

SYNTHESIS, CHARACTERISATION AND APPLICATION OF BIOPOLYMER FILMS INCORPORATED WITH NATURAL ADDITIVES FOR FOOD PRESERVATION

AL LUQMAN BIN ABDUL HALIM

05-4506832 📢 pustaka.upsi.edu.my

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

ptbupsi

THESIS SUBMITTED IN FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER OF SCIENCE (ANALYTICAL CHEMISTRY) (MASTER BY RESEARCH)

FACULTY OF SCIENCE AND MATHEMATICS UNIVERSITI PENDIDIKAN SULTAN IDRIS 2018

SINTESIS, PENCIRIAN DAN PENGGUNAAN FILEM BIOPOLIMER DIGABUNGKAN DENGAN BAHAN TAMBAH SEMULA JADI UNTUK PENGAWETAN MAKANAN

ABSTRAK

Kajian ini menyelidik keupayaan filem biopolimer-bahan tambah untuk pengawetan makanan. Tiga biopolimer iaitu kitosan (CS), gelatin (GL) dan metilselulosa (MC) telah digunakan dalam kajian ini. Asid askorbik (AA), asid tanik (TA), minyak pati daun pisang (BA), minyak pati cengkih (CL), ekstrak kunyit (TU) dan ekstrak kamomil (CH) telah digunakan sebagai bahan tambah semula jadi. Kajian ini dibahagikan kepada lima kajian utama, iaitu sintesis, pencirian, aktiviti antimikrob, pengawetan makanan dan biodegradasi. Peralatan saintifik utama yang digunakan dalam kajian ini ialah spektrometer inframerah ransformasi Fourier (FTIR), imbasan elektron (SEM), mesin ujian universal, penganalisis mikroskop kebolehtelapan wap air (WVP), penganalisis kebolehtelapan oksigen (OP), 05-4506 spektrofotometer ultralembayung-nampak (UV-Vis) dan penganalisis termogravimetri bussi (TGA). Bakteria yang digunakan untuk aktiviti antimikrob adalah Staphylococcus aureus (Gram-positif) dan Escherichia coli (Gram-negatif). Pengawetan sampel makanan telah dijalankan selama 7 dan 14 hari pada dua suhu persekitaran yang berbeza, iaitu 23-25 °C dan 27-30 °C. Tomato ceri (Solanum lycopersicum var. cerasiforme) dan anggur (Vitis vinifera) telah digunakan sebagai sampel makanan dalam kajian pengawetan. Dapatan kajian mendapati bahawa beberapa bahan tambah semula jadi telah berjaya menurunkan nilai WVP bagi GL-TA (1.73-1.28 g m⁻¹ day⁻¹ atm⁻¹), CS-TU (1.44-1.20 g m⁻¹ day⁻¹ atm⁻¹) dan MC-TA (1.27-1.18 g m⁻¹ day⁻¹ atm⁻¹). Dengan pengecualian penggabungan TA dengan GL, penambahan bahan tambah semula jadi mengurangkan kekuatan tegangan (TS) filem-filem biopolimer. Sementara itu, suatu kesan yang berbeza telah diperolehi bagi pemanjangan pada takat putus (EAB). Berdasarkan kajian aktiviti antimikrob, zon perencatan untuk CS terhadap E. coli telah meningkat daripada 10 hingga 25 mm dengan penambahan TU, manakala perencatan untuk CS terhadap S. aureus telah meningkat daripada 15 hingga 20 mm dengan rawatan BA. Semua filem-filem biopolimer yang telah digabungkan dengan bahan semula jadi telah dapat mengurangkan peratusan penurunan berat dan indeks pemerangan sampel buah-buahan. Kesimpulannya, penambahan bahan tambah semula jadi mengubah ciri-ciri fisikokimia filem CS, GL, dan MC yang membantu untuk memanjangkan jangka hayat makanan. Implikasinya, penggunaan filem biopolimer-bahan tambah semula jadi sebagai alternatif kepada filem berasaskan petroleum untuk pengawetan makanan boleh mewujudkan persekitaran hijau dan mampan.

ABSTRACT

This research investigated the potential of biopolymer-additive films for food preservation. Three biopolymers, namely chitosan (CS), gelatin (GL) and methylcellulose (MC) were used in this research. Ascorbic acid (AA), tannic acid (TA), banana leaf essential oil (BA), clove essential oil (CL), turmeric extract (TU) and chamomile extract (CH) were used as natural additive. This research is divided into five main studies, namely synthesis, characterisation, antimicrobial activity, food preservation and biodegradation. The main scientific instruments used in this study were Fourier transform infrared (FTIR) spectrometer, scanning electron microscope (SEM), universal testing machine, water vapour permeability (WVP) analyser, oxygen permeability (OP) analyser, ultraviolet-visible (UV-Vis) spectrophotometer and thermogravimetric analyser (TGA). The bacteria used for antimicrobial activity were Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative). The preservation of food samples was conducted for 7 and 14 days at two different 05-4506 surrounding temperatures, namely 23-25°C and 27-30 °C. Cherry tomatoes (Solanum bursi lycopersicum var. cerasiforme) and grapes (Vitis vinifera) were used as food samples in preservation studies. Research findings found that several natural additives have successfully decreased the WVP value of GL-TA (1.73-1.28 g m⁻¹ day⁻¹ atm⁻¹), CS-TU (1.44 -1.20 g m⁻¹ day⁻¹ atm⁻¹) and MC-TA (1.27-1.18 g m⁻¹ day⁻¹ atm⁻¹). With exception of incorporation of TA with GL, the addition of natural additives reduced the tensile strength (TS) of biopolymer films. Meanwhile, a contrast effect was obtained for elongation at break (EAB). Based on antimicrobial activity studies, the inhibition zone for CS against E. coli was increased from 10 to 25 mm following addition of TU, while the inhibition for CS against S. aureus was increased from 15 to 20 mm with BA treatment. All biopolymer films incorporated with natural additives were able to reduce the percentage of weight loss and browning index of fruit samples. In conclusion, the addition of natural additives changed the physicochemical characteristics of CS, GL, and MC films which favour to prolong the shelf-life of foods. In implication, the application of biopolymer-natural additive films as alternatives to petroleum-based films for food preservation could create a green and sustainable environment.

TABLE OF CONTENTS

							Page
	DECLARATION						ii
	ACKNOWLEDGE	MENTS	8				iii
	ABSTRAK						iv
	ABSTRACT						V
	TABLE OF CONTI	ENTS					vi
	LIST OF TABLES						xi
05-450	LIST OF FIGURES	edu.my	f Pe Ka	rpustakaan Tuanku Ba mpus Sultan Abdul Ja	ainun alil Shah	PustakaTBainun	xvi ptbupsi
	LIST OF ABBREV	IATIO	NS				xviii
CHAPTER 1 INTRODUCTION							
		1.1	Resear	rch Background			1
		1.2	Food I	Preservation Tec	chnique	S	5
			1.2.1	Drying			6
			1.2.2	Salting			7
			1.2.3	Canning			7
			1.2.4	Packaging			8
		1.3	Petrol	eum-material Pa	ackagin	g	9
			1.3.1	Types of Petro	oleum-n	naterial Packaging	10
			1.3.2	Impact of Petr	oleum-	material	12
				1.3.2.1	Enviro	nment	12

				1.3.2.2	Health	Risks	15
	1	1.4	Proble	m Statement			16
	1	1.5	Resear	ch Gap			17
	1	1.6	Resear	ch Aim			18
	1	1.7	Resear	ch Objectives			17
	1	1.8	Resear	ch Significanc	e		19
	1	1.9	Hypoth	nesis			19
	1	1.10	Resear	ch Organisatic	on		20
СНА	PTER 2	LITE	RATUF	RE REVIEW			
	2	2.1	Biopol	ymer			21
	2	2.2	Type o	f Biopolymer			22
			2.2.1	Protein			24
05-4506832	pustaka.upsi.ed	u.my	$2.2.2_{\rm Kar}^{\rm Per}$	Polysaccharic	ainun aiil Shah	PustakaTBainun	4 ptbupsi
			2.2.3	Lipid			25
	2	2.3	Biopol	ymer Films			27
			2.3.1	Chitosan			27
			2.3.2	Gelatin			29
			2.3.3	Methylcellulo	ose		31
	2	2.4	Formu	llation			33
		2.5	Additiv	ves			34
	2	2.6	Natura	l Additives			35
			2.6.1	Pure Compou	ind		36
			2.6.2	Extract			38
			2.6.3	Essential Oil			39
	2	2.7	Genera	ally Recognize	d As Saf	fe (GRAS)	41

05-4506832

	2.8	Role of	of Biopolymer	Films	42
		2.8.1	Bioactive Pr	roperties	43
			2.8.1.1	Anti-oxidant and Anti-browning	43
			2.8.1.2	Antimicrobial	44
		2.8.2	Physical Pro	operties	45
			2.8.2.1	Barrier to Gasses and Water Vapour	46
			2.8.2.2	Mechanical Properties	46
			2.8.2.3	Light Barrier and Appearance	46
	2.9	Applie Food	cation of Biop Preservation	oolymer Films for	47
	2.10	Produ	ction of Biopo	olymer Films	48
832 😨 pustaka.upsi	.edu.my	2.10.1	rpCtaken Tuanku mpus Suite Abdu	Bainun I Jalil Shah	48 ptbupsi
		2.10.2	Continuous	Casting	49
		2.10.3	Extrusion		50
	2.11	Comn	nercial Biopol	ymer Films	52
	2.12	Summ	nary		52
CHAPTER 3	MET	HODO	LOGY		
	3.1	Chem	icals and Mat	erials	54
	3.2	Appar	atus		55
	3.3	Synth	esis of Biopol	ymer Films	56
		3.3.1	Preparation Solution (FF	of Film Forming FS)	56
			3.3.1.1	Chitosan	56
			3.3.1.2	Gelatin	56

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

			3.3.1.3	Methylcellulose	57
		3.3.2	Addition of I	Natural Additives	57
			3.3.2.1	Pure Compound	58
			3.3.2.2	Essential Oil	58
			3.3.2.3	Extract	58
		3.3.3	Casting Proc	ess	59
	3.4	4 Chara	cterisation Stu	dies	59
		3.4.1	FTIR		60
		3.4.2	SEM		60
		3.4.3	UV-Vis		61
		3.3.4	TGA		61
		3.4.5	Mechanical l	Properties	62
05-4506832) pustaka.upsi.edu.r	my 3.4.6	Water Vapou	Permeability PustakaTBainun	63 ptbupsi
		3.4.7	Oxygen Perr	neability	64
	3.:	5 Antin	nicrobial Studio	es	64
	3.0	6 Preser	rvation Studies		65
	3.7	7 Biode	gradation Stud	ies	67
	3.8	8 Sumn	nary		67
СНАРТ	ER4 RI	ESULTS A	AND DISCUS	SION	
	4.2	1 Chara	cterisation Stu	dy	69
		4.1.1	FTIR Analysis		70
		4.1.2	SEM Analysis		82
		4.1.3	Mechanical Pr	operties	89
		4.1.4	Water Vapour	Permeability	93
		4.1.5	Oxygen Perme	ability	97

		4.1.6 Light Transmission and Transparency	100
		4.1.7 TGA Analysis	106
	4.2	Anti-microbial Studies	115
	4.3	Preservation Studies	121
	4.4	Biodegradation Studies	165
	4.5	Summary	168
CHAPTER 5	CON	ICLUSION AND FUTURE RESEARCH	
	5.1	Conclusion	170
	5.2	Future Research	173
REFERENCES			175
APPENDIX			191
() 05-4506832 () pustaka.ups	i.edu.my	Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah	ptbupsi

LIST OF TABLES

	Table	No.	Page
	1.1	Projection of World Population for 2015, 2030, 2050 and 2100	2
	1.2	Polymers in Main Household Packaging Application	11
	1.3	Number and Percentage of Marine Species with Documented Entanglement and Ingestion Records	13
	2.1	Types and Examples of Biopolymer Films	26
	2.2	Components and Examples used for Biopolymer Films	34
05-4506	2.3 5832 2.4	Pure Compounds Added to Biopolymer-based Films and Their Effects pustaka.upsi.edu.my Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah PustakaTBainun Extracts Added to Biopolymer-based Edible and Effect	37 ptbupsi 39
	2.5	Essential Oils Added to Biopolymer-based Films and Their Effects	40
	2.6	List of Commercial Biopolymer Films	52
	3.1	List of Chemicals Used	55
	3.2	Classification of Browning Level	66
	4.1	FTIR Wavenumber and Assignment of Biopolymer Films	81
	4.2	Tensile Strength and Elongation at Break of Biopolymer Films	92
	4.3	Water Vapour Permeability Values of Biopolymer Films	96
	4.4	Oxygen Permeability Values of Biopolymer Films	99
	4.5	Light Transmission and Transparency Values of Chitosan Biopolymer Films	103
	4.6	Light Transmission and Transparency Values of Gelatin Biopolymer Films	104

	4.7	Light Transmission and Transparency Values of Methylcellulose Biopolymer Films	105
	4.8	Decomposition Stage and Weight Loss of Chitosan Biopolymer Films	112
	4.9	Decomposition Stage and Weight Loss of Gelatin Biopolymer Films	113
	4.10	Decomposition Stage and Weight Loss of Methylcellulose Biopolymer Films	114
	4.11	Inhibition Zone of Chitosan Biopolymers against S. aureus and E. coli	118
	4.12	Inhibition Zone of Gelatin Biopolymers against S. aureus and E. coli	119
	4.13	Inhibition Zone of Methylcellulose Biopolymers against <i>S. aureus</i> and <i>E. coli</i>	120
	4.14	Weight Loss of Cherry Tomatoes Preserved at Research Laboratory and Home Kitchen	125
	4.15	Weight Loss of Cherry Tomatoes Wrapped with Chitosan-natural Additives Biopolymer Films	125
05-4506	4.16 5832	Weight Loss of Cherry Tomatoes for Gelatin-natural Additives Biopolymer Filmsy f Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah	126tbupsi
	4.17	Weight Loss of Cherry Tomatoes for Methylcellulose-natural Additives Biopolymer Films	126
	4.18	Weight Loss of Grapes Preserved at Research Laboratory and Home Kitchen	127
	4.19	Weight Loss of Grapes for Chitosan-natural Additives Biopolymer Films	127
	4.20	Weight Loss of Grapes for Gelatin-natural Additives Biopolymer Films	128
	4.21	Weight Loss of Grapes for Methylcellulose-natural Additives Biopolymer Films	128
	4.22	Browning Index of Cherry Tomatoes for Control Biopolymer Films, LDPE and Unwrapped	129
	4.23	Browning Index of Cherry Tomatoes for Chitosan-natural Additives Biopolymer Films	129
	4.24	Browning Index of Cherry Tomatoes for Gelatin-natural Additives Biopolymer Films	130
	4.25	Browning Index of Cherry Tomatoes for Gelatin-natural Additives	

	Biopolymer Films	130
4.26	Browning Index of Grapes for Control Biopolymer Films, LDPE and	
	Unwrapped	131
4.27	Browning Index of Grapes for Chitosan-natural Additives Biopolymer Films	131
4.28	Browning Index of Grapes for Gelatin-natural Additives Biopolymer Films	132
4.29	Browning Index of Grapes for Methylcellulose-natural Additives Biopolymer Films	132
4.30	Appearance and Freshness of Cherry Tomatoes for Control Biopolymer Films, LDPE and Unwrapped at Research Laboratory for 7 Days	133
4.31	Appearance and Freshness of Cherry Tomatoes for Chitosan-natural Additives Films at Research Laboratory for 7 Days	134
4.32	Appearance and Freshness of Cherry Tomatoes for Gelatin-natural Additives Films at Research Laboratory for 7 Days	135
05-450684233 (Appearance and Freshness of Cherry Tomatoes for Methylcellulose-natural Additives Films at Research Laboratory for 7 Days	ptbupsi 136
4.34	Appearance and Freshness of Cherry Tomatoes for Control Biopolymer Films, LDPE and Unwrapped at Home Kitchen for 7 Days	137
4.35	Appearance and Freshness of Cherry Tomatoes for Chitosan-natural Additives Films at Home Kitchen for 7 Days	138
4.36	Appearance and Freshness of Cherry Tomatoes for Gelatin-natural Additives Films at Home Kitchen for 7 Days	139
4.37	Appearance and Freshness of Cherry Tomatoes for Methylcellulose-natural Additives Films at Home Kitchen for 7 Days	140
4.38	Appearance and Freshness of Cherry Tomatoes for Control Biopolymer Films, LDPE and Unwrapped at Research Laboratory for 14 Days	141
4.39	Appearance and Freshness of Cherry Tomatoes for Chitosan-natural Additives Films at Research Laboratory for 14 Days	142
4.40	Appearance and Freshness of Cherry Tomatoes for Gelatin-natural Additives Films at Research Laboratory for 14 Days	143

4.41

05-4506832

	Methylcellulose-natural Additives Films at Research Laboratory for 14 Days	144
4.42	Appearance and Freshness of Cherry Tomatoes for Control Biopolymer Films, LDPE and Unwrapped at Home Kitchen for 14 Days	145
4.43	Appearance and Freshness of Cherry Tomatoes for Chitosan-natural Additives Films at Home Kitchen for 14 Days	146
4.44	Appearance and Freshness of Cherry Tomatoes for Gelatin-natural Additives Films at Home Kitchen for 14 Days	147
4.45	Appearance and Freshness of Cherry Tomatoes for Methylcellulose-natural Additives Films at Home Kitchen for 14 Days	148
4.46	Appearance and Freshness of Grapes for Control Biopolymer Films, LDPE and Unwrapped at Research Laboratory for 7 Days	149
4.47	Appearance and Freshness of Grapes for Chitosan-natural Additives Films at Research Laboratory for 7 Days	150
4.48	Appearance and Freshness of Grapes for Gelatin-natural Additives Films at Research Laboratory for 7 Days	151 ptbupsi
4.49	Appearance and Freshness of Grapes for Methylcellulose-natural Additives Films at Research Laboratory for 7 Days	152
4.50	Appearance and Freshness of Grapes for Control Biopolymer Films, LDPE and Unwrapped at Home Kitchen for 7 Days	153
4.51	Appearance and Freshness of Grapes for Chitosan-natural Additives Films at Home Kitchen for 7 Days	154
4.52	Appearance and Freshness of Grapes for Gelatin-natural Additives Films at Home Kitchen for 7 Days	155
4.53	Appearance and Freshness of Grapes for Methylcellulose-natural Additives Films at Home Kitchen for 7 Days	156
4.54	Appearance and Freshness of Grapes for Control Biopolymer Films, LDPE and Unwrapped at Research Laboratory for 14 Days	157
4.55	Appearance and Freshness of Grapes for Chitosan-natural Additives Films at Research Laboratory for 14 Days	158
4.56	Appearance and Freshness of Grapes for Gelatin-natural Additives Films at Research Laboratory for 14 Days	159

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

Appearance and Freshness of Cherry Tomatoes for

n Shah 🛛 💙 PustakaTBainun

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

4.57	Appearance and Freshness of Grapes for Methylcellulose-natural Additives Films at Research Laboratory for 14 Days	160
4.58	Appearance and Freshness of Grapes for Control Biopolymer Films, LDPE and Unwrapped at Home Kitchen for 14 Days	161
4.59	Appearance and Freshness of Grapes for Chitosan-natural Additives Films at Home Kitchen for 14 Days	162
4.60	Appearance and Freshness of Grapes for Gelatin-natural Additives Films at Home Kitchen for 14 Days	163
4.61	Appearance and Freshness of Grapes for Methylcellulose-natural Additives Films at Home Kitchen for 14 Days	164

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

PustakaTBainun

ptbupsi

LIST OF FIGURES

Figu	ure No.	Page
1.1	Major Food Preservation Techniques	9
2.1	Categories of Biopolymer	23
2.2	Chemical Structures of Chitin and Chitosan	28
2.3	Chemical Structure of Gelatin	30
2.4	Chemical Structure of Methylcellulose	32
2.5	Biopolymer Film Casting Method for Laboratory Scale	49
05-4506226	SteelsBelt Casting Line Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah	50tbupsi
2.7	The Structure of an Extruder	51
4.1	FTIR Spectrum of Chitosan Film	71
4.2	FTIR Spectrum of Gelatin Film	72
4.3	FTIR Spectrum of Methylcellulose Film	72
4.4	FTIR Spectra of Natural Additives	77
4.5	FTIR Spectra of Chitosan-additive Films	78
4.6	FTIR Spectra of Gelatin-additive Films	79
4.7	FTIR Spectra of Methylcellulose-additive Films	80
4.8	SEM Images of (a) Chitosan, (b) Gelatin and (c) Methylcellulose Biopolymers Film at 25,000x Magnification	85
4.9	SEM Images of CS Incorporated with Natural Additives Films (a) CS-AA, (b) CS-TA, (c) CS-BA, (d) CS-CL, (e) CS-TU and (d) CS-CH Biopolymer Films at 25,000x Magnification	86

05-4506832	
------------	--

4.10	SEM Images of GL Incorporated with Natural Additives Films (a) GL-AA, (b) GL-TA, (c) GL-BA, (d) GL-CL, (e) GL-TU and (d) GL-CH Biopolymer Films at 25,000x Magnification	87
4.11	SEM Images of MC Incorporated with Natural Additives Films (a) MC-AA, (b) MC-TA, (c) MC-BA, (d) MC-CL, (e) MC-TU and (d) MC-CH Biopolymer Films at 25,000x Magnification	88
4.12	Thermograms of (a) CS, (b) CS-AA, (c) CS-TA, (d) CS-BA, (e) CS-CL, (f) CS-TU and (g) CS-CH Biopolymer Films	109
4.13	Thermograms of (a) GL, (b) GL-AA, (c) GL-TA, (d) GL-BA, (e) GL-CL, (f) GL-TU and (g) GL-CH Biopolymer Films	110
4.14	Thermograms of (a) MC, (b) MC-AA, (c) MC-TA, (d) MC-BA, (e) MC-CL, (f) MC-TU and (g) MC-CH Biopolymer Films	111
4.15	Remained Biopolymer films (a) CS-AA and (b) CS-CH after 3 Months and Synthetic Films (c) PE and (d) LDPE after 6 months	167
4.16	Reaction Pathways during Biodegradation of Biopolymer	167

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

PustakaTBainun

ptbupsi

LIST OF ABBREVIATIONS

- AA Ascorbic acid
- BA Banana leaf
- BPA Bisphenol A
- CH Chamomile
- CL Clove
- CS Chitosan
- EAB Elongation at break

05-4506 FAO Spusta Food Agricultural Organisation

Fourier Transform Infrared

GL Gelatin

FTIR

- LDPE Low density polyethylene
- MC Methylcellulose
- OP Oxygen permeability
- PVC Polyvinyl chloride
- SEM Scanning electron microscope
- TA Tannic acid
- TGA Thermogravimetric Analyser
- TS Tensile strength
- TU Turmeric
- WVP Water vapour permeability

PustakaTBainun

PustakaTBainun

ptbupsi

CHAPTER 1

INTRODUCTION

1.1 Research Background

The world population continues to grow, of which according to United Nations (2015) the world population has reached 7.3 billion as of mid-2015. Table 1.1 shows the projection of world population for the period of 2015-2100. As the world population is projected to increase, the market demand for food would continue to grow. As a human being, we need to consume food to stay alive and healthy. Since there is a great demand for food, food safety should be taken seriously. Food safety can be described as handling, preparation and storage of food in ways that prevent foodborne illness (Lim et al., 2016). Foodborne diseases have affected more than one-third of the total population in developing countries (FAO & WHO, 2002). In Malaysia, food poisoning cases tend to increase every year. For example, the rate of food poisoning

in 2006 was 26.04 % and it doubled to 53.19% in 2007 (Lim et al., 2016). Furthermore, according to Hosseinnejad and Jafari (2016), Center for Disease Control and Prevention (CDC) of USA stated that 48 million people are infected, 128,000 are hospitalised, and 3000 are died in the United States each year due to foodborne disease.

Table 1.1

Projection of World Population for 2015, 2030, 2050 and 2100

	Populati	Population (millions)			
Major area	2015	2030	2050	2100	
World	7 349	8 501	9 725	11 213	
Africa	1 186	1 679	2 478	4 387	
68Aia 💱 pustaka.upsi.edu.my 👖	Perpustakaan Tuanku Ba Kampus Sultan 3933ul Ja	s4 923	5 267 Ba	inun4 889 ptbu	
Europe	738	734	707	646	
Latin America and the Caribbean	634	721	784	721	
Northern America	358	396	433	500	
Oceania	39	47	57	71	

Note. Adapted from United Nation, 2015.

Food preservation is one of the oldest sciences used by human beings to keep food from polluted. In order to maintain the quality of the food and avoid food spoilage, preservatives are used to prevent or retard both chemical and biological deterioration of foods (Raj, Matche & Jagadish, 2011). The interesting fact about food preservation, it has been a part of every culture at nearly stage. Ancient people had to freeze seal meat on the ice in very cold climates and during tropical climates they

dried foods under the sun. With food preservation, they had no longer to consume the kill or harvest immediately. Food preservation traditionally has three goals, namely: (1) the preservation of nutritional characteristics, (2) the preservation of appearance and (3) a prolongation of the time that the food can be stored (Abdulmumeen, Risikat, & Sururah, 2012). Traditional methods of preservation usually aim to exclude air, moisture, and microorganisms, or to provide environments in which organisms that might cause spoilage cannot survive (Abdulmumeen et al., 2012). As time passed, various methods are available for food preservation including drying, salting, canning and packaging (Wallace, 2005; Brody et al., 2008).

Nowadays, petroleum-based film or commonly called plastic is the material most used for food preservation. Plastic materials have been used in many 05-4506 applications since the late 1930s. Plastic packaging is the largest application for busi plastics about 40% in Europe, within the packaging niche, food packaging amounts to the largest plastics-demanding application (Fabra, Lagarón, Ocio, & Sánchez, 2016). Besides that, plastic materials as food and beverage packaging have gained increase importance during the last decade due to their ease of production, processing and low weight (Bott, Störmer & Franz, 2014). The advantages of plastic materials are chemically and mechanically resistant, lightweight, heat-sealable, can be printed on and are available in large quantities at low cost (Barbin et al., 2015). Although the use of petroleum-based materials is effective for food preservation, they are not degradable which can create serious environmental problems. Therefore, their use has been restricted to avoid further ecological damages (Tharanathan, 2003; Aider, 2010). Our earth greatly suffered from this pollutant which has caused environment destruction especially in marine habitat. Plastic pollutants are the major threats

especially in marine environments where it assists in the transfer of the persistent organic pollutants (POPs) that may travel up the food chain (Corcoran et al., 2015).

Research in biopolymer have gained a lot of attention particularly in determining alternative ways to replace petroleum-based materials that potentially cause a negative environmental impact and problems associated to waste disposal (Dicastillo et al., 2016). Biopolymer is a material derived from plants or animals which is degradable and environment friendly. There are many types of biopolymer that have been used for food preservation such as starches, cellulose derivatives, chitosan/chitin, gums, protein and lipids (Elsabee & Abdou, 2013). Besides easily available, biopolymer-based materials can be used as layers to separate various food product, casing and coatings that are no need to remove for cooking and eating to be used as layers in food products due to they are not edible and toxic to human. However biopolymer materials as food preservatives have several disadvantages,

where the main disadvantages is water sensitivity or poor barrier properties against water vapour that can be can be circumvented by combining them with lipids (Kowalczyk & Baraniak, 2014).

As discussed above, it is clear that there is an urgent need to find alternatives for petroleum-based films for food preservation. Both Department of Environment Malaysia and Ministry of Health Malaysia have highlighted this issue. Therefore, this research was devised as a direct response to the aforementioned issue.

ptbupsi 5

1.2 Food Preservation Techniques

Food is any substance that can be eaten or drunk to serve nutritional support for the body or for pleasure (Abdulmumeen et al., 2012). It mostly contains of plant or animal origin which provide essential nutrients to consumers. Nutrients such as carbohydrates, fats, proteins, vitamins, or minerals are ingested and assimilated by an organism to produce energy, stimulate growth and maintain healthy life. Food preservation is the process of treating and handling food to stop or greatly slow down spoilage which leads to the loss of quality, edibility or nutritive value caused or accelerate by microorganisms (Abdulmumeen et al., 2012). However, some methods of food preservation use bacteria, yeasts or fungi to add specific qualities and to preserve food, for instance cheese and wine (Abdulmumeen et al., 2012). The 05-4500 preservative of food should be able to maintain or create nutritional value, texture and bupsi flavour which are important in preserving its values as healthy food. Moreover, preservation normally involves preventing the growth of bacteria, fungi, and other microorganism, and also retarding the oxidation of fats which cause rancidity.

Before the existence of commercial canning, freezing, refrigeration and freeze drying food, human being developed convenient methods to preserve fresh foods so that in the lean months they would have a relative constant food supply. In the beginning, drying, smoking, salting, fermentation, cold and potting were used. In later years, preservation using sugar, vinegar and alcohol were employed as preservatives. According to Raj et al., (2011), there are several traditional methods used to preserve food including thermal processing, drying, freezing, refrigeration, irradiation, modified atmosphere packaging and adding anti-microbial agents or salts.

Furthermore, several food additives such as calcium propionate, sodium nitrate, sodium nitrite, sulfites (sulfur dioxide, sodium bisulfite, potassium hydrogen sulfite, etc.) and disodium were used to preserve food (Abdulmumeen et al., 2012). According to Rahman (2007), the major food preservation techniques can be categorised based on the mode of action as: (1) slowing down or inhibiting chemical deterioration and microbial growth, (2) directly inactivating bacteria, yeasts, molds, or enzymes and (3) avoiding recontamination before and after processing. However, traditional preservation method may continue in one or more of these three ways. Figure 1.1 shows a number of methods from the aforementioned categories. In the following sections, several methods of food preservation are highlighted, namely drying, salting, canning and packaging.

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

1.2.1 Drying

Drying is regarded as a successful preservation method since it has been used across cultures and believed to be the oldest method (Harris & Taylor, 2004). Ancient people in the hot climates areas used this method to drying their food under the sun to preserve the food. That have proved where ancient Middle East and Oriental cultures actively dried their food in the baking sun to dry. The growth of microorganisms such as mold, yeast and bacteria occurred due to the high water content of food. Drying method can overcome issues related to microorganisms by reducing high volume of water in food, thus preserving them (Wallace, 2005; Harris & Taylor, 2004).

1.2.2 Salting

There is no single record that shows the exactly time when salt began to be used as a preservative method (Harris & Taylor, 2004). The ancient Egyptians, Chinese and early Romans preserve their meat by using salt and it is known that fish washed in seawater kept longer than fish washed in fresh water (Harris & Taylor, 2004). Fisherman in the Middles Ages kept their fish in barrels of brine or salt when their catch back to shore. Jams and jellies are preserved as solutions of high sugar content, and many meats (e.g., hams) and fish are still preserved by salting (Abdulmumeen et al., 2012). This method works due to the moisture in food is drawn out during the salting process which prevents bacteria to thrive.

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

9 PustakaTBainun

1.2.3 Canning

During mid-eighteenth century, Napoleon's armies experienced difficulties to survive because of limited food which led to malnutrition and starvation. To solve the problem, Napoleon offered prizes to the first people who discover a reliable method for keeping France's armies fed. After fourteen years of experimentation, Nicolas Appert had discovered canning method for food preservation in 1795 (Abdulmumeen et al., 2012). He was the first who discovered successfully can meats, fruits and vegetables where he placed food in glass jars with wax sealed and reinforced with wire and then heating the jars. By using heat, microorganism responsible for the spoilage of food was destroyed and the expansion of the jar contents occur causes a greater pressure outside of the jar than the pressure inside which forming a vacuum. A

seal is formed as the jar cools which preventing microorganisms from contaminating and entering the food.

Furthermore, Peter Durand, an English merchant, has modified Nicolas Appert's method to preserve food by using metal can. In fact, he commercialised the metal can as material for food packaging in 1910. However, during the earliest days of canning, a number of persons (including some Arctic explorers) have died as a result of exposure to the lead poisoning that was once used to solder cans (Abdulmumeen et al., 2012).

1.2.4 Packaging

pustaka.upsi.edu.my

05-4506832

f Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

🖸 ptbupsi

Canning method that invented by Nicolas Appert was the first successful packaging (Harris & Taylor, 2004). In the beginning of the 20th century, tin-plated steel cans, glass bottle and wooden crates were used for food and beverage distribution (Brody et al., 2008). During World War II, wax and petroleum-based materials were used to protect ammunition became packaging materials for dry cereals and biscuits (Brody et al., 2008). Nowadays, the invention of packaging continues which led to the use of biopolymer-based materials and also active packaging in order to create a better food condition and replace petroleum-based materials.

Perpustakaan Tuanku Bainun

Kampus Sultan Abdul Jalil Shah

Figure 1.1. Major Food Preservation Techniques (Rahman, 2007)

1.3 Petroleum-material Packaging

Plastics or petroleum-based materials derived from crude oil are widely used as major materials for packaging that function as containing, protecting, preserving and transporting (Bilbao-Sainz et al., 2011; Science for Environment Policy, 2011). There are several petroleum-based materials used for packaging applications such as polyethylene (PE), polyethylene terephthalate (PET), polypropylene (PP), polyvinylchloride (PVC), polyamide (PA) and polystyrene (PS) because of their low

05-4506832

pustaka.upsi.edu.my

PustakaTBainun

cost, light weight, good mechanical and barrier properties, heat stability and easy to process (Hu, 2014). The global production of petroleum-based materials is estimated to be more than 200 million tons a year (Siracusa, 2016). Therefore, the problem regarding environmental issues rises due to the failure in waste management. Uncontrolled wastes of these materials polluting the marine environment and ingested by marine species or accumulated on the seabed, beaches and river estuaries (Science for Environment Policy, 2011). Furthermore, recycled of these polymers as packaging materials is the least compared to metals, papers, and glass, hence most of these materials will end up in the landfill sites and will remain for centuries before full degradation.

Besides, the recycled of packaging material wastes is uneconomical and 05-4506 impracticable due to contaminated with foodstuffs and biological substances (Hu, to price 2014). In addition to issues concerning the environment, the price of petroleum increased recently hence increases the price of petroleum-based material coincidently.

1.3.1 Types of Petroleum-material Packaging

The largest shares of plastic production are used as packaging materials in the Europe and at world level (European Commission, 2011). There are many types of plastics that have been used for packaging including low-density polyethylene (LDPE), highdensity polyethylene (HDPE), polypropylene (PP) and polyethylene terephthalate (PET). Petroleum-based materials have unique microstructure properties with many repeated unit chained together (Hu, 2014). These materials are able to be formed as

bottle, bag, container, film, foam, coating, and wrapping in packaging industry. Table 1.2 shows the main polymers used in packaging applications.

Table 1.2

Polymers	in Main	Household	Packaging	Application
----------	---------	-----------	-----------	-------------

Application	Product	Polymer
Bottles	Dairy products Juices, sauces Water, soft drink	HDPE HDPE, PET, PP PET
	Non-food product (cleaning products, toiletries, lubricant, etc.)	HDPE, PET, PVC
	Medical products	PET
Closure	Caps and closures of bottles, jars, pots, cartons, etc.	PP, LDPE, HDPE, PVC
05-4506832 Bags and sacks	du.my Perpustakaan Tuanku Bainun Carrier bagan Abdul Jalil Shał	PustakaTBainup LDPE, HDPE
	Garbage bags	HDPE, LDPE, LLDPE
	Other bags and sacks	LDPE, LLDPE, HDPE, PP
Films	Pouches (sauces, dried soups, cooked meals)	PP, PET
	Overwrapping (food trays and cartons)	OPP, OPS
	Wrapping, packets and sachets	PP, OPP
	Wrapping (meat, cheese)	PVDC
	Cling stretch rap film (food)	LLDPE, LDPE, PVC, PVDC

Note. Adapted from European Commission, 2011.

HDPE: high density polyethylene, PP: polyethylene, LDPE: low density polyethylene, PET: polyethylene terephthalate, PVC: polyvinyl chloride, LLDPE: linear low-density polyethylene, OPP: oriented polypropylene, OPS: oriented polystyrene, PVDC: polyvinylidene chloride.

1.3.2 Impacts of Petroleum-material

According to Liu (2006), United States alone produced almost 230 million tonnes or 4.4 pounds per person of plastic wastes each day in 2001. Furthermore, Norway and Switzerland produced approximately 24.9 megatonnes of plastic waste in 2008 (European Commission, 2011). There were many effort that have been taken including reduce, recycle, reuse and recover to protect human health and the environment against harmful effects caused by the collection, transport, treatment, storage and landfilling of plastic wastes. Most of plastic packaging for food stuff is used for short-term but takes a long time to degrade. Therefore, plastics are easily found everywhere in society and also in the environment due to extensive production and the important uses in daily lives. However, the problems regarding plastic wastes 05 4500 start to risen up because plastic wastes are widespread with extensive accumulation in the oceans, landfills and other terrestrial compartments which give bad effects toward wildlife and human health.

1.3.2.1 Environment

Nowadays, a large amount of plastic wastes has accumulated in the environment due the increase of production and the use of plastic. Plastic wastes had polluted the ocean, river and soil. These petroleum-based materials are not degradable which remain for many years. Science for Environment Policy (2011) reported that the layer of plastic wastes floating between the oceans of California and Hawaii has been estimated to span about 3.43 million km^2 (the size of Europe). Most of these

pollutants may migrate and accumulate at shores. In 1992, a container ship lost 30,000 rubbers off the coast of China. Some of these turned up on the shores of the United Kingdom after fifteen years (Science for Environment Policy, 2011).

Numerous of wildlife becoming entangled in plastic waste which lead to injury or impaired movement and death (European Commission, 2011). According to Science for Environment Policy, (2011) a piece of plastic was found in an albatross stomach which cause from a crash of seaplane during World War II in 1944. Furthermore, Franeker et al., (2011) estimated that Northern Fulmars (a type of seabird) annually reshape and redistribute about six tonnes of plastic through ingestion of plastic waste every year. Besides, there is some evidence indicate that the toxic chemicals due to plastic ingestion which accumulate in living organism and 05-4506 throughout nutrient chains. Table 1.3 shows examples of known impacts on wildlife bupsi in terms of entanglement and ingestion.

Table 1.3

Species group	Total number of species worldwide	Number and % of species with entanglement records	Number and % of species with ingestion records
Sea turtles	7	6 (86%)	6 (86%)
Seabirds	312	51 (16%)	111 (36%)
Penguins	16	6 (38%)	1 (6%)
Grebes	19	2 (10%)	0

Number and Percentage of Marine Species with Documented Entanglement and Ingestion Records

(Continue)

pustaka.upsi.edu.my **f** Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

Table 1.3 (continued)

	Species group	Total number of species worldwide	Number and % of species with entanglement records	Number and % of species with ingestion records	
_	Albatrosses, petrels, shearwaters	99	10 (10%)	62 (63%)	
	Pelicans, gannets, commorants, frigatebirds, tropicbirds	51	11 (22%)	8 (16%)	
	Shorinebirds, skuas, gulls, terns, auks	122	22 (18%)	40 (33%)	
	Other birds	-	5	0	
	Marine mammals	115	32 (28%)	26 (23%)	
05-4506832	Baleen whales pustaka.upsi.edu.m Toothed whales	10 f ^{Perpustak} Kampus S	6 (60%) aan Tuanku Bainun ultan Abdul Jalil Shah 5 (8%)	2 (20%) PustakaTBainun 21 (32%)	psi
	Fur seals and sea lions	14	11 (79%)	1 (7%)	
	True seals	19	8 (42%)	1 (5%)	
	Manatees and dugongs	4	1 (25%)	1 (25%)	
	Sea otter	1	1 (100%)	0	
	Fish	-	34	33	
	Crustaceans	-	8	0	
	Squid	-	0	1	
	Species total		136	177	

Note. Adapted from Science for Environment Policy, 2011.

C.

PustakaTBainun

1.3.2.2 Health Risks

Plastic wastes can give bad impacts toward health of human and ecology because several plastics contain chemicals or additives to give certain properties. These chemicals are recently known to give bad effects on human and animal health which mainly affect the endocrine system. According to European Commission (2011), there are some proofs that indicate the toxicity of plastic from plastic ingestion which accumulate in living organism and throughout nutrient chains. There are several chemicals within plastics including Bisphenol A (BPA), phthalates and flame retardants (Science for Environment Policy, 2011).

Plastic industries used BPA as a harder and clear for polycarbonate food, O5-4506 beverage container and many other consume products (Galloway et al., 2010). It bupsi easily leaches at high temperature condition and causes a change in acidity (Ben-Jonathan, Hugo & Brandebourg, 2009). The consumption of BPA may results in chronic diseases such as cardiovascular and diabetes, as well as adult hormone dysfunction (Lang et al., 2008, Galloway et al., 2010). BPA can cause failure of reproductive system, increase in body weight and insulin resistance of animals (Ben-Jonathan et al., 2009). Oehlmann et al., (2009) stated that BPA is related to several diseases such as prostate cancer, breast cancer, sperm count decreases, miscarriage, obesity and diabetes.

Phthalate or diester of 1,2-benzedicarboxylic acid is an industrial chemical that normally used as a plasticiser for flexible or resilient which easily found in food packaging and other plastic materials (Meeker, Sathyanarayana & Swan, 2009).

Furthermore, it is easily to leach from plastic material to contaminate the environment because it is not chemically bound to the plastic matrix (Talsness et al., 2009; Meeker, Sathyanarayana & Swan, 2009). The exposure of phthalates causes negative effects on reproductive systems of human and animal, obesity and allergies (Meeker, Sathyanarayana & Swan, 2009).

Flame retardants such as polybrominated diphenyl esters (PBDEs) and tetrabromobisphenol A (TBBPA) cause disruption of hormone (oestrogen and thyroid) and damage of reproductive and nervous system (Science for Environment Policy, 2011). Besides, PVC and polystyrene have been found to release toxic monomers which linked to cancer and reproductive failure (Marcilla, Garia & Garcia-Queseda, 2004; Garrigos, Marin, Canto, & Sanchez 2004). These exposures may be 05-4506 due to water pollution and ingestion by animal which end up to the food chain.

1.4 Problem Statement

The increase in production and use of non-biodegradable materials in food industry has polluted the environment. These types of materials are usually derived from petroleum products, which also caused waste disposal problem. Biopolymer materials have been used as alternatives to petroleum-based materials. However, biopolymer films have several drawbacks such as poor mechanical, thermal and barrier properties (Siti Hajar, 2014). Furthermore, biopolymer films possess a hydrophilic nature

(Shariatinia & Fazli, 2015). Although synthetic additives have proven improved the aforementioned properties, they are typically toxic and rise great concern among public consumers. In this context, natural additives have become ecologically important alternatives of synthetic additives (Wang, Marcone, Barbut, & Lim, 2012).

1.5 Research Gap

Based on literature review, although a number of studies had successfully developed and assessed the potential of biopolymer films for food preservation, several significant research gaps have been found and they are relevant to be investigated.

- 1. Pure biopolymer films (without additive) have several weaknesses such as
- os-4506832 Tow mechanical properties and poor water barrier properties. This limits their barrier application as food packaging material. It is important to study the effects of incorporating additives on physical and chemical properties of biopolymer films.
 - 2. Many of the previous studies reported the influence of only one type of additive to physical and chemical properties of biopolymer films. There is a need to compare the effects of several types of additives on physical and chemical characteristics of the films. In this study, three types of additives, namely pure compound, essential oil and plant extracts are used in the synthesis of biopolymer films.
 - Researchers normally used only one food pathogen in anti-microbial study.
 There is a need to compare the potential of biopolymer films to retard microbial growth from different type of bacteria or fungi. In this study, two

food-borne pathogens, namely *Escherichia coli* (gram-negative) and *Staphylococcus aureus* (gram-positive) are used to test the anti-microbial properties of biopolymer films.

- 4. The potential of biopolymer films to preserve real food products is not well studied. In this study, two local commodities were used namely cherry tomatoes and grapes as food samples. These fruits were wrapped by using biopolymer films in a preservation study for a period of fourteen days. The weight loss and browning index of the fruits were determined at the end of preservation study.
- 5. Up to date, the reports about biodegradation study of biopolymer films are scarce in public literature domains. It is imperative to conduct a biodegradation study of biopolymer films. In this study, the biodegradability
- 05-4506832 Of biopolymer films in soil environment up to six months period wastbupsi evaluated.

1.6 Research Aim

The overall aim of this research is to develop environmental friendly films for food preservation. It is hoped that these films have great potential to be used as alternatives to non-biodegradable packaging films.

1.7 Research Objectives

pustaka.upsi.edu.my

05-4506832

The objectives of this research are:

- 1. To synthesis biopolymer-additive films using chitosan/gelatin/methylcellulose and natural additives.
- 2. To characterise the physical and chemical properties of chitosan/gelatin/methylcellulose films incorporated with natural additives.
- To study the anti-microbial properties of chitosan/gelatin/methylcellulose films incorporated with natural additives
- 4. To evaluate the ability of chitosan/gelatin/methylcellulose films incorporated with natural additives to preserve fruits.

pustaka.upsi.edu.my

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

🗴 ptbupsi

1.8 Research Significance

This research emphasises the significant of development of biopolymer films to replace or decrease the reliance of petroleum-based materials in food preservative. Moreover, this research highlights the efficacy of natural additives to provide active agents for the improvement of shelf-life and food safety of food.

1.9 Hypothesis

The addition of natural additives improves the ability of biopolymer films to preserve food products.

1.10 **Thesis Organisation**

Chapter 1 provides introduction of the study. In this chapter, several topics such as research background, history and method of food preservation, petroleum-based material, types of petroleum-based and impact of petroleum-based materials toward environment and health are outlined in order to better define the important of food preservation and the impacts of petroleum-based materials. Chapter 2 explains the biopolymer film, natural additives and the application of biopolymer film as food preservative. Chapter 3 describes a methodology in the synthesis of biopolymer films incorporating with natural additives and characterisation techniques in determine the chemical and physical properties of biopolymer films. Chapter 4 explains and discusses the findings of this research. The results include the chemical and physical 05-4506 characterisations, anti-microbial properties, ability to preserved food samples and burst biodegradation study of biopolymer films. Conclusions from this research and suggestions for future research are described in Chapter 5.

