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ABSTRACT 

 

A total of 155 actinomycete strains were isolated from Beach Ridges Interspersed with 

Swales (BRIS) soils. Samples were collected at various depths from the earth surface 

and subsurface in Setiu district, Terengganu. The isolates were assessed for their 

antibacterial activity against a panel of microorganisms (Escherichia coli DSM30083T, 

Bacillus subtilis DSM10T, Pseudomonas fluorescens DSM 50090T, Klebsiella 

pneumoniae DSM30104T, Micrococcus luteus DSM20030T, and Saccharomyces 

cerevisiae). Results indicated that 65% of all isolates were active against, at least, one 

of the test organisms. Thirty-three of the isolates were selected and characterized by 

conventional methods and 16S rRNA gene sequence analysis revealed that most of the 

isolates belonged to the genus Streptomyces sp. (15 isolates) and 8 other rare genera 

namely Microtetrapora sp. (5 isolates), Streptacidiphilus sp. (3 isolates), Actinoplanes 

sp. (3 isolates), Microbispora sp. (2 isolates), Rothia sp. (1 isolate), Micromonospora 

sp. (2 isolates), Amycolatopsis sp. (1 isolate), and Sacharopolyspora sp. (1 isolate). 

Isolates that showed antibacterial activities were subjected to metabolite extraction and 

further analysis. Extracts exhibited a wide range of antimicrobial activities that varied 

with isolates and concentration of each extract. Thirty-nine compounds were detected 

both from Streptomyces sp. AA13 and Amycolatopsis sp. AA12, and thirty-eight 

compounds from Micromonospora sp. AA141, using GC-MS. Whole genome 

Sequence analysis conducted on isolate Amycolatopsis sp AA12 produced a total of 

5,304,429 paired-end reads and 51 potential secondary metabolites coding gene 

clusters. Based on the analysis of metabolites from Amycolatopsis sp. (AA12) using 

NMR spectroscopy, the polyphenolic groups were isolated that including quercetin 

(C15H10O7), rutoside (C27H30O16), isotrifoliin (C21H20O12), and 3, 5, 6,7,3,4 

heptahydroxy flavone. Most of the polyphenolic compounds exist as sugar conjugates. 

The biosynthesis of dTDP-4-dehydrorhamnose 3, 5 -epimerase in Amycolatopsis sp. 

(AA12) is influenced by at least ten genes. The DTDP-sugars, derived from glucose 1-

phosphate, are involved in the biosynthesis of polyphenolic compounds. 
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Abstrak 

 

Sebanyak 155 aktinomiset dipencilkan daripada sampel tanah Beach Ridges 

Interspersed with Swales (BRIS), di Setiu, Terengganu yang diambil dari kedalaman 

berbeza. Ujikaji ativiti antimikrob terhadap panel mikroorganisma yang terdiri daripada 

Escherichia coli DSM 30083, Bacillus subtilis DSM 10T, Pseudomonas fluorescens 

DSM 50090T, Klebsiella pneumoniae DSM 30104T, Micrococcus luteus DSM 20030T 

and Saccharomyces cerevisiae telah dijalankan. Dapatan kajian menunjukkan 65% 

pencilan menghasilkan zon perencatan terhadap sekurang-kurangnya satu 

mikroorganisma ujian. Analisis filogenetik berdasarkan jujukan gen 16S rRNA telah 

dilakukan ke atas 33 pencilan dan hasil menunjukkan 15 pencilan merupakan genus 

Streptomyces manakala pencilan lain terdiri daripada genus Actinoplanes, 

Microbispora, Rothia, Micromonospora, Amycolatopsis dan Sacharopolyspora. Kajian 

lanjutan melibatkan pengekstrakan metabolit dan alisis kimia ekstrak metabolit 

dijalankan ke atas pencilan yang menghasilkan banyak aktiviti antimikrob. Hasil 

menunjukkan kepelbagaian aktiviti antimikrob yang ditunjukkan pada kepekatan 

ekstrak berbeza. Sebanyak 39 unsur berjaya dikesan daripada pencilan Streptomyces 

sp. AA13 and Amycolatopsis sp. AA12, manakala 38 unsur dikesan daripada pencilan 

Micromonospora sp. AA141 berdasarkan analisis kromatografi gas- mass 

sektrofotometri (GC-MS). Penjujukan Seluruh Genom (WGS) telah dijalankan ke atas 

pencilan Amycolatopsis sp. AA12 yang menghasilkan 5,304,429 bacaan 'paired-end' 

dan 51 kluster gen yang mengkod metabolit sekunder telah dikesan. Berdasarkan 

analisis metabolit menggunakan spektroskopi Nuclear Magnetic Resonance (NMR), 

pencilan Amycolatopsis sp. AA12 didapati menghasilkan metabolit dari kumpulan 

polifenolik yang dikenalpasti sebagai quercetin (C15H10O7), rutoside (C27H30O16), 

isotrifoliin (C21H20O12), dan 3,5,6,7,3,4 heptahydroxy flavone.Kebanyakan unsur 

polifenolik wujud dalam bentuk gula konjugat di mana biosintesis dTDP-4-

dehydrorhamnose 3, 5 -epimerase telah didapati dalam 10 gen pencilan Amycolatopsis 

sp. AA12 manakala gula dTDP yang terhasil dari glukosa-1-fosfat terlibat dalam 

biosintesis tapak jalan polifenolik. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1  Introduction 

 

The emergence and spread of multidrug-resistant (MDR) pathogens and a lack of 

treatment options for infections and high mortality rates (Santajit & Indrawattana, 

2016). It led to an urgent need to discover new high-effective and productive 

antimicrobial agents, there has been a weakness in the discoveries of a new antibiotic 

in the past 30 years despite the scientific development (Lin et al., 2018).  

 

Microorganism’s natural products remain the encouraging source of new 

therapeutic drugs (Kapur et al., 2018). Since the discovery of penicillin, interest has 

increased in microorganisms for its high ability to produce active compounds including 
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antivirals, antimicrobials, and immunosuppressive compounds (Kaur & Teotia, 2019). 

Actinomycetes have proven as one of the main contributors due to their capacity to 

produce several types of biologically active natural compounds like herbicides, 

antibiotics, anti-parasitic, pesticides, and enzymes (Sankar, 2016). 

 

Actinomycetes are a group of Gram-positive bacteria, unicellular filamentous 

that form a branching network of filaments and produce spores. They have been 

recognized as sources of odours in drinking water (Mallevialle & Suffet, 1987; Zhou et 

al., 2017) that spread vastly throughout different environments (Idris et al., 2017). 

Actinomycetes are particularly abundant in soil (Kinkel et al., 2014) and many species 

have been isolated from natural caves (Lee, 2006; Belyagoubi et al., 2018), clinical 

material (Jones et al., 2004; Blyskal et al., 2017), ocean sediments (Weyland, 1969; 

Kamjam et al., 2017), and plant roots (Araújo et al., 2000; Kuncharoen et al., 2019). 

They are playing a major role in soil ecology; they produce many enzymes that support 

the prosperity of organic plant material, chitin, and lignin. Thus their presence is 

necessary for the formation of compost for plants (Bhatti et al., 2017).  Gerber & 

LeChevallier, (1965) were the first to isolate and to identify the terpenoide geosmin, 

trans-1, 10-dimethyl-trans-9-decalol, a potent earthy-smelling compound, from 

actinomycetes cultures. 

 

Actinomycetes are deemed highly valuable for produce several types of 

biologically natural useful compounds like antibiotics, antivirus, immunosuppressive 

agents,  nutritional materials, enzymes, herbicides, pesticides, anti-parasitic agents, and 
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vitamins  (El Karkouri & El Hassouni, 2019). At least 70% of the natural compounds 

are produced from actinomycetes (Pimentel et al., 2010; Sankar, 2016). Actinomycetes 

have been major stored for the discovery of natural compounds (Choi et al., 2018). 

Streptomyces is the best-characterized genus of actinomycetes, and it is one of the most 

important types of commercial bacteria depending on its capabilities to producing great 

secondary metabolites and bioactive natural compounds (Matsumoto & Takahashi, 

2017). The rare actinomycetes are deemed as an important source for new bioactive 

compounds, vitamins, and enzymes with a wide range of biological activities and 

pharmacological features (Jakubiec et al., 2018). 

 

Actinomycete has been taxonomically into a phylum Actinobacteria 

(Goodfellow et al., 2012a; Buedenbender et al., 2017). Whereas Actinobacteria 

considered one of the largest taxonomic while the phylum Actinobacteria is described 

based on its branching region in 16S rRNA gene trees. Nevertheless, rRNA sequences 

do not separate properly between nearly related species or also genera, which leads to 

vagueness. Currently, the enormous modern increase in the availability of genome 

sequence information has presented specific information into genome development and 

had become possible to classify genes specific to microorganisms at the level of genera 

and family (Ouchari et al., 2019). 

 

Actinomycetes belong to the order of Actinomycetales and extend to the family 

Actinomycetaceae and the different suborders that belong to Actinobacteria. Forty-

three of the fifty-three families within the phylum Actinobacteria are attached to a 
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single class. Actinobacteria, whereas the other five classes together include just ten 

families (Buedenbender et al., 2017). Actinomycetes had been identified more as a free 

group of organisms, which is nearly related to the bacteria during some of the 

morphological patterns, maybe has adopted a fungus-like pattern of growth 

(Mohammadipanah & Dehhaghi, 2017). 

 

One major problem in drug discovery attempts is the rediscovery of known 

compounds (Buedenbender et al., 2017). Therefore the right search and discovery 

strategies are important to look for novel compounds. Actinomycetales are one of the 

important types to produce new natural compounds, notwithstanding the difficulty of 

detecting new compounds of actinomycetes. But by relying on the idea that said the 

new species of actinomycete produce new compound and thus rely on the principle of 

taxonomic diversity is an alternative to chemical diversity. Figure 1.1 shows the 

bioprospecting strategies. The first step depends on selective isolation procedures, the 

identification of target actinomycetes, and the subsequent choice of representative 

strains for screening. These steps are heavily dependent on developments in 

actinomycete systematics (Goodfellow, 2010; Mohammadipanah & Dehhaghi, 2017). 

 

The remaining steps are specifically the definition of the wanted characteristics 

in dereplicated strain archives using whole genome sequence, suitable fermentation 

conditions, primary screening of fermentation broths using HPLC-diode array 

screening, the discovery of metabolite novelty practising an in-house HPLC-UV-visual 

database and structural chemical explanation of active systems. The next steps in the 



5 

 

method include the complete taxonomic characterization of strains producing exciting 

successes (Goodfellow & Fiedler, 2010). 

 

Figure 1.1 Culture-dependent bioprospecting strategies (Goodfellow & Fiedler, 2010; 

Idris, 2016). 

 

Beach soils had been reported to signify a habitat for organisms, especially 

actinomycetes (Ariffin et al., 2017). Numbers of potential actinomycetes and their 

novel metabolite compounds have been discovered (Newman, 2017) which proves that 

beaches soil provide unique habitat that harbours rare actinomycetes. One of the 

extreme environments around the coastal area consists of BRIS (Beach Ridges 

Interspersed with Swales) soil, which arises from sand and some of the sediment of the 
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sea currents that expanded from the broken of layers of cliffs through the sea currents 

during the tidal and monsoon (Mustapha et al., 2017). 

 

BRIS soil is characterized by a decrease in its physical and chemical properties 

that why it's not good for the production of crops. This soil is considered very dry and 

its nutrients are lost quickly as a result of the high temperature and lowering water 

retention ability. This condition can dangerously affect plants. Further, this high 

temperature for soil may cause the fast vaporization of moisture and nitrogen on soil 

surfaces that severely affect plant growth (Mustapha et al., 2017). 

 

This study was aiming to determine the presence of actinomycetes in BRIS soil 

to selective the antimicrobial isolates and divided depend on phylogenetic approach and 

focused on potential compounds against antibiotic resistant microorganisms using 

whole genome sequencing and chemical analyses, where 155 strains were isolated and 

identified 33 isolates belong to 9 genera based on their 16S rRNA gene sequences. The 

antimicrobial screening of all isolates was conducted and the results were astounding. 

Complete genome sequencing of Amycolatopsis sp. AA12, revealed the number of 

genes predicted to encode proteins and the chemistry of biosynthetic gene clusters of 

secondary metabolites. Secondary metabolite extracts showed biological activity 

against a panel of microorganisms. The chemical profiles for extracts were detected 

using Gas Chromatography-Mass Spectrophotometry (GCMS) approach. The results 

indicating the secondary metabolites are rich in bioactive compounds. The ability to 

produce Rifampin was detected using HPLC-UV based on comparison against the 
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standard. Six compounds with antimicrobial activity of the AA12 strain were isolated 

and the structure of these compounds were elucidated using NMR spectroscopy. 

Results indicate that Amycolatopsis sp. and other actinomycetes isolate from the 

extreme environments can exhibit a high variety of biological activities compounds that 

are used in pharma and medicinal products, suggesting that the actinomycetes are an 

untapped resource for future natural product discovery. 

 

 

1.2 Problem Statement 

 

Discovery of new actinomycetes is of significant interest to drug discovery due to a 

growing need for the development of new and potent therapeutic agents. Antimicrobial 

resistance (AMR) is now a global threat. Its emergence rests on antimicrobial overuse 

in humans and food-producing animals. Modern molecular technologies are adding 

strength to the target-directed search for the detection and isolation of bioactive 

actinomycetes. They are known for the important role they play in soil ecology and as 

a source of effective drugs (Ghosh & Cheeptham, 2017). There was no report on the 

actinomycetes, and its biological activity in BRIS soil that collected from Setiu districts. 

There is a possibility to get rare actinomycetes and new biological activity to be selected 

as potential drug leads. 

 

Whole Genome Sequencing (WGS) approach out from single cells has made a 

scientific breakthrough, many genomes of Actinobacteria have been successfully 
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sequenced, and about 56,168 bacterial genomes have been sequenced out of which 6997 

belong to the class Actinobacteria. Amongst these, only 486 Actinobacterial genomes 

have been completely sequenced and annotated till date with the majority of them 

representing organisms that are a source of commercially important drugs or are 

contagious and infectious to humans and animals. The constantly increasing number of 

drug-resistant bacteria and the urgent need for discovering new antibiotics has emerged 

as a major scientific challenge this requires to focus on the evaluation of the genetic 

capacity of organisms for metabolite production (WGS) and activation of cryptic gene 

clusters. 

 

Natural products have been studied as sources of traditional and modern drugs 

for years. The interest in this field remains relevant as new potential therapeutic drugs 

have been emerging continuously. the chemical profiles of actinomycetes showed a 

various group of chemical constituents that have served as scaffolds for important  

drugs such as anticancer (Rajivgandhi et al., 2018), antibacterial (Gurovic & Olivera, 

2017), antifungal (Jakubiec-Krzesniak et al., 2018) and antioxidant (Abdel-Aziz et al., 

2019). Therefore, the chemical components of this family must be further examined 

and present the potential compounds using modern technologies. 

 

The studies indicate that Amycolatopsis spp. and other microorganisms isolated 

from the extreme environments can exhibit a high variety of biological activities 

compounds that are used in pharmacy and medicinal products. Suggesting that 

Amycolatopsis spp. is an untapped resource for future natural product discovery. Based 
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on a literature study on actinomycetes, the chemical and biological activities of 

Amycolatopsis samaneae strain RM287 have yet to be established and remain to be 

investigated, there is a possibility to isolate new chemical compounds that may have 

various biological activities such as anticancer and antimicrobial from Amycolatopsis 

samaneae. 

 

The public health officials consider the current state of available antibiotics to 

be perilous and some of the organisms are close to having complete resistance to all 

commercially available antibiotics. Fortunately, new antibiotics are constantly being 

discovered from microorganisms and actinomycetes represent the biggest possibility to 

obtain further medically, agriculturally and industrially valuable compounds which 

may serve as direct or indirect drugs leading compounds for structural modifications 

and templates for the rational drug design and other derivatives. 

 

 

1.3  Research Hypothesis 

 

1. BRIS Soil collected from Setiu District, Terengganu, Malaysia is the habitat of 

actinomycetes. 

2. Actinomycetes can produce bioactive compounds. 

3. Identification of actinomycetes based on 16s rRNA. 

4. Analysis the Amycolatopsis sp. AA12 strain by whole genomic sequencing (WGS). 

5. Potential the biological activity compounds using HPLC –UV and GC-MS. 

6. Isolation natural compounds from Amycolatopsis sp. AA12. 
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1.4  Research Objectives 

 

1. To isolate and identify actinomycetes from BRIS soil samples based on 16S 

rRNA gene sequences. 

2. To screen antimicrobial activity of actinomycetes isolates and its secondary 

metabolites against a panel of microorganisms. 

3. To identify secondary metabolite syntheses by whole genomic sequencing 

(WGS). 

4. To determine the secondary metabolites present in the crude extracts and 

characterize spectroscopically. 

 

 

1.5  Research Questions 

 

1. Which Actinomycete genera present in BRIS soil? 

2. What are the antimicrobial activities of Actinomycete isolates and their 

metabolite extracts? 

3. What are the secondary metabolite synthase genes identified from 

Actinomycete whole genome sequence? 

4. What are the secondary metabolites produced by Actinomycete isolate? 
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1.6  Significance of study 

 

Actinomycetes are the foundation of antibiotics and therefore are an important role in 

human health. About 70 % of the natural compounds have been separated from 

actinomycetes often from the genera belonging to Streptomyces sp. and 

Micromonospora sp. Therefore, these natural products are a source of the development 

of new drugs to search for new antibiotics that given better effectiveness on resistant 

organisms for drugs, and it currently takes an important area in medical research. 

 

This study is significant to the research development by expanding the 

information and knowledge base about the actinomycetes in BRIS soil and the 

characterization of the chemical compounds of actinomycete species that lead to the 

discovery of new compounds and expand information. Besides, the bioactivity 

investigation useful to provide source knowledge about a biological activity to 

actinomycetes. The outcomes of this study will serve as future references and be 

resources for knowledge on the therapeutic discovery that can lead to the development 

of potential and safe drugs in the medical field.  

 

The availability of genome information will provide useful insights to infer the 

presence of molecular structures as well as numbers of secondary metabolite in this 

gene. It will also help in ascertaining the mechanisms involved in the regulation of 

secondary metabolite biosynthesis and aid the search for novel secondary metabolites 

through genetic engineering. Therefore the genomic information will help in the 
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identification of key molecular targets to achieve industrial strain improvement. This is 

the first complete genome report of the use of NGS to produce high quality and non-

fragmented genome sequence of Amycolatopsis sp. AA12, an essential prerequisite for 

efficient genome mining for natural product discovery in these GC-rich bacteria. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


