

FUZZY DECISION BY OPINION SCORE METHOD (FDOSM): DESIGN AND DEVELOPMENT OF NEW MULTI CRITERIA DECISION MAKING METHOD

MAHMOOD MAHER SALIH

pustaka.upsi.edu.my

THESIS SUBMITTED IN FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN ARTIFICIAL INTELLIGENCE

FACULTY OF ART, COMPUTING & CREATIVE INDUSTRY SULTAN IDRIS EDUCATION UNIVERSITY

2019

v

ptbupsi

ABSTRACT

The purpose of this research was to design and develop a new multi-criteria decisionmaking (MCDM) method called Fuzzy Decision by Opinion Score Method (FDOSM) to help overcome the problems of MCDM methods based on the idea of an ideal solution This research used an experimental research design with which FDOSM was applied to individual and group contexts. Essentially, FDOSM contains three main blocks, namely the input data block, data transfer block, and data processing block. For the data processing block, three sets of experiments were carried out to optimize the parameters of the proposed method. The first experiment dealt with three different configurations, namely Direct aggregation, Compromise Rank, and Distance measurement, of a single decision maker. Direct aggregation with arithmetic mean is the main configuration recommended for comparing the results of different experiments. However, if the maximum utility is important to the decision maker, compromise ranking would be the proper configuration. The second experiment focused on the process of Group Fuzzy Decision by Opinion Score Method (G-FDOSM) with two different configurations, namely internal and external aggregation. The main finding of G-FDOSM experiment showed the results of internal and external configurations were close, with the ratio of the closeness of the experimental results of G-FDOSM with 90 alternatives being 71.02%. However, external aggregation was deemed more appropriate for compromise ranking. The third experiment involved several different case studies to examine the suitability of FDOSM in solving different 05-4506 MCDM problems. The results showed that, compared to the ideal solution, the best player (P16) achieved a ratio of 58.3% from the ideal solution, which was considered to be the best ratio among other players for the sports science case study. For the GPS case study, experimental results showed the best solution was m8 with a ratio of 67% from the ideal solution. Overall, the results of FDOSM and G-FDOSM were close to the human's opinions, suggesting that arithmetic mean is the most suitable aggregation operator for all the experiments and FDOSM can adopt different fuzzy membership. Furthermore, reference comparison used with FDOSM can be implemented more efficiently compared to the use of the pairwise comparison of the Analytic Hierarchy Process and the Best-Worst Method. In conclusion, the proposed FDOSM had been successfully modulated mathematically, tested with different numerical examples, and compared to other MCDM methods.

05-4506

upsi

vi

KEPUTUSAN KABUR DENGAN KAEDAH SKOR PENDAPAT: SATU REKA BENTUK DAN PEMBANGUNAN BARU KAEDAH MEMBUAT KEPUTUSAN PELBAGAI KRITERIA

ABSTRAK

Tujuan kajian ini adalah untuk mereka bentuk dan membangunkan satu kaedah baru yang dinamakan Keputusan Kabur dengan Kaedah Skor Pendapat (Fuzzy Decision by Opinion Score Method, FDOSM) untuk mengatasi masalah yang berkaitan dengan kaedah membuat keputusan pelbagai kriteria (MCDM) berdasarkan ide penyelesaian yang ideal. Kajian ini menggunakan reka bentuk penyelidikan eksperimen di mana FDOSM digunakan dalam konteks individu dan kumpulan. Pada asasnya, FDOSM mempunyai tiga blok, iaitu blok data input, blok pemindahan data, dan blok pemprosesan data. Bagi blok pemprosesan data, tiga set eksperimen dijalankan untuk mengoptimum parameter kaedah yang dicadangkan. Eksperimen pertama melibatkan tiga konfigurasi yang berbeza, iaitu Pengagregatan Langsung, Kedudukan Kompromi, dan Pengukuran Jarak yang melibatkan pembuat keputusan tunggal. Pengagregatan Langsung dengan min aritmetik adalah konfigurasi utama yang disarankan untuk perbandingan keputusan eksperimen yang berbeza. Namun, jika utiliti maksimum adalah penting untuk pembuat keputusan, pemeringkatan kompromi adalah merupakan konfigurasi yang lebih sesuai. Eksperimen kedua melibatkan proses membuat keputusan kumpulan (G-FDOSM) dengan menggunakan dua konfigurasi yang berbeza, iaitu pengagregatan dalaman dan luaran. Dapatan utama untuk eksperimen G-FDOSM menunjukkan dapatan konfigurasi dalaman dan dapatan konfigurasi luaran adalah hampir sama di mana nisbah kedekatan antara dapatan G-FDOSM dengan 90 alternatif adalah 71.02%. Namun, pengagregatan dalaman adalah lebih sesuai untuk pemeringkatan kompromi. Eksperimen ketiga pula melibatkan beberapa kajian kes yang berbeza untuk menentukan kesesuaian FDOSM dalam menyelesaikan masalah MCDM. Dapatan menunjukkan pemain P16 mencapai nisbah sebanyak 58.3% berbanding dengan penyelesaian ideal yang merupakan nisbah yang terbaik jika dibandingkan dengan lain-lain pemain dalam kajian kes sains sukan ini. Untuk kajian kes GPS, dapatan experimen menunjukkan penyelesaian yang terbaik adalah m8 dengan nisbah sebanyak 67% berbanding dengan penyelesaian ideal. Keseluruhannya, dapatan FDOSM dan G-FDOSM adalah hampir sama dengan pendapat manusia, dan ini menyarankan min aritmetik sebagai pengendali pengagregatan yang paling sesuai untuk semua eksperimen dan FDOSM boleh menggunakan keahlian kabur yang berbeza. Tambahan pula, perbandingan rujukan yang digunakan bersama FDOSM boleh dilaksanakan dengan mudah berbanding dengan penggunaan perbandingan berpasangan Proses Hierarki Analitik (AHP) dan Kaedah Terbaik-Terburuk (BWM). Sebagai kesimpulan, kaedah FDOSM yang dicadangan telah dimodulasi secara matematik, diuji dengan contoh berangka yang berbeza, dan dibandingkan dengan kaedah MCDM yang lain dengan jayanya.

vii

TABLE OF CONTENTS

		P	age	
DECLARATIC	ON OF ORIGINAL WORK		ii	
DECLARATIC	ON OF THESIS		iii	
ACKNOWLED	OGMENT		iv	
ABSTRACT			v	
ABSTRAK			vi	
TABLE OF CO	ONTENTS		vii	
LIST OF TABI	LES .upsi.edu.my Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah	PustakaTBainun	xvi	ptbupsi
LIST OF FIGU	RES		xxi	
LIST OF ABBI	REVIATIONS	2	xxvi	
LIST OF APPE	CNDICES	X	xviii	
CHAPTER 1	INTRODUCTION			
1.1	Introduction		1	
1.2	Problem Background		2	
1.3	Problem Statement		4	
1.4	Research Objectives		6	
1.5	Research Questions		7	

05-4506832

Ē

ptbupsi

viii

1.6	Significance of Study	8
1.7	Research Scope	8
1.8	Outline of Study	9
CHAPTER 2	LITERATURE REVIEW	
2.1	Introduction	12
2.2	Method	13
	2.2.1 Information Sources	13
	2.2.2 Study Selection	14
O5-4506832 O5-4506832 pustak	2.2.3 Search Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah	ptbupsi
	2.2.4 Inclusion Criteria	16
	2.2.5 Data Collection Process	18
2.3	Results and Statistical Information of Articles	18
	2.3.1 Type-1 Fuzzy Set	20
	2.3.2 Type-2 Fuzzy Set	27
	2.3.3 Other	30
	2.3.4 Survey paper	31
	2.3.5 Some Statistical Information from Related Articles	31

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

ix

2.4 Discussion	37
2.4.1 Motivations	38
2.4.1.1 Benefits Related to Using Fuzzy Set with MCDM	39
2.4.1.2 Benefits Related to Using MCDM	43
2.4.1.3 Benefits Related to Using MCDM with Management	45
2.4.2 Open Challenges and Issues	49
2.4.2.1 Challenges Related to MCDM Methods	50
2.4.2.2 Challenges Related to The Decision Makers	55
05-4506832 pustaka.upsi.edu.my Chaines Management Kampus Sultan Abdul Jalil Shah	56 _{ptbupsi}
2.4.2.4 Challenges with Evaluation Problem	58
2.4.2.5 Other Challenges	60
2.4.3 Recommendations	61
2.4.3.1 Recommended to Researcher	61
2.4.3.1.1 Recommendations as a Future Work	62
2.4.3.1.2 Recommendations as Limitations on the Research	68
2.4.3.1.3 Other Recommendation to The Researchers	70
2.4.3.2 Recommendations to Governments and Managers	71
2.5 Summary of Problems in Classical TOPSIS Method	72

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

х

2.6 Fuzzy Set Theory	76
2.6.1 Triangular Fuzzy Numbers (TFN)	77
2.6.2 Trapezoidal Fuzzy Numbers (TrFN)	79
2.7 Summary of Chapter	81
CHAPTER 3 TECHNICAL PROBLEMS OF HUMAN AND MATHEMATICAL APPROACHES	
3.1 Introduction	83
3.2 Issues Related to Human Approach	84
3.2.1 AHP Technique	84
05-4506832 Opustaka.upsi.3.2.1.1 Technical Issues with AHP PustakaTB	Jainun 1085 ptbupsi
3.2.1.2 Practical Example of AHP	90
3.2.2 Best-Worst Method (BWM)	94
3.3 Issues Related to Mathematical Approach	97
3.3.1 Normalization techniques problems	97
3.3.2 Distance Measurement	101
3.3.2.1 Cost and Benefit Problem	101
3.3.2.2 Actual Value	103
3.3.3 Criteria Weight Issues	105

xi

3.3.4 Issues Related Information	105
3.3.4.1 Missing Information	106
3.3.4.2 Unmeasurable criteria	106
3.4 Summary of Chapter	107
CHAPTER 4 RESEARCH METHODOLOGY	
4.1 Introduction	109
4.2 Phase One: Investigate the Literature	112
4.3 Phase Two: Mathematical Model Design	113
05-4506832	ptbupsi
4.3.2 Data Transformation Unit	115
4.3.3 Data Processing Unit	118
4.3.3.1 Single Decision Maker	119
4.3.3.1.1 Direct Aggregation	120
4.3.3.1.2 Compromise Ranking	123
4.3.3.1.3 Distance Measurement	125
4.3.3.2 Group Decision Making	127
4.4 Phase Three: Case Study	130
4.4.1 Case Study in Computer Networking	131
4.4.2 Case Study in Sports Science	132

E

xii

	4.4.3 Case Study in GPS	133
4.5	Phase Four: Evaluation	134
4.6	Summary of Chapter	137
CHAPTER 5	SINGLE DECISION MAKER	
5.1	Introduction	139
5.2	Scenario One: Direct Aggregation	141
	5.2.1 Direct Aggregation with Arithmetic Mean	142
	5.2.2 Direct Aggregation with Geometric Mean	144
05-4506832	5.2.3 Direct Aggregation with Harmonic Mean	45
	Kampus Sultan Abdul Jalil Shah	ptbupsi
	5.2.4 Direct Aggregation with Root Mean Square (RMS)	146
5.3	5.2.4 Direct Aggregation with Root Mean Square (RMS) Scenario Two: Compromise Ranking	146 147
5.3 5.4	5.2.4 Direct Aggregation with Root Mean Square (RMS) Scenario Two: Compromise Ranking Scenario Three: Distance Measurement	146 147 149
5.3 5.4 5.5	 5.2.4 Direct Aggregation with Root Mean Square (RMS) Scenario Two: Compromise Ranking Scenario Three: Distance Measurement Results Discussions 	146 147 149 150
5.3 5.4 5.5	 Scenario Two: Compromise Ranking Scenario Three: Distance Measurement Results Discussions 5.5.1 Direct Aggregation 	146 147 149 150 151
5.3 5.4 5.5	 Scenario Two: Compromise Ranking Scenario Three: Distance Measurement Results Discussions 5.5.1 Direct Aggregation 5.5.2 Distance Measurement 	146 147 149 150 151 152
5.3 5.4 5.5	 Scenario Two: Compromise Ranking Scenario Three: Distance Measurement Results Discussions S.1 Direct Aggregation S.2 Distance Measurement S.3 Compromise Ranking 	146 147 149 150 151 152 153

C

05-4506832

xiii

CHAPTER 6 GROUP DECISION MAKING

	6.1	Introduction	159
	6.2	G-FDOSM with Direct Aggregation	161
		6.2.1 Internal and External Aggregation with Arithmetic Mean	162
		6.2.2 Internal and External Aggregation with Geometric Mean	165
		6.2.3 Internal and External Aggregation with Harmonic Mean	168
		6.2.4 Internal and External Aggregation with Root Mean Square	168
	6.3	G-FDOSM with Compromise Ranking	171
05-4506832	pustaka	G-FDOSM with Distance Measurement Kampus Sultan Abdul Jalil Shah	74 ptbupsi
	6.5	Results Discussions	177
		6.5.1 G-FDOSM with Direct Aggregation	178
		6.5.1.1 Internal and External with Arithmetic Mean	178
		6.5.1.2 Internal and External with Geometric Mean	179
		6.5.1.3 Internal and External with Harmonic Mean	180
		6.5.1.4 Internal and External with Root Mean Square	180
		6.5.2 G-FDOSM with Compromise Ranking	182
		6.5.3 G-FDOSM with Distance Measurement	183

X1V
771 4

6.6	Discussion and Summary of Chapter	187
CHAPTER 7	CASE STUDIES AND EVALUATION	
7.1	Introduction	189
7.2	Single Decision Maker with Multiple Requirements	190
7.3	Trapezoidal Fuzzy Numbers (TrFN)	195
,	7.3.1 Single Decision Maker	196
	7.3.2 Group Decision Making	197
7.4	GPS Case Study	198
(S) 05-4506832 (F) pustaka	7.4.1 FDOSM with Single Decision Maker in GPS Case Study Kampus Sultan Abdul Jalil Shah	199 ptbupsi
	7.4.1.1 FDOSM with Direct Aggregation Form	199
	7.4.1.2 FDOSM with Compromise Ranking	201
,	7.4.2 FDOSM with Group Decision Making in GPS Case Study	203
	7.4.2.1 Internal Aggregation	204
	7.4.2.2 External Aggregation	205
,	7.4.3 Experiment when Using BWM in GPS Case Study	208
	7.4.3.1 Single Decision Maker	211
	7.4.3.2 Group Decision Making	212

xv

7.4.4 Results Discussions and Evaluation in GPS Case Study	214
7.5 Discussion and Summary of Chapter	219
CHAPTER 8 CONCLUSION AND FUTURE WORKS	
8.1 Introduction	220
8.2 Goals Achievement and Contribution Research	221
8.3 Future Works	224
8.4 Research Conclusion	225
REFERENCES	227
05-4506832 Pustaka.upsi.edu.my	#252 ptbupsi

xvi

LIST OF TABLES

Table No	D.	Page
2.1	The Query without Using FUZZY Word	15
2.2	The Query with Using FUZZY Word	15
2.3	Distribution of Papers by Application Area	35
2.4	The Value of Each linguistic Term with TFN	79
2.5	The Value of Each Linguistic Term with TrFN	81
3.1 05-4506832	Decision Matrix pustaka.upsi.edu.my Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah PustakaTBainun	87 ptbupsi
3.2	AHP Process to Measure The Criteria Weight	88
3.3	The Values of Random Index	92
3.4	The Final Results for This Example	93
3.5	Air Fighter Multi-Criteria Selection Problem	98
3.6	Three Different Normalization Techniques Applied on Table 3.5	99
3.7	Missing Information in Decision Matrix	106
3.8	Unmeasurable Criteria	107

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

PustakaTBainun

ptbupsi

••
V V/11

3.9	Summary of Issues and Suggestions	109
4.7	Sample of Analysis Table Used in The Literature Analysis	112
4.2 4.3	2 Linguistic Terms to TFN	122
	3 The Alternatives and Criteria Computer Networking Case Study	131
4.4	The Alternatives and Criteria Sports Science Case Study	133
4.4	5 The Alternatives and Criteria GPS Case Study	134
4.6 Top and Worst Ranking Alternative S	5 Top and Worst Ranking Alternative Similarity	135
05-4506822	Top and Worst Ranking Alternative Similarity for Internal Aggregation	135 ^{tbupsi}
4.8	3 Top and Worst Ranking Alternative Similarity for External Aggregation	136
4.9 The Comparison between FDOSM, AHP and	The Comparison between FDOSM, AHP and BWM	137
5.7	The Final Result for Each Expert with Arithmetic Mean	143
5.2	2 The Final Result for Each Expert with Geometric Mean	144
5.2	3 The Final Result for Each Expert with RMS	146
5.4	The Final Result for Each Expert with Compromise Ranking	148
5.5	The Final Result for Each Expert with Distance Measurement	149

ptbupsi

xviii

	5.6	Top and Worst Ranking Alternative Similarity	156
	6.1	The Final Result of Internal Aggregation with Different Operators and Final Result Aggregate with Arithmetic Mean	163
	6.2	External Aggregation for Arithmetic Mean Final Result with Different Aggregation Operators	164
	6.3	The Final Result for Internal Aggregation with Different Operators and Final Result Aggregate with Geometric Mean	166
	6.4	External Aggregation for Geometric Mean Final Result with Different Aggregation Operators	167
	6.5	The Final Result for Internal Aggregation with Different Aggregation Operators and Final Result Aggregate with RMS	169
	6.6	External Aggregation for RMS Finals Result with Different Aggregation Operators	170
05-4506	6.7 832	Internal Aggregation with Different Aggregation Operators pustaka.upsi.edu.my	172 ptbupsi
	6.8	External Aggregation with Different Aggregation Operators	173
	6.9	Internal Aggregation with Different Aggregation Operators	175
	6.10	External Aggregation with Different Aggregation Operators	176
	6.11	Top and Worst Ranking Alternative Similarity for Internal Aggregation	185
	6.12	Top and Worst Ranking Alternative Similarity for External Aggregation	186
	7.1	The Final Results for Player Selection Problem with Different Position	193
	7.2	The Value of Each Linguistic Term with TrFN	195
	7.3 Т	The Final Results for Each DM when Using Trapezoidal Fuzzy Numbers	196

xix

PustakaTBainun

E

	7.4	The Final Results for Internal and External Group Decision Making with Trapezoidal Fuzzy Numbers	197
	7.5	The Final Results for Static and Dynamic Position for Each Decision Maker	200
	7.6	The Final Results for Static and Dynamic Position Each DM with Compromise Ranking	202
	7.7	Final Result for Internal Aggregation with Direct Aggregation Scenario	204
	7.8	Final Result for External Aggregation with Direct Aggregation Scenario	206
	7.9	Final Result for External Aggregation with Compromise Ranking	207
	7.10	The Weights of Criteria by BWM for Static Position Criteria	209
05-4506	7.11 ⁸³²	The Weights of Criteria by BWM for Dynamic Position Criteria pustaka.upsi.edu.my Kampus Sultan Abdul Jalil Shah	209 ptbupsi
	7.12	The Final Results when Using BWM to Extracting The Weight of Criteria	211
	7.13	The Weight of Criteria After Internal Aggregation	212
	7.14	Final Results for Internal Aggregation	213
	7.15	Final Results for External Aggregation	213
	7.16	The Weight of Criteria when Using AHP Method	214
	7.17	The Opinion Matrix for The First Expert in GPS Case Study	217
	7.18	The Comparison between FDOSM, AHP and BWM	218

XX

7.19	The Comparison between FDOSM and TOPSIS	218
8.1	The Connections between Research Objectives, Research Methodology and Research Goals	222

05-4506832 🔮 pustaka.upsi.edu.my

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

PustakaTBainun

05-4506832

xxi

LIST OF FIGURES

Figure N	No.	Page
1.1	Type Issues in Multi Criteria Decision Making	5
1.2	Outline of The Study	11
2.1	Search Query and Inclusion Criteria	17
2.2	The Taxonomy of Research Literature	19
2.3	Triangular Membership	22
2.4 05-4506832	Intuitionistic Membership Function pustaka.upsi.edu.my	23 ptbupsi
2.5	The Interval Valued Fuzzy Set (A (a) = $[x_1,x_2]$)	25
2.6	Trapezoidal Membership	26
2.7	Interval Type-2 Fuzzy with Trapezoidal Membership	29
2.8	Interval Type-2 Fuzzy with Triangular Membership	30
2.9	Number of Articles in Different Categories by The Source Digital Database	31
2.10	Number of Articles in Different Categories in Fuzzy Type-1 by The Source Digital Database	32
2.11	Number of Articles in Different Categories in Fuzzy Type-2 by The Source Digital Database	33

xxii

	2.12	Number of Included Articles by Year of Publication	34
	2.13	Number of Included Articles in Different Categories by Year of Publication	34
	2.14	Numbers of Articles in Each Category	36
	2.15	Numbers of Articles in Each Subcategory in Type-1 Fuzzy Set	36
	2.16	The Branches of Motivations	39
	2.17	Challenges in Fuzzy MCDM	50
	2.18	The Branches of Recommendations	61
05-4500	⁶⁸ 2.19	TFNs Membership f Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah	77 ^{tbupsi}
	2.20	TrFN with Continuous Membership Function	80
	2.21	Chapter Two Summary	82
	3.1	Type of Issues Related to MCDM	84
	3.2	Number of Pairwise Comparisons for AHP	85
	3.3	Pairwise Comparison between Criteria	87
	3.4	Pairwise Comparisons between the Colours	89
	3.5	AHP Comparisons	90

ptbupsi

```
xxiii
```

	3.6	Number of Pairwise Comparisons for BWM	94
	3.7	BWM Reference Comparison	96
	3.8	Graphical Presentation for Air Fighters Selection Problem	99
	3.9	Vector Normalization, Linier Normalization and Linier Normalization 2 Applied on The Example of Table 3.5	100
	3.10	Blood Pressure Range	102
	3.11	Mobile Screen Example	103
	3.12	Example of Two Alternative Evaluated by Two Criteria	104
05-450	⁶⁸ 4.1	Research Methodology PhasesSultan Abdul Jalil Shah	Ptbupsi
	4.2	The Steps of FDOSM	114
	4.3	Steps of Transformation Unit	116
	4.4.	Scale Using to Transfer Data	117
	4.5	Processing Unit	118
	4.6	Internal Aggregation Group Decision Making	128
	4.7	External Aggregation Group Decision Making	129
	5.1	Sequence of Single Decision Maker Scenarios	140

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

PustakaTBainun

ptbupsi

xxiv

5.2	Chapter Structure	141
5.3	The Final Result for Each Expert with Arithmetic Mean	143
5.4	The Final Result for Each Expert with Geometric Mean	145
5.5	The Final Result for Each Expert with RMS	147
5.6	The Final Result for Each Expert with Scenario Two	148
5.7	The Final Result for Each Expert with Scenario Three	150
5.8	Visualization of A ₃ , A ₄ Alternatives with The Ideal Solutions	153
05-450682221	The Sequence of Scenarios for Group Decision Making ^{PustakaTBainun}	160 ^{tbupsi}
6.2	General Process Applied to Internal Aggregation with Different Scenarios	162
6.3	Internal Group with Different Aggregation Operators and Final Direct Aggregation with Arithmetic Mean	164
6.4	External Group for Final Result of Arithmetic Mean with Different Aggregation Operators	165
6.5	Internal Group with Different Aggregation Operator and Final Direct Aggregation with Geometric Mean	166
6.6	External Group for Final Result of Geometric Mean with Different Aggregation Operators	168
6.7	Internal Group with Different Aggregation Operators and Final Direct Aggregation with RMS	169
6.8	External Group for Final Results of RMS with Different Aggregation Operators	171

6.9	Internal Group for Final Rank with Different Aggregation Operators	172
6.10	External Group for Final Rank with Different Aggregation Operators	174
6.11	Internal Group with Different Aggregation Operators	175
6.12	External Group with Different Aggregation Operators	177
7.1	Sequences of This Chapter	190
7.2	The Football Players Positions	192
7.3	The Final Results for Player Selection Problem with Different Position	194
05-45068724	The Final Results for Each DM for Static Position	200 ^{tbupsi}
7.5	The Final Results for Each DM for Dynamic Position	201
7.6	The Final Results for Static Alternatives According to Each DM Opinion	202
7.7	The Final Results for Dynamic Alternatives According to Each DM Opinion	203
7.8	The Final Result for Internal Aggregation with Direct Aggregation Scenario	205
7.9	Static and Dynamic Position with External Aggregation of Direct Aggregatio	206
7.10	Static and Dynamic Position with External Aggregation Compromise Rank	208

7.11 The Ratio of Weights of Each Criterion by Using BWM 210

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

f

ptbupsi

XXV

LIST OF ABBREVIATIONS

Perpustakaan Tuanku Bainun

Kampus Sultan Abdul Jalil Shah

- AHP Analytic Hierarchy Process
- ANP Analytic Network Process
- CP **Critical Path**
- DM **Decision Maker**
- FDOSM Fuzzy Decision by Opinion Score Method
- **G-FDOSM** Group- Fuzzy Decision by Opinion Score Method
- FMCDM Fuzzy Multi Criteria Decision Making
- FTOPSIS Fuzzy Techniques for order preference by similarity of ideal solutions
- **GDMs Group Decision Makers**
- GM Green Manufacturing
- 05-450683HRM Human Resources Management bdul Jalil Shah

ICT Information and Communications Technology

- IS **Ideal Solution**
- **IVIFN** Interval Value Intuitionistic Fuzzy Number
- MADM Multi Attributes Decision Making
- MCDM Multi Criteria Decision Making
- NIS Negative Ideal Solution
- NPD New Product Development
- OI **Open Innovation**
- PIS Positive Ideal Solution
- PSP Personal Selection Problem
- R&D Research and Development

PustakaTBainun

ptbupsi

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

- SAW Simple Additive Weighting
- SC Supply Chains
- SCM Supply Chain Management
- TFNs Triangular Fuzzy Numbers
- TOPSIS Techniques for Order Preference by Similarity of Ideal Solutions
- DAAM Direct Aggregation with Arithmetic Mean
- DAGM Direct Aggregation with Geometric Mean
- DAHM Direct Aggregation with Harmonic Mean
- RMS Direct Aggregation with Root Mean Square
- CR Compromise Ranking
- DiM Distance Measurement

pustaka.upsi.edu.my

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

PustakaTBainun

ptbupsi

xxviii

LIST OF APPENDICES

А Computer Networking Case Study

| f

- В Sport science Case Study
- С GPS Case Study

🕓 05-4506832 🛛 😴 pustaka.upsi.edu.my 📑

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

PustakaTBainun

CHAPTER 1

INTRODUCTION

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

ptbupsi

This chapter presents the direction of our work, a brief background about the research, the problem statement, the research objectives, and the scope research.

In Section 1.2, a brief background about the research is presented. In Section 1.3, present the problem statement. In Section 1.4 and Section 1.5, present the research objectives and the research scope. Finally, in Section 1.6 present the outline of this study.

PustakaTBainun

ptbupsi

2

1.2 Problem Background

📢 pustaka.upsi.edu.my

pustaka.upsi.edu.my

05-4506832

05-4506832

One of the most important topics in expert system and operations research is fuzzy multi-criteria decision making (FMCDM) (Mardani et al., 2015), which contains a number of decision alternatives and decision criteria. The objective of MCDM is to locate the most eligible alternative(s) among a set of alternatives with the chosen criteria. MCDM techniques can solve selection problems in a wide domain of engineering (Abd et al., 2014; Aghaie et al., 2011), economics (Javadian et al., 2009; Park et al., 2011), management problems (Singh & Benyoucef, 2011; Vahdani, Mousavi, et al., 2011; Vahdani et al., 2013), and other fields such as medical (Baykasoğlu & Gölcük, 2015; Y. Feng et al., 2016) sports science (J. Li & Zhang, 2009; X. Liu & Chang, 2010), networking (Xing et al., 2009; Z. Xu & Zhang, 2013), etc.

Kampus Sultan Abdul Jalil Shah

In MCDM problems, the qualitative characteristics depend upon the DM judgment. Selection is often based on unsuitable data or personal judgment because of the ambiguity of a human being's thought which leads to wrong and biased decisions. FMCDM techniques can suitably explain the DM evaluation of existing alternatives for selecting the best alternative when the criteria have subjective perceptions. Therefore, the evaluation process preferably solved under a fuzzy environment in order to consider the linguistic variables (Cables et al., 2012; Chamodrakas et al., 2009; T. W. Liao, 2015; Singh & Benyoucef, 2011; Vahdani, Mousavi, et al., 2011; T.-C. Wang & Lee, 2009). The uncertainty and subjectivity in MCDM methods can result in weighting errors and difficulties in the process of criterion weight acquiring (J.-H. Huang & Peng, 2012; Joshi & Kumar, 2016). In many real-world problems, the decision makers cannot give numeral values to the judgments of comparison because the human preference pattern

05-4506832

is uncertain. Fuzzy set theory has been successfully used in decision-making problems to solve the extreme vagueness that emerges in the data from human judgment and preference (Benitez et al., 2007; Cables et al., 2012; Cheng & Lin, 2012; Hatami-Marbini et al., 2013; Igoulalene et al., 2015; Krohling & Campanharo, 2011; Park et al., 2011; Rashid et al., 2014; Sadr et al., 2015; Z. Xu & Zhang, 2013; S. Zhou et al., 2012).

In MCDM, various techniques are used to solve problems, one of the most popular in mathematical approach is the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). The core idea of TOPSIS is to choose the best solution by simultaneously measuring the distances of each alternative to the positive ideal solution (PIS) and the negative ideal solution (NIS). PIS is an alternative and is Perpustakaan Tuanku Bainun 05-4506 tbupsi the most preferred solution by decision makers (DMs) in maximising benefit criteria and minimising cost criteria. NIS is the least preferred solution in maximising the cost criteria and minimising the benefit criteria. The preference order is then built according to which alternative is closest to PIS and farthest from NIS, resulting in a scalar criterion that combines the two distance measures and the best alternative (Roszkowska & Wachowicz, 2015). On the other hand, MCDM techniques contain DM preferences and subjective judgments, including quantitative and/or qualitative criteria ratings, in addition to the weights of criteria. However, these issues can be imprecise, indefinite and uncertain, making the decision-making process complicated when applied to realworld problems (Vahdani, Mousavi, et al., 2011).

4

1.3 Problem Statement

pustaka.upsi.edu.my

05-4506832

In general, the MCDM techniques divided into two approaches, the first approach depended on the human preference such as Analytic Hierarchy Process (AHP), Analytic Network Process (ANP), Best-Worst Method (BWM) etc. The second approach is depended on mathematical operations such as TOPSIS, Simple Additive Weighting (SAW), etc. However, each approach has its own drawbacks.

Many techniques in the MCDM field suffer from the abundance of mathematical equations, the large number of mathematical equations lead to incorrect decision (Sihai Guo et al., 2015; Hsu et al., 2015; Jahan et al., 2012; Senouci, Hoceini, et al., 2016; R. Sun et al., 2016). As a result, the number of mathematical processing 05-4506 was lower whenever the decision was closer to humans.

TOPSIS technique works on principle of the Ideal Solution (IS), and commonly used in different fields, however, TOPSIS suffer from several problems, in particular, normalization, where different normalization techniques result different ranking for alternatives (Sihai Guo et al., 2015; Hsu et al., 2015; Jahan et al., 2012; Senouci, Hoceini, et al., 2016; R. Sun et al., 2016). In addition to that literature review point at the weight as one of the TOPSIS drawbacks (X. Bao, Qu, Dong, Wang, & Sheng, 2015; Jianyu Chu & Su, 2012; Ding, Shao, Zhang, Xu, & Wu, 2016; Du & Yu, 2008; S. Guo et al., 2015). Another drawback reported by the researchers is the distance measurement suffers from problems (i.e. the benefit and cost criteria, the actual value). (Hsu et al., 2015; Jahanshahloo et al., 2006; Kuo, 2016; Shyur, 2006).

5

ptbupsi

In addition to, uncertainty information, incomplete information, and ambiguity in information are also open challenges due to the fact that, decision-makers use linguistic terms and weight cannot be determined in real numbers. The problems mentioned above are reported frequently in the academic literature (J.-H. Huang & Peng, 2012; Mishra, 2016; T.-C. Wang et al., 2007; Z. Xu & Zhang, 2013) (Chamodrakas et al., 2011; T.-Y. Chen, 2011; Hatami-Marbini et al., 2013; G. Lee et al., 2014; Vahdani et al., 2013). Other mathematical approach methods share similar the same problems addressed with TOPSIS technique.

On the other hand, the human approach (the methods that involve human preferences to produce the final decision), suffered from several problems. Perhaps, on the most tremendous challenge in this approach is the inconsistency ratio generated ⁰⁵⁻⁴⁵⁰⁶⁸²² (Perpustakaan Tuanku Bainun)</sup> from the pairwise comparisons (Benítez et al., 2014; Destercke, 2018; Ergu et al., 2014; Koczkodaj & Urban, 2018; Morgan, 2017). Due to the number of the pairwise comparisons in this approach, time consuming is considerably high (Ayağ & Özdemir, 2009, 2012; Ebrahimian et al., 2015; Jadhav & Sonar, 2011). Not to mention, the uncertainty resulted from human subjectivity (Ayağ & Özdemir, 2009). Therefore, real number is not allows fit to solve multi criteria decision making problems.

ptbupsi

To summarize the main issues in MCDM, there are two type of issues, namely, issues related data (i.e. inconsistency and uncertainty) and issues related to mathematical operations. See Figure 1.1.

On the other hand, other challenges are related to aggregating the result when the case required group decision makers (Junying et al., 2009; H.-C. Wang et al., 2015).

To overcome the problems mentioned above, a new MCDM method must consider the idea of ideal solution, avoid multiple references, reduce the number of comparisons, define fair and implicitly understandable comparisons, avoiding inconsistency, reduce the uncertainty and finally minimum number of mathematical operations.

05-4506832 Opustaka.upsi.edu.my Perpustakaan Tuanku Bainun Therefore, this research is an attempt to design and develop a new multi criteria decision making method by utilizing the idea of ideal solution and opinion matrix in the fuzzy environment to overcome the mentioned issues.

1.4 Research Objectives

This research aims to design and develop new multi-criteria decision making approach. Towards this end, the objectives below are proposed:

 To investigate the academic literature related to MCDM, in particular, Fuzzy TOPSIS via systematic literature review.

7

ptbupsi

- 2. To design and drive a mathematical model for new decision method namely Fuzzy Decision by Opinion Score Method (FDOSM).
- 3. To develop FDOSM in group decision making environment, Group Fuzzy Decision Opinion Score Method (G-FDOSM).
- 4. To apply FDOSM on different multi criteria decision making problems, practically (computer networking, sports science, and GPS).
- 5. To evaluate and compare FDOSM with AHP, BWM, and TOPSIS.

1.5 **Research Questions**

There are several questions addressed from the problem statement section. This ⁰⁵⁻⁴⁵⁰⁶ research proposed to answer the following questions: Shah PustakaTBainun ptbupsi

- 1. What are the issues discussed with scope of multi criteria decision making techniques that used the idea of ideal solution?
- 2. What are the type of comparison applied with MCDM methods?
- 3. Is opinion matrix resulted from FDOSM easier to understand? Comparing with pairwise and reference comparisons?
- 4. How to aggregate the opinion matrix into ranking order?
- 5. How to aggregate the opinion matrix into group decision making environment?
- 6. What is the advantage of using FDOSM over AHP, BWM, and TOPSIS?

of managers. The decision situation is solved by adoption of a decision, which represents a selection of one action out of solutions available. The significance of decision making reflects in the fact that even if none of the possible solutions and actions have been chosen, the decision has been made - it has been decided not to choose or to do nothing (Sporčić, 2012). The major benefit of MCDM methods is that local optima corresponding to one objective can be avoided by taking into account the whole spectra of objectives, leading thus to a more efficient overall process. So, MCDM and help people reflect upon their choices and focus on objectives and tradeoffs (Jancic-Stojanovic et al., 2009).

05-4506832

pustaka.upsi.edu.my

The scope of this study can present in the following points.

The literature review focus on the Fuzzy TOPSIS method only, whereby, the 1. Ideal Solution (IS) is utilized.

Kampus Sultan Abdul Jalil Shah

- 2. Different study cases from different fields are adopted from academic literature to explain the usability of the new theory.
- 3. Analytical Hierarchy Process (AHP), Best-Worst Method (BWM), and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) are selected because they used human preference and mathematical operations respectively.

ptbupsi

PustakaTBainun

8

05-4506832

1.6

9

ptbupsi

1.8 Outline of Study

pustaka.upsi.edu.my

05-4506832

This study consists of eight chapters; Chapter One provided a background about the multi-criteria decision making and TOPSIS, problems statement, research objective, and the scope of this study, the rest of the thesis is organized as follows:

Chapter Two: In Chapter Two, in-depth investigation was conducted for multi criteria decision making and FTOPSIS. This includes defining the terms we used in our development in particular, MCDM and TOPSIS and Fuzzy. A systematic review protocol is developed for literature review to analyses the challenges and develop a taxonomy for the research articles in the area of MCDM.

Chapter Three: In Chapter Three, technical problems with examples related to pustaka.upsi.edu.my freepustakaan Tuanku Banun Kampus Sultan Abdul Jalil Shah PustakaTBainun ptbupsi human and mathematical approach of MCDM techniques is reported.

Chapter Four: In Chapter Four, research methodology and scenarios of proposed method for both single and group decision making is designed. In addition to that, the mathematical module of each scenario and the study cases are proposed in this chapter.

Chapter Five: In Chapter Five: experimental result for single decision maker scenarios is presented alongside with related discussion and its claims/findings.

Chapter Six: In Chapter Six: experimental result for group decision making scenarios is presented alongside with related discussion and its claims/findings.

10

ptbupsi

Chapter Seven: In Chapter Seven, we applied FDOSM on different case studies, to ensure the applicability of FDOSM and its capacity of handling different multi criteria decision making problems in different fields. Examples in this chapter covered different cases and utilized different fuzzy membership functions in particular, Trapezoidal fuzzy membership and Triangular fuzzy membership.

Chapter Eight: Chapter Eight is the conclusion chapter of this thesis. This chapter identified the main goals and how these goals achieved thoroughly, the contribution and the main finding, research limitation, and finally, recommendation for the future works. Figure 1.2, shown the outline of study briefly.

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

Perpustakaan Tuanku Bainun

Kampus Sultan Abdul Jalil Shah

05-4506832

pustaka.upsi.edu.my

ptbupsi

PustakaTBainun