

DEVELOPMENT OF FISH SCALE-COLLAGEN CREAM (CoC) FROM WATER-IN-VIRGIN COCONUT OIL EMULSION MEDIUM FOR TOPICAL APPLICATION

HASNOR IZZATI BINTI CHE RAZALI

O5-4506832 🚱 pustaka.upsi.edu.my 🚹 Perpustakaan Tuanku Bainun 💟 PustakaTBainun ptbupsi

THESIS SUBMITTED IN FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY (CHEMISTRY)

FACULTY OF SCIENCE AND MATHEMATICS UNIVERSITI PENDIDIKAN SULTAN IDRIS

2019

ABSTRACT

This study aimed to develop and characterise the fish scale-collagen cream (CoC) for topical application. Hydrolysed collagen (HC) was extracted from Tilapia fish scales using a combination of hydrothermal extraction and enzymatic hydrolysis. This HC (molecular weight, Mw \approx 1 kDa) was incorporated in water-in-oil (w/o) emulsion of Span 60:Tween 60/water/virgin coconut oil (VCO) system at water volume fractions (ϕ_w) of 0.74, 0.83, and 0.94 via high shear homogenisation technique. The developed CoC were then characterised by optical polarising microscope (OPM), field emission scanning electron microscopy (FESEM), particle size analyser, differential scanning calorimetry (DSC), and rheometer. Up to 20 wt% HC has been successfully loaded in all emulsion systems and the optimum loading achieved at HC content as low as 5 wt%. The best CoC system with great physical characteristic, fine texture (305 nm) and uniformly disperse in VCO phase was produced by emulsion at the lowest φ_w (0.94). The developed CoC has been found to be thermally stable with T_c and T_m range between -20 to -30 °C and 10 to 20 °C, respectively. The rheological properties of CoC demonstrated shear thinning behaviour and thus greatly meet the needs of topical applications. The permeation study of *ex vivo* rat skin showed that HC in emulsion droplets (CoC system) easily pass through the skin. Cytotoxicity study through *in vitro* fibroblast cells and *in vivo* toxicity to the mice showed that HC at 25 and 50 mg/kg body weight did not give chronic toxic to the mice. In conclusion, CoC of from water-in-VCO emulsion system was succesfully developed. As an implication, the developed CoC is potentially used as a carrier for HC in topical application.

PEMBANGUNAN KRIM KOLAGEN- SISIK IKAN DARIPADA MEDIUM EMULSI AIR-DALAM-MINYAK KELAPA DARA UNTUK APLIKASI TOPIKAL

ABSTRAK

Kajian ini bertujuan untuk membangunkan dan mencirikan krim kolagen-sisik ikan (CoC) untuk aplikasi topikal. Kolagen terhidrolisis (HC) telah diekstrak daripada sisik ikan Tilapia menggunakan gabungan pengekstrakan hidrotermal dan rawatan hidrolisis enzimatik. HC ini (berat molekul, $Mw \approx 1 \text{ kDa}$) telah digabungkan di dalam emulsi air-dalam-minyak (w/o) bagi sistem Span 60:Tween 60/air/minyak kelapa dara (VCO) pada beberapa pecahan isipadu air (ϕ_w), iaitu 0.74, 0.83 dan 0.94 melalui teknik penghomogenatan ricih tinggi. CoC yang dibangunkan kemudiannya dicirikan oleh mikroskop pengutuban optik (OPM), mikroskopi elektron pengimbasan pancaran medan (FESEM), penganalisis saiz zarah, kalorimetri pengimbasan pembezaan (DSC), dan reometer. Sehingga 20% berat HC berjaya dimuatkan ke dalam semua sistem emulsi dan pemuatan yang optimum dicapai pada kandungan HC serendah berat 5%. Sistem CoC yang terbaik dengan ciri fizikal yang bagus, tekstur yang halus (305 nm) dan tersebar secara seragam di dalam fasa VCO telah dihasilkan oleh emulsi pada φ_w yang paling rendah (0.94). CoC yang dibangunkan telah didapati stabil secara 05-4506 termal pada julat T_c and T_m dengan masing-masing antara -20 hingga -30 °C dan 10 hingga 20 °C. Sifat reologi CoC menunjukkan perilaku penjarangan ricih dan ini sangat menjadi keperluan dalam aplikasi topikal. Kajian ex vivo penelapan kulit tikus menunjukkan HC di dalam titisan emulsi (sistem CoC) dengan mudah melalui kulit. Kajian kesitotoksikan melalui *in vitro* sel-sel fibroblas dan *in vivo* ketoksikan kepada mencit menunjukkan HC pada 25 dan 50 mg/kg berat badan tidak memberikan kesan toksik yang kronik pada mencit. Kesimpulannya, CoC daripada sistem emulsi airdalam-VCO telah berjaya dibangunkan. Sebagai implikasi, CoC yang dibangunkan berpotensi digunakan sebagai pembawa kepada HC dalam aplikasi topikal.

TABLE OF CONTENTS

Page **DECLARATION OF ORIGINAL WORK** ii **DECLARATION OF THESIS** iii **APPRECIATION** iv ABSTRACT V ABSTRAK vi **TABLE OF CONTENTS** vii LIST OF TABLES xiii PustakaTBainun 05-4506832 gpustaka.upsi.edu.my **O** ptbupsi **LIST OF FIGURES** XV LIST OF ABBREVIATIONS XX

CHAPTER 1 **INTRODUCTION**

1.1	Background of Study	1
1.2	Problem Statement	7
1.3	Research Objectives	10
1.4	Scope of Study	11

5

O5-4506832 Sustaka.upsi.edu.my Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

LITERATURE REVIEWS CHAPTER 2

	2.1	Collagen	13
	2.2	Skin Ageing	18
	2.3	Type I Collagen from Animal Source	21
	2.4	Tilapia Fish Scale Collagen	23
	2.5	Physiochemical Properties of Mammals and Marine Collagen	25
	2.6	Hydrolysed Collagen	28
	2.7	Collagen Extraction Process	30
	2.7	.1 Pre-treatment	32
	2.7	.2 Acidic and Alkaline Hydrolysis	33
05-450683	2.7	.3 Enzymatic Hydrolysis pustaka.upsi.edu.my Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah	34 ptbups
	2.8	Oral Administration of Collagen	36
	2.9	Topical Administration of Collagen	37
	2.10	Emulsion	40
	2.11	Nano-scale Emulsion	45
	2.12	Virgin Coconut Oil (VCO)	47
	2.13	In Vitro Studies on the Efficacy of Collagen Peptides	50
	2.14	In Vivo Studies on the Efficacy of Collagen Peptides	51
	2.15	Collagen in Cosmetic, Skin Care and Other Medical Applications	52

CHAPTER 3 METHODOLOGY

3.	1	Ma	aterials 54		
3.2	3.2 Preparation and Characterisation of Raw Tilapia (Oreochromis niloticus)Fish Scales 54				
	3.2.	1	Fourier Transform Infrared (FTIR) Analysis	56	
3.	3	•	drothermal Extraction and Enzymatic Hydrolysis of Tilapia Fish le Collagen	57	
3.4	4	Per	centage of Collagen Yield	59	
3.:	5	Cha	aracterisation of Hydrolysed Collagen	60	
	3.5.	1	Degree of Hydrolysis	60	
	3.5.	2	Gel Permeation Chromatography (GPC) Analysis	61	
	3.5.	3	Viscosity Measurement	62	
	3.5.4		Fourier Transform Infrared (FTIR) Spectroscopy Analysis	e62	
	3.5.	5	Scanning Electron Microscopy (SEM) Analysis	63	
	3.5.	6	High Performance Liquid Chromatography (HPLC) Analysis	63	
3.0	6	Pre	paration of Fish Scale-Collagen Cream (CoC)	64	
3.'	7	Stal	bility Studies of Fish Scale-Collagen Cream (CoC)	66	
	3.7.	1	Creaming index	66	
3.8	8	Cha	aracterisation of Fish Scale-Collagen Cream (CoC)	67	
	3.8.	1	Microscopic Analysis	67	
	3.8.	2	Scanning Electron Microscope (SEM) Analysis	68	
	3.8.	3	Droplet Size Analysis	68	
	3.8.4	4	Differential Scanning Calorimetry (DSC) Analysis	69	
	3.8.	5	Acidity Properties	69	
	3.8.	6	Rheological Properties	70	

05-4506

	3.8.6.1 Dynamic Oscillation	70
	3.8.6.2 Shear flow	71
3.9 In	Vitro Permeation Studies using Franz Diffusion Cell	72
3.9.1	The Franz-type Diffusion Cell System	72
3.9.2	Preparation of Rat Skin	73
3.9.3	Permeation Studies of Hydrolysed Collagen in CoC using Franz-type Diffusion Cell System	74
3.9.4	Bicinchoninic Acid (BCA) Protein Assay	76
	3.9.4.1 Preparation of BSA Standards	77
	3.9.4.2 BCA Analysis Procedure	77
3.9.5	Cumulative Penetration Amount of Hydrolysed Collagen	78
3.9.6	Percentage of Hydrolysed Collagen Inside The Rat Skin	78
05-45068323.10 In V	Vitro of Cell Viability Assays an Tuanku Bainun Pustaka TBainun	79.bu
3.10.1	Reagent Preparations	79
3.10.2	Cell Culture	79
3.10.3	Evaluation of Cell Viability Using the MTT Assay	80
3.10.4	Statistic Analysis	81
3.11 Sub	p-acute Toxicity Assessment	81
3.11.1	Animals Preparation	81
3.11.2	In vivo Toxicity of Hydrolysed Collagen	83
3.11.3	Preparation Stock Solution of Hydrolysed Collagen for Subcutaneous Injection	83
3.11.4		84
	Dermal Toxicity of Fish Scale-Collagen Cream (CoC)	04

PustakaTBainun

ptbupsi xi

CHAPTER 4: RESULTS AND DISCUSSION

4	4.1 Fourier Transform Infrared (FTIR) Spectroscopy Analysis of Raw Tilapia Fish Scales		89
4.2 E		Effect of Alcalase Enzyme Concentrations on Collagen Yield	92
4.3		Characterisation of Tilapia Fish Scale Collagen	97
	4.3.	Degree of Hydrolysis (DH)	97
	4.3.2	2 Molecular Weight Analysis	98
	4.3.	3 Viscosity Analysis	102
	4.3.4	4 FTIR Analysis	104
	4.3.	5 SEM Analysis	107
	4.3.	6 Amino Acid Compositions	108
4 05-4506832	.4	Stability of Fish Scale-Collagen Cream (CoC)	111 tbupsi
	4.4.		111
	4.4.2	2 Creaming Index	114
4	.5	Characterisation of Fish Scale-Collagen Cream (CoC)	116
	4.5.	Microscopic Analysis	116
	4.5.2	2 Morphological Analysis	121
	4.5.	3 Droplet Size Measurement	123
	4.5.4	4 Thermal Analysis	128
	4.5.	5 pH Value	132
	4.5.0	6 Rheological Properties	133
		4.5.6.1 Amplitude and Frequency Sweep	133
		4.5.6.2 Flow Properties	143

C

4.6	Efficiency of Hydrolysed Collagen Permeation using Franz-type Diffusion Cell 147			
4.7	7 Viability of Cells Cultured with Hydrolysed Collagen 151			
4.8	In v	ivo Toxicity Assessment of Hydrolysed Collagen and CoC	154	
4.8	8.1	Toxicity of Hydrolysed Collagen by Subcutaneous Injection	154	
4.8	8.2.	Dermal Toxicity of CoC by Topical Application	158	

CHAPTER 5 **CONCLUSION AND RECOMMENDATIONS**

5.	1 Conclusion			168
5.	2 Recommendation			171
RE	FERENCES			173
AP	PENDIX			198
05-4506832	pustaka.upsi.edu.my	Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah	PustakaTBainun	ptbupsi

O 5-4506832 O pustaka.upsi.edu.my

LIST OF TABLES

Table		Page
2.1	Collagen types, forms, and distribution (Adapted from Bareil, Gauvin, & Berthod (2010))	16
2.2	Comparison between young (23-year-old upper inner arm) and aged (75-year-old buttock) skin due to the degradation of collagen. Adapted from Naylora, Watsona, and Sherratta (2011)	21
2.3	Examples of types of surfactant	44
2.4	Span 60 and Tween 60 structures, molecular formula, scientific name, and hydrophilic-lipophilic balance (HLB) values	45
3.1	List of materials	55
3.2	Compositions of typical water-in-oil (w/o) emulsion	66
4.1	Fourier-transform infrared spectra peak locations and assignment for collagen from Red Tilapia (Oreochromis niloticus) fish scales.	90 ptbups
4.2	Percentage of collagen yield after treated with different concentrations of Alcalase	95
4.3	Comparison between the amino acid compositions of untreated collagen, hydrolysed collagen (treated with 0.5 wt.% Alcalase), and collagen extracted from Chum salmon skin, residues/100	110
4.4	Concentrated emulsion samples that were prepared at three water volume fractions (i.e. $\phi_w = 0.75$, 0.83, and 0.94) after 24 hours storage	113
4.5	Microscopic images of typical emulsion (0 wt.% hydrolysed collagen) and CoC containing 5, 10, 15, and 20 wt.% of hydrolysed collagen, respectively prepared at three water volume fractions (i.e. $\phi_w = 0.75$, 0.83, and 0.94) under 40× magnification	117
4.6	Storage modulus (G') and Tan δ values of fish scale-collagen cream (CoC) at 0.1% strain	143
4.7	Body weight changes of hydrolysed collagen-injected ICR mice	156
4.8	One-sample t-test results by weight of hydrolysed collagen-injected ICR mice	157

- 4.9 Independent t-test analysis of average body weight of hydrolysed 158 collagen-injected ICR mice
- 4.10 Evaluation of skin inflammation during seven-days of CoC-applied 160 topically
- 4.11 Body weight changes of CoC-applied ICR mice 166
- 4.12 One sample t-test analysis of average body weight of CoC-applied 167 ICR mice
- 4.13 Independent t-test analysis of average body weight of CoC-applied 167 ICR mice

O 5-4506832 O pustaka.upsi.edu.my

PustakaTBainun

ptbupsi

Page

LIST OF FIGURES

Figures

- 1.1 2 The different layers of structure skin which are consist of epidermis, dermis, and hypodermis. Adapted from Marine Matrix (n.d)
- 1.2 Schematic illustration of the formation of fish scale-collagen 6 cream (CoC) droplets
- 2.1 A strand of collagen structure consists of a repeating Gly-x-y 14 sequence labelled by residue type (Proline, x; Hydroxyproline, y)
- 2.2 Schematic diagram of hydrogen-bonding patterns in the triple 15 helical structure of collagen. Interchain hydrogen bonds are shown with broken red lines. Adapted from Kramer et al. (2000)
- 2.3 Hierarchical collagen fibres structure in the dermis. Multiple 17 triple-stranded collagen molecules form collagen fibril and pack together with collagen fibrils forming a collagen fibre. Adapted from Alberts et al. (2010) pus Sultan Abdul Jalil Shah
- 2.4 20 The skin structure consists of different layers which are the epidermis, dermis, and adipose tissue. Collagen fibres, elastin, and fibroblasts are located in the dermis layer. Adapted from Sibilla et al. (2015)
- 2.5 29 Schematic illustration of collagen peptides prepared from native collagen using enzymatic hydrolysis technique. Adapted from MINERVA Research Labs Ltd (2011)
- 2.6 Break down of the collagen bond by acid, alkaline, or enzymatic 31 hydrolysis
- 2.7 Schematic diagram of fish scale-collagen cream (CoC) preparation 40 using high shear homogeniser
- 2.8 Schematic diagram of surfactant which consists of head group 42 (hydrophilic part) and lipid tail (hydrophobic part)
- 2.9 Schematic structure of self-assembled of surfactant due to 47 amphiphilic character
- 3.1 Preparation steps of (a) fish scales of Tilapia. (b) Washed and 56 dried fish scales were ground to form (c) fish scale powder

O ptbupsi

3.2	Experimental setup for hydrothermal extraction and enzymatic hydrolysis of collagen from Tilapia fish scales	57
3.3	Process of hydrothermal extraction of collagen from (a) fish scales powder with water resulting (b) collagen and hydroxyapatite component, followed with enzymatic hydrolysis to produce (c) hydrolysed collagen	59
3.4	Schematic diagram of fish scale-collagen cream (CoC) preparation	65
3.5	Schematic diagram of Franz-type diffusion cell	73
3.6	The Wistar rat skin was excised from the dorsal region by using a pair of scissors and a scalpel	74
3.7	Six chambers of Franz-type diffusion cell systems	75
3.8	Animal care system rack	82
3.9	The mice were injected subcutaneously without anesthesia. (a) Layer below the epidermis and dermis and (b) a short needle was used to inject hydrolysed collagen into the tissue layer	85
05-45068323.10	Steps of topically applied fish scale-collagen cream (CoC) onto the skin of mice. (a) The dorsal part of the mouse was shaved, (b) CoC was applied on to the shaved area, and (c) CoC was swept over the shaved area	86 ptbup
3.11	Preparation and characterisation of raw Tilapia fish scales	87
3.12	Preparation and characterisation of hydrolysed collagen	87
3.13	Preparation and characterisation of fish scale-collagen cream (CoC)	88
4.1	FTIR spectrum of raw Tilapia fish scales powder	91
4.2	Cleavage of the collagen peptide bond by enzymatic hydrolysis	93
4.3	Illustration of the working enzyme	94
4.4	The percentage DH of collagen prepared at different Alcalase concentrations (i.e. 0, 0.5, 1.0, 1.5, and 2.0 wt.%)	98
4.5	GPC chromatograms of collagen treated with different concentrations of Alcalase (i.e. 0, 0.5, 1.0, 1.5, and 2.0 wt.%)	99
4.6	Average molecular weight (Mw) of collagen treated with 0, 0.5, 1.0, 1.5, and 2.0 wt.% Alcalase	100

115

O ptbupsi

- 4.7 Viscosity values of collagen prepared at different Alcalase 103 concentrations (0, 0.5, 1.0, 1.5, and 2.0 wt.%)
- 4.8 FTIR spectra of (a) Tilapia fish scales and (b) Tilapia fish scale 105 collagen
- 4.9 FTIR spectra of Tilapia fish scale collagen treated with Alcalase 107 enzyme: (a) 0 wt.% (b) 0.5 wt.%, (c) 1.0 wt.%, (d) 1.5 wt.%, and (e) 2.0 wt.%
- 4.10 Scanning electron microscopy (SEM) image of hydrolysed 108 collagen treated with 0.5 wt.% of Alcalase at magnification of $1000\times$
- 4.11 Fish scale-collagen cream (CoC) does not flow even when (a) the 111 test tube is upside down but shows (b) flow behaviour when it was shaken
- 4.12 Creaming index of typical emulsion and fish scale-collagen cream 115 (CoC) prepared at ϕ_w of 0.75. (Note: all data are overlapped in one point)
- 4.13 Creaming index of typical emulsion and fish scale-collagen cream (CoC) prepared at ϕ_w of 0.83. (Note: all data are overlapped in one point)
- 4.14 Creaming index of typical emulsion and fish scale-collagen cream 116 (CoC) prepared at ϕ_w of 0.94. (Note: all data are overlapped in one point)
- 4.15 Microscopic images of (a) typical emulsion and (b) CoC 119 containing 5 wt.% of hydrolysed collagen ($\phi_w = 0.75$) under polarised light at 40× magnification
- 4.16 SEM images of (a) typical emulsion at 200× magnification, (b) 122 typical emulsion and (c) fish scale-collagen cream (CoC) at 3000× magnification, respectively
- 4.17 Droplet size of emulsion prepared at ϕ_w of 0.75, 0.83, and 0.94 as 124 a function of hydrolysed collagen content
- 4.18 Schematic illustration of reducing size of water-in-oil (w/o) 127 emulsion droplet when hydrolysed collagen was added
- 4.19 DSC thermograms of heating fish scale-collagen cream (CoC) as a 129 function of hydrolysed collagen content (0, 5, 10, 15, and 20 wt.%) and water volume fraction (a) $\phi_w = 0.75$, (b) $\phi_w = 0.83$, and (c) $\phi_w = 0.94$

05-4506

🗿 pustaka.upsi.edu.

- 4.20 DSC thermograms of cooling fish scale-collagen cream (CoC) as a 131 function of hydrolysed collagen content (0, 5, 10, 15, and 20 wt.%) and water volume fraction (a) $\phi_w = 0.75$, (b) $\phi_w = 0.83$, and (c) $\phi_w = 0.94$
- 4.21 pH value of fish scale-collagen cream (CoC) prepared at different 132 ϕ_w (i.e. 0.75, 0.83, and 0.94)
- 4.22 Amplitude sweep profile of the typical emulsion prepared at ϕ_w of 136 0.75, 0.83, and 0.94
- 4.23 Amplitude sweep profile of the fish scale-collagen cream (CoC) 136 containing 5, 10, 15, and 20 wt.% of hydrolysed collagen prepared at ϕ_w of 0.75
- 4.24 Amplitude sweep profile of the fish scale-collagen cream (CoC) 137 containing 5, 10, 15, and 20 wt.% of hydrolysed collagen prepared at ϕ_w of 0.83
- 4.25 Amplitude sweep profile of the fish scale-collagen cream (CoC) 137 containing 5, 10, 15, and 20 wt.% of hydrolysed collagen prepared at ϕ_w of 0.94
- 4.26 Frequency sweep profile of the typical emulsion prepared at ϕ_w of 140 0.75, 0.83, and 0.94
- 4.27 Frequency sweep profile of the fish scale-collagen cream (CoC) for the fish scale-collagen prepared at ϕ_w of 0.75
 - 4.28 Frequency sweep profile of the fish scale-collagen cream (CoC) 141 containing 5, 10, 15, and 20 wt.% of hydrolysed collagen prepared at ϕ_w of 0.83
 - 4.29 Frequency sweep profile of the fish scale-collagen cream (CoC) 141 containing 5, 10, 15, and 20 wt.% of hydrolysed collagen prepared at ϕ_w of 0.94
 - 4.30 The shear rate dependence viscosity (flow curve) of typical 145 emulsion prepared at ϕ_w of 0.75, 0.83, and 0.94
 - 4.31 The shear rate dependence viscosity (flow curve) of fish scalecollagen cream (CoC) with a series of hydrolysed collagen content prepared at ϕ_w of 0.75
 - 4.32 The shear rate dependence viscosity (flow curve) of fish scalecollagen cream (CoC) with a series of hydrolysed collagen content prepared at ϕ_w of 0.83
 - 4.33 The shear rate dependence viscosity (flow curve) of fish scalecollagen cream (CoC) with a series of hydrolysed collagen content prepared at ϕ_w of 0.94

- 4.34 The cumulative penetrated amount of hydrolysed collagen through 149 rat skin
- 4.35 Percentage amount of hydrolysed collagen at the top (stratum 150 corneum), inside, and under layer of the skin path
- 4.36 Cell viability of fibroblast cell cultured with concentrations of 152 0.002, 0.02, 0.2, and 2.0 mg/mL of untreated collagen and hydrolysed collagen, respectively, for 24 hours

🕓 05-4506832 🔇 pustaka.upsi.edu.my 👎

PustakaTBainun

ptbupsi

LIST OF ABBREVIATIONS

	cm	Centimeter
	C-N	Carbon-Nitrogen
	С=О	Carbon=Oxygen
	cP	Centipoise
	CoC	fish scale-collagen cream
	cos δ	Cosine delta
	DSC	Differential scanning calorimetry
	FTIR	Fourier-transform infrared spectroscopy
	gm	Gram
05-450	G' 6832 G" pus	Storage modulus taka.upsi.edu.my Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalii Shah PustakaTBainun top ptbupsi Loss modulus
	GPC	Gel permeation chromatography
	НАр	Hydroxyapatite
	HLB	Hydrophilic-lipophilic balance
	HPLC	High-performance liquid chromatography
	kg	Kilogram
	kV	Kilovolt
	LVR	Linear viscoelastic region
	Μ	Molar
	min	Minutes
	mL	Milliliter
	mm	Millimeter

PustakaTBainun

O5-4506832 Bustaka.upsi.edu.my Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

	NaNO ₃	Sodium nitrate
	N-H	Nitrogen-Hydrogen
	Nm	Nanometer
	OPM	Optical polarising microscope
	o/w	Oil-in-water
	Pa	Pascal
	PEG	Polyethylene glycol
	P-O	Phosphate-Oxygen
	PO4 ³⁻	Phosphate ion
	Rpm	Revolutions per minute
	S	Second
	SEM	Scanning electron microscope
05-4500	sin δ 🕜 pus	ta Sine delta my Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah Dustaka TBainun Opposi
	tan δ	Tangent delta
	UV	ultraviolet
	VCO	Virgin coconut oil
	w/o	Water-in-oil
	wt.%	Weight percentage
	(w/v)	Weight per volume
	Mg	Microgram
	μL	Microliter
	$\phi_{\rm w}$	Water phase volume
	°C	Degree celcius
	%	Percentage

CHAPTER 1

INTRODUCTION

Background of Study Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

Collagen is a naturally existing protein representing 25–35% of the total protein mass in the human body and makes up approximately 80% of the dry weight of the skin. It is the most abundant protein in the human body and becomes the main components of extracellular matrix which gives the skin its structure and firmness (Gelse, Poschl, & Aigner, 2003; Krieg & Aumailley, 2011). An abundance of collagen in the body provides a smooth, healthy, and young appearance to the skin as it works hand-inhand with another protein called elastin by making supporting nets all along the cellular structures (Chang, Shefelbine, & Buehler, 2012). Figure 1.1 shows a structure of skin consists of a few layers which are stratum corneum, viable epidermis, dermis, and hypodermis.

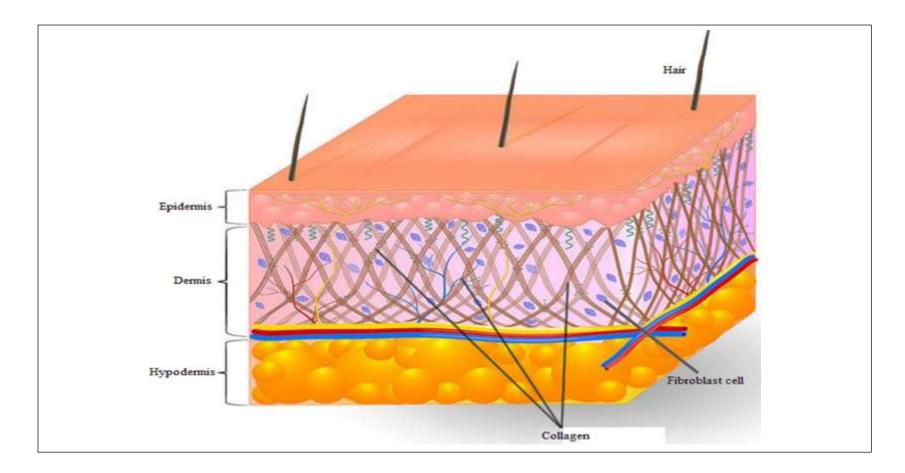


Figure 1.1. The different layers of structure skin which are consist of epidermis, dermis, and hypodermis. Adapted from Marine Matrix (n.d)

Collagen levels in the body reach a turning point at 20 years old in which factors of intrinsic and extrinsic ageing have damaged the collagen fibre under the skin and reduced the ability of the fibroblast cell to produce new collagen. Fibroblasts are the most common cells of connective tissue specifically located in the dermis layer (Figure 1.1) which are responsible for producing and organising collagen fibres in the body. When the collagen in the dermal layer of the skin begin to break down and the rate of collagen production starts to slow down, the surface of the skin loses some of its elasticity and firmness. The most noticeable signs of damaged collagen are the appearance of wrinkles, fine lines, and saggy skin (Rodriguez, Barroso, & Sanchez, 2018). Everyone wants to look young or youthful and nobody enjoys the effect of growing older on their looks especially in the facial skin. Today, most of the men and women have spent hundreds of ringgit on cosmetic products to make sure 05-4500 they are always looking youthful (Khan, 2010). PustakaTBainun

Nowadays, collagen has been extensively incorporated in cosmetic products as it has been proven that collagen can act as a messenger and triggers the synthesis reorganisation of new collagen in the body (Okawa et al., 2012; Ohara et al., 2010; Iwai et al., 2006). It is believed that taking collagen can facilitate the biosynthesis of natural collagen in the body and thus improved the structure of epidermal appearance (Schagen, 2017; Song & Li, 2017). Therefore, most of the previous researches have focused on the isolation of collagen from tissues that are rich in fibrous possessing collagen such as skin and tendons. Many reports indicated that the main source of collagen in the world is derived from pig skin (46%), followed by bovine skin (29.4%), bones (23.1%), and other sources (1.5%) (Gelatin Manufacturers of Europe [GME], 2008). These sources cause the limitation for Muslim consumers to use it due

05-4506832 (C) pustaka.upsi.edu.my

ptbups

to halal issues. Fish-based collagen is the most potential alternative source to replace bovine or porcine collagen in terms of its biocompatibility, possesses weak antigenicity, and biodegradable (Tang & Saito, 2015; Yamada, Yamamoto, Ikeda, Yanagiguchi, & Hayashi, 2014). The collagen has received an increasing attention among researchers as collagen alternative source since there are more than 30% of fish-processing wastes consist of fish skin, scale, and bones that are very rich in Type I collagen fibre (Kittiphattanabawon, Benjakul, Visessanguan, Nagai, & Tanaka, 2005; Ikoma, Kobayashi, Tanaka, Walsh, & Mann, 2003).

A wide variety of collagen products is available in the cosmetic field to suit with the customers' needs. However, collagen-based products in the forms of lotions, cream, or gel that is to be applied to the skin need to be absorbed deep into the dermis layer. Therefore, this study focuses on incorporating the low molecular weight of fish scale collagen in cosmetic products. Collagen was extracted from Tilapia (Oreochromis niloticus) fish scales using hydrothermal extraction according to the patented method conducted by Zainol, Aziz, and Ahmad (2011). In order to produce low molecular weight collagen, the extracted collagen was further hydrolysed with the enzyme.

However, low molecular weights of hydrolysed collagen tend to agglomerate due to strong Van der Waals interactions of fine particles, thus reducing its penetration capability into the skin when administrated topically (Dumitriu & Popa, 2013; Chai et al., 2010; Baert et al., 2007). Therefore, in this study, an approach of an emulsion system is used in stabilising hydrolysed collagen to keep them separated. The fish scale-collagen cream (CoC) was prepared by dispersing the water-based fish

scale-collagen droplet in virgin coconut oil (VCO) through high shear homogenisation technique. The droplets in the emulsion are stabilised by non-ionic surfactant, which is the surface active molecule that adsorbs to the surface of droplets, forming a thin coating around the droplets that inhibits their agglomeration by generating repulsive forces between them (Chung & McClements, 2014). Figure 1.2 shows a schematic illustration of the formation of CoC droplets. The small size of water-based collagen droplet gives a lot of advantages especially in the topical application which allows the easiest diffusion through the epidermal barrier when considering the application onto the skin.

The performance of the CoC suitability to be used for topical application was investigated by analysing the permeability of hydrolysed collagen through the membrane and the toxicity effect. Great characteristics owned by CoC might be an innovative approach for delivering collagen to the dermis. Samson, Basri, Masoumi, Karjiban, and Malek (2016) reported that nanoemulsion containing copper peptide increases the permeability of copper peptide through the membrane. Therefore, CoC is supposed to be easily absorbed when applied into the skin. The preparation of CoC to be used in the topical application is still new in the cosmetic industry and only a few research works have been reported.

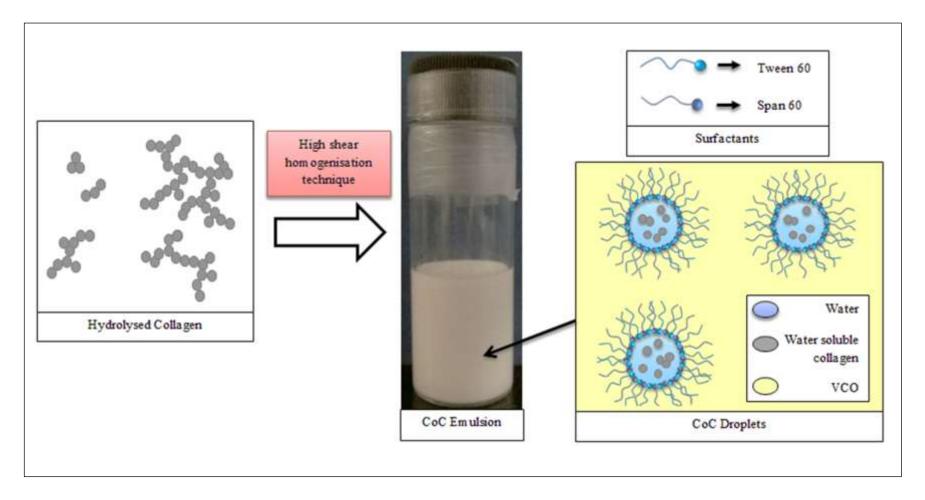


Figure 1.2. Schematic illustration of the formation of fish scale-collagen cream (CoC) droplets

ptbupsi 7

1.2 Problem Statement

The main source of collagen in the world is derived from pig and cow skin followed by other sources such as marine organism, chicken, sheepskin, duck feet, and frog skin (Rodriguez et al., 2018; Silvipriya et al., 2015). However, the outbreak of bovine spongiform encephalopathy (BSE) and the spreading foot-mouth disease (FMD) has urged critical considerations on the safety of using collagen extracted from land-based animals especially pig and cow (Silvipriya et al., 2015; Yuan, Wang, Lin, Chou, & Li, 2014). It is possible that these diseases can be transferred to human beings. Besides safety issues, the halal issue is the major concern for Muslim consumers when they are using collagen-related products. These sources cause the limitation of consumption due to religious reason especially in Malaysia, a country which has the 05-450e highest majority of the Muslim community. Both Islam and Judaism forbid using any bupper pork-related products, while Hindus do not consume any cow-related product (Pranoto, Lee, & Park, 2007). This problem has encouraged researchers to explore alternative sources of collagen to make it acceptable to all users.

High demand for fish consumption has led to a large number of wastes. About 50%–70% of total wastes (scales, heads, and skeletons) is generated from fish processing industry (Huang, Hsiao, & Chai, 2011; Kittiphattanabawon et al., 2005). When these wastes were disposed of improperly, they can cause environmental pollution with an unpleasant odour. The odour will attract flies and animals to feed on the wastes and can also lead to the growth of microorganism (Nagai & Suzuki, 2000). It was reported that the fish wastes consist of 5% of fish scales are major fish industry residues (Wang & Regenstein, 2009). Generally, these fish scales contain valuable

materials such as collagen and hydroxyapatite, which have commercial value in the industry (Kongsri, Janpradit, Buapa, Techawongstien, & Chanthai, 2013). Instead of disposing of these wastes, fish scales have the potential for conversion into useful products of higher value. Fish scales-derived collagen is one of the potential alternatives to non-halal collagen.

The need for halal collagen has increased in its demand due to the awareness of Muslim community toward products with halal status (Husain, Ghani, Mohammad, & Mehad, 2012). Collagen extracted from Tilapia fish scales is not only halal but safe and cheaper than animal-based collagen. High demand for fish scales as a raw material for the production of collagen will increase the economy of the fisherman or fish industries. In addition, the usage of fish scales to derive collagen will not only 05-4506 reduce pollution but reclaim the fish waste to high value-added materials. The water-bupsi based CoC has the potential to be used as a halal cosmetic product that will have a great impact on Muslim society.

Collagen-based products have become common in cosmetic applications (Li, Fukunaga, Takenouchi, & Nakamura, 2005). However, the result may just clean, protect, and moisturise the skin but not improving the appearance and health of the skin (Juncan & Vonica-Gligor, 2016; Lupo, 2001). The development of cosmetics should be based on the efficacy and safety of targeted components of the skin. In cosmetic preparation such as cream, it was intended that the particle size would be small to ensure the easy diffusion under the skin. If not, it will act like applying an icing cream on the top of the cake. In this study, an approach of colloidal carrier system which is emulsion was used as a carrier to deliver collagen into the skin. The

small size of CoC droplets gives a lot of advantages especially in the topical application which allows the easiest diffusion through the epidermal barrier when considering the application on to the skin.

Another problem should be concern about the cosmetic preparation is the ingredients that were used which consists of many harmful chemicals. Cosmetic products are typically loaded with preservatives which are chemical substances to allow them to remain stable over a long period and prevent microbial growth (Sasseville, 2004). However, it was reported that the preservatives could cause skin irritation, disruption of the secretion of hormones, and cancer (Charnock & Finsrud, 2007; Darbre, 2003; Oishi, 2002). In addition, individuals who are sensitive to these preservatives need to find preservative-free products. In this study, the CoC was 05-4506 prepared using the lowest percentage of chemical substances which is only 5 wt.% of bupsi non-ionic surfactant. The non-ionic surfactant is uncharged molecule so it is safe, biocompatible and not affected by pH changes in any medium. Fish scale-collagen cream (CoC) developed with free preservative is suitable for all type of skin.

In Malaysia, the coconut or *Cocos nucifera* is the fourth important industrial crop after palm oil, rubber, and rice. Our country remains as one of the top ten coconut producing countries in the world. However, a few research has been done on different ways of utilising coconut and on increasing the income of farmers. The VCO is traditionally used to enhance the beauty and promote the growth of hair, refine and moisturises the skin conditions and also being used to treat many skin disorders (Mansor, Che Man, Shuhaimi, Abdul Afiq, & Ku Nurul, 2012). The presences of fatty acids (caprylic and lauric) in VCO protect the skin and contain many antioxidants that

make it suitable for all types of skin conditions. The benefits of VCO on the skin have attracted us to use it in our study. In this research, VCO was used as a medium to disperse the hydrolysed collagen particles to prepare fish scale-collagen cream (CoC). The development of CoC will widen the use of VCO. The results of the research can provide an alternative use of VCO for economic sustainability. It will contribute to the use of coconut in Malaysia.

The knowledge developed in this study will provide a great opportunity for our country to lead in the production of a halal, environmentally-friendly, and highquality product with low manufacturing cost. Besides that, other academic institution, research organisations, and relevant industries from local and abroad will be lining up to make a collaboration. Overall, the collagen prepared at lab scale will be 05-4506 commercialised at industrial scale and therefore will create profit to both university bupsi and nation.

1.3 **Research Objectives**

The objectives of this research are:

- i. To extract collagen from Tilapia fish scales by a combination of hydrothermal treatment and enzymatic hydrolysis.
- To stabilise hydrolysed collagen in water-in-virgin coconut oil emulsion using ii. high shear homogenisation technique.
- iii. To characterise phycochemical properties of fish scale-collagen cream (CoC).

- To study the transdermal permeation ability of hydrolysed collagen in CoC using Franz diffusion cell.
- v. To investigate the toxicity and biocompatibility of hydrolysed collagen and CoC.

1.4 Scope of Study

This study is divided into four stages in which the first stage is the extraction and enzymatic hydrolysis treatment to produce low molecular weight collagen of Tilapia fish scales, second stage is to prepare CoC by dispersing the hydrolysed collagen in emulsion system, the third stage is the transdermal penetration ability of hydrolysed collagen, and the last stage is *in vitro* and *in vivo* toxicity study of hydrolysed collagen and CoC.

First stage: The study deals with the optimisation of controlled parameters of the preparation of Tilapia fish scale collagen. The laboratory works are limited to these crucial parameters: the extraction temperatures at 80 °C for eight hours (for collagen isolated from fish scales), the enzymatic hydrolysis at 55 °C for one hour (for reactivity of enzyme), and the effects of enzyme concentrations from 0.5–2.0 wt.% (for hydrolysis of collagen). For the characterisations of hydrolysed collagen, the following equipment was utilised: gas permeation chromatography (GPC), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), Brookfield digital viscometer, pH meter, and amino acid analyser.

Second stage: Hydrolysed collagen was incorporated into an emulsion system (Span 60:Tween 60/water/VCO) at different water volume fractions (φ_w) of 0.75, 0.84, and 0.93. The concentrations of hydrolysed collagen loaded into the system are 5, 10, 15, and 20 wt.%. The system was homogenised at 19,000 rpm for 15 minutes and the characterisation of the CoC was characterised by the following equipments: optical polarising microscope (OPM), scanning electron microscope (SEM), zetasizer nanoparticle analyser, pH meter, differential scanning calorimetry (DSC), and rheometer. The preliminary stability of the sample preparation was evaluated by physical observation for 24 hours after centrifuged.

Third stage: The ability of the hydrolysed collagen on transdermal penetration was determined by employing the Franz diffusion cell model. Winstar rat skin was selected as a membrane of penetration. Samples were performed at 1, 2, 3, 4, and 6 hours only. The amount of total hydrolysed collagen that can pass through the rat skin was measured by the bicinchoninic acid (BCA) protein assay.

Fourth stage: *In vitro* experiment – Fibroblast cells were seeded in 96-well plates at a density of 1×10^4 cells/well. The 0.002, 0.02, 0.2, and 2 mg/mL of hydrolysed collagen solution (solution was prepared by dissolving the hydrolysed collagen in Dulbecco's Modified Eagle's medium) were added, respectively, and incubated for 24 hours. Then, cell viability was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) colourimetric assay. *In vivo* – Healthy three-month-old ICR white mice were used in this study. The sub-acute toxicity was determined by subcutaneous injection and topical administration on mice, respectively in seven days of treatment.

