste E	nination of Hydroquinone Using the Zinc d Hydroxide-Ferulate Modified MWCNT Electrode	116
		4.3.1	Characterization of the Zinc Layered Hydroxide-Ferulate Modified MWCNT	116
		4.3.2	Electrochemical Characterization of the Zinc Layered Hydroxide-Ferulate Modified MWCNT Paste Electrode	118
		4.3.3	Voltammetric Behaviour of Hydroquinone	122
		4.3.4	Optimization of the Experimental Conditions for Determination of Hydroquinone	125
05-4506832	pustaka.upsi.ec	łu.my 4.3.5	Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah Calibration Curve and Limit of Detection of the ZLH-F/MWCNT Paste Electrode	132
		4.3.6	Chronocoulometry Study of the ZLH- F/MWCNT Paste Electrode	135
		4.3.7	Reproducibility, Repeatability and Stability of the ZLH-F/MWCNT Paste Electrode	137
		4.3.8	Interference Study for Determination of Hydroquinone	139
		4.3.9	Analysis of Real Sample for Determination of Hydroquinone	140
	4.4	Summa	ary	142

9 PustakaTBainun

4.2.8

05-4506832

CHAPTER 5 CONCLUSION

5.1	Conclusion	144
5.2	Future Study	145
REFERENCES		146
APPENDIX		162

🕓 05-4506832 🔮 pustaka.upsi.edu.my 📑

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

PustakaTBainun

ptbupsi

LIST OF TABLES

Table	e No.	Page
2.1	Electrochemical performance of the modified electrodes with various types of modifiers	29
2.2	The performance of layered metal hydroxide as an electrochemical sensors in determination of various analytes	30
3.1	The list of chemicals and reagents used in this study	35
3.2	The list of instruments used in this study	36
3.3	The mass required to prepare 0.01 M of the 50.00 mL analyte	42
3.4	The mass of the zinc layered hydroxide and MWCNT used in preparing of paste electrodes	43
05-4506832	Perpustaka.upsi.edu.my	ptbupsi
3.5	The mass of salts in preparing 100.00 mL of stock solution of supporting electrolytes	44
3.6	The volume of stock solution added in preparing supporting electrolyte at different concentrations	47
3.7	The experimental conditions and ranges of pH of the solutions studied for each zinc layered hydroxide modified MWCNT paste electrodes	47
3.8	The experimental conditions and ranges of SWV parameters studied for each zinc layered hydroxide modified MWCNT paste electrodes	48
3.9	The volume of stock solution added for the preparation of series concentrations of ACM	50
3.10	The volume of stock solution added for the preparation of series concentrations of DOP	50

3.11	The volume of stock solution added for the preparation of series concentrations of HQ	51
3.12	The mass required to prepare 100.00 mL of 0.1 M stock solution of interfering compounds or ions	55
3.13	The mobile phase system of HPLC	60
3.14	The summary of experimental conditions study for SWV measurements of analyte on the zinc layered hydroxide modified MWCNT paste electrodes	60
4.1	Peak currents obtained for different supporting electrolytes (0.1 M) on determination of 0.1 mM ACM at pH 7.5	73
4.2	Peak currents obtained for different concentrations of PBS on determination of 0.1 mM ACM at pH 7.5	74
4.3 05-4506832	Reproducibility of the ZLH-LP/MWCNT paste electrode for determination of 0.1 mM ACM in the presence of 0.1 M PBS at pH 7.5 ($N = 3$)	84 ptbupsi
4.4	Repeatability of the ZLH-LP/MWCNT paste electrode for determination of 0.1 mM ACM in the presence of 0.1 M PBS at pH 7.5 ($N = 3$)	84
4.5	Stability of the ZLH-LP/MWCNT paste electrode for determination of 0.1 mM ACM in the presence of 0.1 M PBS at pH 7.5 ($N = 3$)	85
4.6	Comparison of ACM determination by SWV and HPLC techniques $(N = 5)$	88
4.7	Recovery of ACM in pharmaceutical tablet ($N = 3$)	88
4.8	Peak currents obtained for different supporting electrolytes (0.1 M) on determination of 0.1 mM DOP at pH 8.0	101

Ŀ

4.9	Peak currents obtained for different concentrations of PBS on determination of 0.1 mM DOP at pH 8.0	101
4.10	Reproducibility of the ZLH-SDS-ISO/MWCNT paste electrodes for determination of 0.1 mM DOP in the presence of 0.3 M PBS at pH 8.0 ($N = 3$)	111
4.11	Repeatability of the ZLH-SDS-ISO/MWCNT paste electrode for determination of 0.1 mM DOP in the presence of 0.3 M PBS at pH 8.0 ($N = 3$)	111
4.12	Stability of the ZLH-SDS-ISO/MWCNT paste electrode for determination of 0.1 mM DOP in the presence of 0.3 M PBS at pH 8.0 ($N = 3$)	112
4.13	Comparison of DOP determination by SWV and HPLC techniques $(N = 5)$	115
4.14	Recovery of DOP in dopamine hydrochloride injection $(N = 3)$	115
05-4506832	pustaka.upsi.edu.my	ptbupsi
4.15	Peak currents obtained for different supporting electrolytes (0.1 M) on determination of 0.1 mM HQ at pH 7.0	128
4.16	Peak currents obtained for different concentrations of PBS on determination of 0.1 mM HQ at pH 7.0	128
4.17	Reproducibility of the ZLH-F/MWCNT paste electrode for determination of 0.1 mM HQ in the presence of 0.1 M PBS at pH 7.0 ($N = 3$)	138
4.18	Repeatability of the ZLH-F/MWCNT paste electrode for determination of 0.1 mM HQ in the presence of 0.1 M PBS at pH 7.0 ($N = 3$)	138
4.19	Stability of the ZLH-F/MWCNT paste electrode for determination of 0.1 mM HQ in the presence of 0.1 M PBS at pH 7.0 ($N = 3$)	139

C

- 4.20 Comparison of HQ determination by SWV and HPLC techniques 141 (N = 5)
- 4.21 Recovery of HQ in water samples and cosmetic cream (N = 3) 142
- 4.22 The summary of optimum experimental conditions for SWV 143 measurements of analyte on the zinc layered hydroxide modified MWCNT paste electrodes

pustaka.upsi.edu.my

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

PustakaTBainun

LIST OF FIGURES

Fi	gure No.	Page
1.1	Schematic representation of a basic voltammetric system consisting of counter (C), working (W) and reference (R) electrodes (Braungardt, 2015)	3
1.2	Illustration of layered hydroxide salt	6
1.3	The structure of ferulic acic	7
1.4	The structure of isoprocarb	8
1.5	The structure of <i>L</i> -phenylalanine	8
1.6	The structure of acetaminophen	10
05-4506832	The structure of dopamine	ptbupsi 11
1.8	The structure of hydroquinone	12
2.1	The structures of graphene, SWCNT, DWCNT and MWCNT (Jackson, et al., 2013)	26
2.2	Nyquist plot of EIS and Randle's equivalent electrical circuit for the system	32
3.1	Illustration of the zinc layered hydroxide modified MWCNT paste electrode fabrication	38
4.1	The SEM image of (A) MWCNT, (B) ZLH-LP/MWCNT and the TEM image of (C) ZLH-LP/MWCNT	63
4.2	CV of the (a) unmodified MWCNT and (b) ZLH-LP/MWCNT paste electrodes in 4.0 mM $K_3[Fe(CN)_6]$ in the presence of 0.1 M KCl at a scan rate of 100 mV s ⁻¹	65

4.3	(A) Cyclic voltammogram of the ZLH-LP/MWCNT paste electrode in 4.0 mM K ₃ [Fe(CN) ₆] in the presence of 0.1 M KCl at different scan rates from 10 mV s ⁻¹ to 200 mV s ⁻¹ and (B) the plot of peak current <i>vs.</i> $v^{1/2}$	66
4.4	Nyquist plot of the (a) unmodified MWCNT and (b) ZLH- LP/MWCNT paste electrodes in 4.0 mM $K_3[Fe(CN)_6]$ in the presence of 0.1 M KCl. Inset: Randle's equivalent electrical circuit system	69
4.5	SW voltammogram of 0.1 mM ACM in the presence of 0.1 M PBS (pH 7.5) at the (a) unmodified MWCNT and (b) ZLH-LP/MWCNT paste electrodes	69
4.6	Illustration of the proposed reaction mechanism between ACM solution and the ZLH-LP/MWCNT paste electrode	70
4.7	The effect of (a) 0%, (b) 5%, (c) 10% and (d) 15% composition of the ZLH-LP nanocomposites towards the peak currents of 0.1 mM ACM in the presence of 0.1 M PBS at pH 7.5	72
() 05-4506832 () pusta	aka.upsi.edu.my	o ptbupsi
4.8	The graphs of (a) peak current vs. pH and (b) E vs. pH of ACM	77
4.9	The effect of pulse size towards the peak currents of 0.1 mM ACM in the presence of 0.1 M PBS at pH 7.5	77
4.10	The effect of step size towards the peak currents of 0.1 mM ACM in the presence of 0.1 M PBS at pH 7.5	79
4.11	The effect of frequency towards the peak currents of 0.1 mM ACM in the presence of 0.1 M PBS at pH 7.5	79
4.12	(A) SW voltammogram and (B) calibration curve of ACM oxidation with the concentrations between 0.3 μ M to 0.1 mM in the presence of 0.1 M PBS (pH 7.5) at the optimum experimental conditions	80

05-4506832

(A) Graph of Q vs. $t^{1/2}$ of the (a) unmodified MWCNT and (b) 4.13 82 ZLH-LP/MWCNT paste electrodes in 4.0 mM K₃[Fe(CN)₆] in the presence of 0.1 M KCl and (B) graph of Q vs. $t^{1/2}$ of the ZLH-LP/MWCNT paste electrode in 0.1 mM ACM in the presence of 0.1 M PBS (pH 7.5) after background subtraction 4.14 The effect of interference substances on the surface of the ZLH-86 LP/MWCNT paste electrode for determination of 0.1 mM ACM 90 4.15 The SEM image of the (A) MWCNT, (B) ZLH-SDSand TEM image of the (C) ZLH-SDS-ISO/MWCNT ISO/MWCNT 4.16 CV of the (a) unmodified MWCNT and (b) ZLH-SDS-92 ISO/MWCNT paste electrodes in 4.0 mM K₃[Fe(CN)₆] in the presence of 0.1 M KCl at a scan rate of 100 mV s⁻¹ 94 4.17 (A) Cyclic voltammogram of the ZLH-SDS-ISO/MWCNT paste electrode in 4.0 mM $K_3[Fe(CN)_6]$ in the presence of 0.1 M KCl at different scan rates from 10 mV s⁻¹ to 200 mV s⁻¹ and pusta(B) The plot of peak current v3. v42 Bainun 05-4506832 PustakaTBainun ptbupsi 4.18Nyquist plot of the (a) unmodified MWCNT and (b) ZLH-SDS-96 ISO/MWCNT paste electrodes in 4.0 mM $K_3[Fe(CN)_6]$ in the presence of 0.1 M KCl. Inset: Randle's equivalent electrical circuit system 4.19 SW voltammogram of 0.1 mM DOP in the presence of 0.3 M 96 PBS (pH 8.0) at the (a) unmodified MWCNT and (b) ZLH-SDS-ISO/MWCNT paste electrodes 4.20 97 Illustration of the proposed reaction mechanism between DOP solution and the ZLH-SDS-ISO/MWCNT paste electrode 4.21 99 The effect of (a) 0%, (b) 5%, (c) 10% and (d) 15% composition of the ZLH-SDS-ISO nanocomposites towards the peak currents of 0.1 mM DOP in the presence of 0.3 M PBS (pH 8.0) 4.22 The graphs of (a) peak current vs. pH and (b) E vs. pH of DOP 104

- ptbupsi XX
- 4.23 The effect of pulse size towards the peak currents of 0.1 mM 104 DOP in the presence of 0.3 M PBS at pH 8.0
- 4.24 The effect of step size towards the peak currents of 0.1 mM 106 DOP in the presence of 0.3 M PBS at pH 8.0
- 4.25 The effect of frequency towards the peak currents of 0.1 mM 106 DOP in the presence of 0.3 M PBS at pH 8.0
- 4.26 (A) SW voltammogram and (B) calibration curve of DOP 107 oxidation with the concentrations between $1.0 \ \mu$ M to $0.3 \ m$ M in the presence of 0.3 M PBS (pH 8.0) at the optimum experimental conditions
- 4.27 (A) Graph of Q vs. t^{1/2} of the (a) unmodified MWCNT and (b) 109 ZLH-SDS-ISO/MWCNT paste electrodes in 4.0 mM K₃[Fe(CN)₆] in the presence of 0.1 M KCl and (B) graph of Q vs. t^{1/2} of the ZLH-SDS-ISO/MWCNT paste electrode in 0.1 mM DOP in the presence of 0.3 M PBS (pH 8.0) after background subtraction
 2832 pustaka.upsi.edu.my Perpustakaan Tuanku Bainun PustakaTBainun PustakaTBainun ptbupsi

05-4506832 4.28

- The effect of interference substances on electrode surface of the ZLH-SDS-ISO/MWCNT paste electrode for determination of
- 114
- 4.29 The SEM image of the (A) MWCNT, (B) ZLH-F/MWCNT and 117 the TEM image of the (C) ZLH-F/MWCNT
- 4.30 CV of the (a) unmodified MWCNT and (b) ZLH-F/MWCNT 119 paste electrodes in 4.0 mM K_3 [Fe(CN)₆] in the presence of 0.1 M KCl at a scan rate of 100 mV s⁻¹
- 4.31 (A) Cyclic voltammogram of the ZLH-F/MWCNT paste 120 electrode in 4.0 mM K₃[Fe(CN)₆] in the presence of 0.1 M KCl at different scan rates from 10 mV s⁻¹ to 200 mV s⁻¹ and (B) The plot of peak current *vs.* $v^{1/2}$
- 4.32 Nyquist plot of the (a) unmodified MWCNT and (b) ZLH-F/MWCNT paste electrodes in 4.0 mM K₃[Fe(CN)₆] in the presence of 0.1 M KCl. Inset: Randle's equivalent electrical circuit system

0.1 mM DOP

4.33	SW voltammogram of 0.1 mM HQ in the presence of 0.1 M PBS (pH 7.0) at the (a) unmodified MWCNT and (b) ZLH-F/MWCNT paste electrodes	123
4.34	Illustration of the proposed reaction mechanism between HQ solution and the ZLH-F/MWCNT paste electrode	124
4.35	The effect of (a) 0%, (b) 5%, (c) 10% and (d) 15% composition of ZLH-F nanocomposites towards the peak currents of 0.1 mM HQ in the presence of 0.1 M PBS at pH 7.0	126
4.36	The graphs of (a) peak current vs. pH and (b) E vs. pH of HQ	131
4.37	The effect of pulse size towards the peak currents of 0.1 mM HQ in the presence of 0.1 M PBS at pH 7.0	131
4.38	The effect of step size towards the peak currents of 0.1 mM HQ in the presence of 0.1 M PBS at pH 7.0	133
05-450684239	Perpustakaan Tuanku Bainun The effect of frequency towards the peak currents of 0.1 mM HQ in the presence of 0.1 M PBS at pH 7.0	33 ^{ptbupsi}
4.40	(A) SW voltammogram and (B) calibration curve of HQ oxidation with the concentrations between 10.0 μ M to 1.0 mM in the presence of 0.1 M PBS (pH 7.0) at the optimum experimental conditions	134
4.41	(A) Graph of Q vs. $t^{1/2}$ of the (a) unmodified MWCNT and (b) ZLH-F/MWCNT paste electrodes in 4.0 mM K ₃ [Fe(CN) ₆] in the presence of 0.1 M KCl and (B) graph of Q vs. $t^{1/2}$ of the ZLH-F/MWCNT paste electrode in 0.1 mM HQ in the presence of 0.1 M PBS (pH 7.0) after background subtraction	136
4.42	The effect of interference substances on the surface of the ZLH- F/MWCNT paste electrode for determination of 0.1 mM HQ	141

LIST OF ABBREVIATIONS

	AA	Ascorbic acid
	ACM	Acetaminophen
	AGR	Activated graphene
	BPA	Bisphenol A
	CILE	Carbon ionic liquid electrode
	CNT	Carbon nanotubes
	CNTPE	Carbon nanotubes paste electrode
	CPE	Carbon paste electrode
	CV	Cyclic voltammetry
	DOP	Dopamine
	DPV	Differential pulse voltammetry
05-4500	6832 pustaka.upsi.	Double-walled carbon nanotubes edu.my Kampus Sultan Abdul Jalil Shah
<u> </u>	EIS	Electrochemical impedance spectroscopy
	EU	European Union
	FA	Folic acid
	FeA	Ferulic acid
	GC	Gas chromatography
	GCE	Glassy carbon electrode
	GO	Graphene oxide
	HPLC	High performance liquid chromatography
	HQ	Hydroquinone
	LDH	Layered double hydroxide
	LHS	Layered hydroxide salt
	MA	Mefenamic acid
	MWCNT	Multiwalled carbon nanotubes

PustakaTBainun

05-4506832

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

	otb	upsi
xxi	ii	cilo ci

	NPV	Normal pulse voltammetry
	PBS	Phosphate buffer solution
	RMM	Relative molecular mass
	RSD	Relative standard deviation
	SEM	Scanning electron microscope
	Std.	Standard
	SWCNT	Single-walled carbon nanotubes
	SWV	Square wave voltammetry
	TEM	Transmission electron microscope
	UA	Uric acid
	UK	United Kingdom
	USA	United State of America
	ZLH	Zinc layered hydroxide
05-450	⁶⁸ ZLH-F ² pustaka.upsi.	e Zime layered hydroxide-ferulate Shah
	ZLH-LP	Zinc layered hydroxide-L-phenylalanate
	ZLH-SDS-ISO	Zinc layered hydroxide-sodium dodecyl sulphate-isoprocarb

LIST OF APPENDIXES

- A1 Publication in Journal of Solid State Electrochemistry
- A2 Publication in International Journal of Electrochemical Science
- B1 Certificate of Conference Attendance
- B2 Certificate of the Best Presentation Award
- C1 The independent sample *t*-test result of SWV and HPLC validation for ACM determination
- C2 The independent sample *t*-test result of SWV and HPLC validation for DOP determination
- C3 The independent sample *t*-test result of SWV and HPLC validation for HQ determination
- D1 HPLC chromatogram of ACM

05-4506832 D2 Pustaka upsi.edu.my HPLC chromatogram of DOP Itan Abdul Jalil Shah

D3 HPLC chromatogram of HQ

CHAPTER 1

INTRODUCTION

Voltammetry is an electrochemical method that measure the current in dependence of an applied potential, and the resulting current versus the potential will be plotted as a voltammogram (Svancara, Vytras, Kalcher, & Walcarius, 2012; Wang, 2006). In many measurements, the applied potential or the current is measured over a period of time (t). Hence, all voltammetry methods can be described as a function of time (t), current (I) or potential (E) and have been proven to be a valuable tools for determining complexation in organic or inorganic systems, analyzing trace metals in solutions and studying diffusion and kinetics. The earliest voltammetric sensor is called polarography was developed in 1922 by Heyrovsky, uses the dropping mercury electrode (Heyrovsky, 1922).

Voltammetry is also an electroactive method because the application of the potential will provoke an electrochemical process (reduction or oxidation) of redox species (analyte). It is causing a change in the concentration of an analyte at the surface of electrode (Settle, 1997). The redox reactions involve the Faradaic or non Faradaic processes. The Faradaic process includes the electrons transfer through the electrode-solution-interface and obeys Faraday's Law. Meanwhile, the non Faradaic process does not involve the electrons transfer and does not obey Faraday's Law. These include processes where the structure of the electrode solution interface changes with changing of potential or solution concentrations (Bond, 1980).

The basic instrumentation of voltammetric measurement is a potentiostat, recorder and electrochemical cell. The function of potentiostat is to apply the potential 05-4506 and monitor the current. It can utilize different modes of voltammetry such as square-topped wave voltammetry (SWV), cyclic voltammetry (CV), stripping voltammetry, pulse voltammetry and chronocoulometry. Each mode will secrete their typical potential – current and distinguished by a different form of voltammogram. The most common type of electrochemical cell used in voltammetry is the three – electrode cell. These three electrodes are working electrode, reference electrode and counter electrode which are immersed in a solution containing the analyte and supporting electrolyte. The potential is applied between the working and reference electrodes, while the current flow is measured between the working and counter electrodes. The schematic representation of a basic votammetric system is shown in Figure 1.1 (Otles, 2016; Settle, 1997).

ptbupsi

Figure 1.1 Schematic representation of a basic voltammetric system consisting of counter (C), working (W) and reference (R) electrodes (Braungardt, 2015)

The working electrode is an electrode that provides the surface for electron transfer to occur for the system under investigation. The materials that used as a working electrode is important since it will reflect the selectivity and sensitivity of the voltammetric sensor. The working electrodes should be considered based on certain characteristics such as able to produce a significant reproducible response, inert, good electrical conductivity, wide potential window and surface reproducibility (Wang,

