





# **REINFORCEMENT OF PLASTICIZED POLY(LACTIC ACID) WITH TITANIUM DIOXIDE NANOFILLER**



O5-4506832 Sustaka.upsi.edu.my Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah



# NUR AIN SYAFIQAH BINTI SUDIN

# **UNIVERSITI PENDIDIKAN SULTAN IDRIS**

2021

















### REINFORCEMENT OF PLASTICIZED POLY(LACTIC ACID) WITH TITANIUM DIOXIDE NANOFILLER

# NUR AIN SYAFIQAH BINTI SUDIN



05-4506832 😵 pustaka.upsi.edu.my 🚹 Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah 💟 PustakaTBainun 🗗 ptbupsi



## THESIS SUBMITTED IN FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER IN SCIENCE (MATERIAL PHYSICS) **RESEARCH MODE**

# FACULTY OF SCIENCE AND MATHEMATICS UNIVERSITI PENDIDIKAN SULTAN IDRIS

2021











| UPSI/IPS-3/BC | 32 |
|---------------|----|

Pind : 00 m/s: 1/1



Please tick (√) Project Paper Masters by Research Master by Mixed Mode PhD

|  | I |
|--|---|
|  |   |
|  |   |
|  |   |

# INSTITUTE OF GRADUATE STUDIES DECLARATION OF ORIGINAL WORK

This declaration is made on the ......day of......20.....

### i. Student's Declaration:

05-4506832 (C) pustaka.upsi.edu.my

I, <u>NUR AIN SYAFIQAH BINTI SUDIN, M20172002422, FACULTY OF SCIENCE</u> <u>AND MATHEMATICS</u> hereby declare that the work entitled <u>REINFORCEMENT OF</u> <u>PLASTICIZED POLY (LACTIC ACID) WITH TITANIUM DIOXIDE</u> <u>NANOFILLER</u> is my original work. I have not copied from any other students' work, or from any other sources except where due reference or acknowledgment is made explicitly in the text, nor has any part been written for me by another person.

Signature of the student

### ii. Supervisor's Declaration:

I, <u>DR. IZAN ROSHAWATY MUSTAPA</u> hereby certifies that the work entitled <u>REINFORCEMENT OF PLASTICIZED POLY (LACTIC ACID) WITH TITANIUM</u> <u>DIOXIDE NANOFILLER</u> was prepared by the above-named student, and was submitted to the Institute of Graduate Studies as a full fulfillment for the conferment of <u>MASTER OF SCIENCE (MSc)</u>, and the aforementioned work, to the best of my knowledge, is the said student's work.

Date

Signature of the Supervisor





### ACKNOWLEDGEMENT

Assalamualaikum,

Alhamdulillah, I uttered the highest gratitude to Allah S.W.T for his grace and blessing, this thesis successfully completed to the last period.

In an effort to finished the research, my deepest thank to my supervisor, Dr. Izan Roshawaty Mustapa for her guidance, support, and comfort throughout my journey of MSc studies. Not forgotten as well, my beloved co-supervisor, Dr. Norlinda Daud for her love and expertise in helping me to complete my thesis. I greatly appreciated the patience and hard work of both of you in guiding and conducting me on my master's journey.

I would like to thank the Polymer Research Group for their help and consideration in successfully helping me in completing the journal papers, conferences, sample preparation work, and thesis writing. Many thanks go to my colleague, Mohamed Zorah Hassan as a partner and comrade in the face of hardship to complete the thesis with me. I really appreciated his effort and spirit.

A lot of thanks especially to my mother, Siti Khalijah Che Isa for her love, support, guidance, advice, concern as well as financial support throughout my journey as a student. She always listens to my problems, being there when I am in need, and asked if there are any problems regarding my MSc studies. So do my nephew, Adam Mikhael Ismail, and beloved, Aleesha Sofea for your laugh and smile in cheering up my days. Thank you very much.

I would acknowledge and present many thanks to my best friend, all my close friends, extended friends, housemates, roommates and everyone who knows me directly or indirectly for their help, support and lesson learned in times of hardship and a brighter smile though I am in need. Without their participation in my life, my goals would not be possible.

Last but not least, without the support and cooperation of all parties, this thesis could not be completed properly.

May His blessing always be with us.











#### REINFORCEMENT OF PLASTICIZED POLY(LACTIC ACID) WITH TITANIUM DIOXIDE NANOFILLER

#### ABSTRACT

The study aimed to investigate the reinforcement of plasticized poly(lactic acid) (PLA) with titanium dioxide (TiO<sub>2</sub>) nanofiller. In this research, solvent casting and thermocompression methods are adopted to prepare PLA nanocomposites with different percentages of TiO<sub>2</sub> at 0.5, 2.0, 3.5, 5.0, and 7.0 % w/w that dispersed in PLA solution using a mechanical mixer and ultrasonication technique. The composites were characterized using dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). Results showed that tributyl citrate (TBC) plasticizer reduced the brittle failure and increased the flexibility of PLA whilst TiO<sub>2</sub> nanofiller improved the crystallization of PLA composites as evidenced in DSC results at slow scanning rate. The presence of 3.5 %·w/w TiO<sub>2</sub> in plasticized PLA increased the glass transition temperature  $(T_g)$  from 41.75 °C to 42.22 °C indicating restricted mobility of polymer chains. The storage modulus improved from 2.36 GPa to 2.85 GPa due to the good dispersion of TiO<sub>2</sub> in the polymer matrix, as proven in SEM results. Thermal analysis proved that the crystallinity of PLA increased with the addition of TBC and TiO<sub>2</sub> from 24.98 % to 36.57 % at optimum loading of 7.0 % w/w and 3.5 % w/w, respectively. However, agglomeration of nanoparticles was formed at higher filler loading  $(>3.5 \% \cdot w/w)$ , which reduced its properties. TiO<sub>2</sub> was distributed uniformly throughout the polymer matrix, acted as a reinforcement agent that improved the thermomechanical properties and thermal stability of the composites. In conclusion, the incorporation of plasticizer and nanofiller increased flexibility, improved thermomechanical properties, thermal behavior, and thermal stability of the PLA nanocomposites at optimum 7.0 %·w/w TBC and 3.5 %·w/w TiO<sub>2</sub>. The implication of the study is that modification of PLA in the acquirement of improved flexibility, toughness and strength has potential in the packaging industry due to PLA biodegradability and compostability.





#### PENGUKUHAN PEMPLASTIK ASID(POLILAKTIK) DENGAN PENGISINANO TITANIUM DIOKSIDA

#### ABSTRAK

Kajian ini bertujuan untuk mengkaji pengukuhan pemplastik asid(polilaktik) (PLA) dengan pengisinano titanium dioksida (TiO<sub>2</sub>). Dalam kajian ini, kaedah acuan pelarut dan mampatan terma digunakan untuk menyediakan komposit nano PLA dengan peratusan TiO<sub>2</sub> berbeza pada 0.5, 2.0, 3.5, 5.0 dan 7.0 %·w/w yang tersebar dalam larutan PLA menggunakan pengadun mekanikal dan teknik ultrasonik. Komposit dicirikan menggunakan analisis mekanikal dinamik (DMA), kalorimetri pengimbasan perbezaan (DSC), analisis gravimetri terma (TGA) dan mikroskop elektron imbasan (SEM). Hasil kajian ini menunjukkan pemplastik tributyl citrate (TBC) mengurangkan kegagalan rapuh dan meningkatkan kelenturan PLA manakala pengisinano TiO<sub>2</sub> memperbaiki penghabluran komposit PLA seperti yang dibuktikan dalam hasil DSC pada kadar imbasan perlahan. Kehadiran 3.5 % w/w TiO2 dalam pemplastik PLA meningkatkan suhu peralihan kaca  $(T_g)$  daripada 41.75 °C kepada 42.22 °C menunjukkan pergerakan rantai polimer yang lebih terhad. Modulus storan meningkat daripada 2.36 GPa kepada 2.85 GPa disebabkan oleh penyebaran TiO<sub>2</sub> yang baik dalam matrik polimer seperti yang dibuktikan dalam keputusan SEM. Analisis termal membuktikan bahawa pengkristalan PLA meningkat dengan penambahan TBC dan TiO<sub>2</sub> daripada 24.98 % kepada 36.57 % pada kandungan optimum 7.0 % w/w TBC dan 3.5 %·w/w TiO2. Walau bagaimanapun, penggumpalan partikel nano terbentuk pada kandungan pengisi yang tinggi (>3.5 %·w/w), yang telah mengurangkan sifat-sifat komposit PLA. TiO2 disebarkan secara seragam ke seluruh matrik polimer, bertindak sebagai ejen penguat yang meningkatkan sifat termomekanikal dan kestabilan terma Kesimpulannya, penambahan bahan pemplastik dan pengisinano komposit. meningkatkan kelenturan, memperbaiki sifat-sifat termomekanikal, sifat terma dan kestabilan terma komposit nano PLA pada kandungan optimum 7.0 % w/w TBC dan 3.5 %·w/w TiO<sub>2</sub>. Implikasi kajian ini ialah pengubahsuaian PLA bagi mendapatkan komposit yang lebih lentur, kukuh dan kuat berpotensi digunakan dalam industri pembungkusan kerana sifat PLA yang biodegradasi dan boleh kompos.









## **CONTENTS**

| DECLARATIC   |                                                                                                         |                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | mu                                                                                                      | F ORIGINAL WORK                                                                                                                                                                                                | ii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| DECLARATIC   | )N OI                                                                                                   | FTHESIS                                                                                                                                                                                                        | iii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ACKNOWLEI    | OGEN                                                                                                    | IENTS                                                                                                                                                                                                          | iv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ABSTRACT     |                                                                                                         |                                                                                                                                                                                                                | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ABSTRAK      |                                                                                                         |                                                                                                                                                                                                                | vi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CONTENTS     |                                                                                                         |                                                                                                                                                                                                                | vii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| LIST OF TABI | LES                                                                                                     |                                                                                                                                                                                                                | xi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| LIST OF FIGU | RES                                                                                                     |                                                                                                                                                                                                                | xii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| GENERAL AB   | BRE                                                                                                     | VIATIONS & NOMENCLATURE                                                                                                                                                                                        | XV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CHAPTER 1    | INT                                                                                                     | RODUCTION                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              | 1.1                                                                                                     | Overview                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              | 1.2                                                                                                     | Research Background                                                                                                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              | 1.3                                                                                                     | Problem Statement                                                                                                                                                                                              | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              | 1.4                                                                                                     | Research Aim                                                                                                                                                                                                   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              | 1.5                                                                                                     | Objectives                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              | 1.6                                                                                                     | Research Question                                                                                                                                                                                              | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              | 1.7                                                                                                     | Rationale                                                                                                                                                                                                      | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              | 1.8                                                                                                     | Thesis Structure                                                                                                                                                                                               | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CHAPTER 2    | LIT                                                                                                     | ERATURE REVIEW                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              | 2.1                                                                                                     | Introduction                                                                                                                                                                                                   | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              | 2.2                                                                                                     | Biodegradable Polymers or Biopolymers                                                                                                                                                                          | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              | 2.3                                                                                                     | Poly(lactic acid)                                                                                                                                                                                              | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              |                                                                                                         | 2.3.1 PLA as Bioplastics                                                                                                                                                                                       | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              |                                                                                                         | 2.3.2 PLA Productions                                                                                                                                                                                          | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              | ACKNOWLEI<br>ABSTRACT<br>ABSTRAK<br>CONTENTS<br>LIST OF TABI<br>LIST OF FIGU<br>GENERAL AB<br>CHAPTER 1 | ACKNOWLEDGEM<br>ABSTRACT<br>ABSTRAK<br>CONTENTS<br>LIST OF TABLES<br>LIST OF FIGURES<br>GENERAL ABBRET<br>CHAPTER 1 INT<br>1.1<br>1.2<br>1.3<br>1.4<br>1.5<br>1.6<br>1.7<br>1.8<br>CHAPTER 2 LIT<br>2.1<br>2.2 | ACKNOWLEDGEMENTS<br>ABSTRACT<br>ABSTRAK<br>CONTENTS<br>LIST OF TABLES<br>LIST OF FIGURES<br>GENERAL ABBREVIATIONS & NOMENCLATURE<br>CHAPTER 1 INTRODUCTION<br>1.1 Overview<br>1.2 Research Background<br>1.3 Problem Statement<br>1.4 Research Aim<br>1.5 Objectives<br>1.6 Research Question<br>1.7 Rationale<br>1.8 Thesis Structure<br>CHAPTER 2 LITERATURE REVIEW<br>2.1 Introduction<br>2.2 Biodegradable Polymers or Biopolymers<br>2.3 Poly(lactic acid)<br>2.3.1 PLA as Bioplastics | ACKNOWLEDGEMENTS iv<br>ABSTRACT v<br>ABSTRAK vi<br>CONTENTS vii<br>LIST OF TABLES xi<br>LIST OF FIGURES Xii<br>GENERAL ABBREVIATIONS & NOMENCLATURE xv<br>CHAPTER 1 INTRODUCTION<br>1.1 Overview 1<br>1.2 Research Background 3<br>1.3 Problem Statement 6<br>1.4 Research Aim 10<br>1.5 Objectives 10<br>1.6 Research Question 10<br>1.7 Rationale 11<br>1.8 Thesis Structure 12<br>CHAPTER 2 LITERATURE REVIEW<br>2.1 Introduction 15<br>2.2 Biodegradable Polymers or Biopolymers 16<br>2.3 Poly(lactic acid) 18<br>2.3.1 PLA as Bioplastics 18 |





|           | 31  | Introd         | uction                 |                                         | 56 |
|-----------|-----|----------------|------------------------|-----------------------------------------|----|
| CHAPTER 3 |     | TERIA<br>CHNIQ |                        | CHARACTERIZATION                        |    |
|           |     | 2.8.1          | Nanocor                | nposites Processing Methods             | 54 |
|           | 2.8 | Titani         |                        | de as Nanofiller                        | 52 |
|           |     | 2.7.1          | Plasticiz              | ing Mechanism                           | 51 |
|           | 2.7 | Tribut         | tyl Citrate            | as Plasticizers                         | 50 |
|           |     | 2.6.2          | Reinford               | cement of PLA with nanofiller           | 46 |
|           |     | 2.6.1          | Inclusion              | n of Plasticizers into PLA              | 44 |
|           | 2.6 | Modif          | fication of            | PLA                                     | 42 |
|           |     | 2.5.4          | -                      | d Packaging with<br>telligent Functions | 41 |
|           |     | 2.5.3          | Improve<br>Functior    | d Packaging with Active                 | 40 |
|           |     | 2.5.2          | Biochen                | nical Improved Packaging                | 39 |
|           |     | 2.5.1          | Physical               | Improved Packaging                      | 39 |
|           | 2.5 | 1              | ovement of<br>material | f Food Packaging Based on               | 38 |
|           | 2.4 | Nanot          | echnolog               | y and PLA Food Packaging                | 34 |
|           |     | 2.3.6          | PLA Ad                 | vantages and Limitation                 | 33 |
|           |     | 2.3.5          | PLA as                 | an Active Packaging Material            | 32 |
|           |     |                | 2.3.4.5                | Foaming and Fiber Spinning              | 31 |
|           |     |                | 2.3.4.4                | Drying                                  | 31 |
|           |     |                | 2.3.4.3                | Thermoforming                           | 30 |
|           |     |                | 2.3.4.2                | Injection Moulding                      | 28 |
|           |     |                | 2.3.4.1                | Extrusion                               | 27 |
|           |     | 2.3.4          | PLA Pro                | ocessing Technologies                   | 27 |
|           |     | 2.3.3          | PLA Pro                | operties                                | 23 |
|           |     |                |                        |                                         |    |

3.1 Introduction 56 3.2 Materials 57 Methodology 3.3 58





| 1X |  |
|----|--|
|    |  |

|                   | 3.3.1                                                 |                                                                                                                             | Casting and<br>compression Method                                                                                                                                                                                                                        | 58                         |
|-------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
|                   | 3.3.2                                                 | Preparati                                                                                                                   | on Techniques                                                                                                                                                                                                                                            | 58                         |
|                   |                                                       | 3.3.2.1                                                                                                                     | Neat PLA and Plasticized PLA                                                                                                                                                                                                                             | 59                         |
|                   |                                                       | 3.3.2.2                                                                                                                     | Neat PLA and PLA<br>Nanocomposites                                                                                                                                                                                                                       | 61                         |
|                   |                                                       | 3.3.2.3                                                                                                                     | Plasticized PLA and<br>Plasticized PLA<br>Nanocomposites                                                                                                                                                                                                 | 63                         |
| 3.4               | Chara                                                 | cterization                                                                                                                 | Techniques                                                                                                                                                                                                                                               | 65                         |
|                   | 3.4.1                                                 | Thermog                                                                                                                     | gravimetry Analysis (TGA)                                                                                                                                                                                                                                | 65                         |
|                   | 3.4.2                                                 | Dynamic                                                                                                                     | Mechanical Analysis (DMA)                                                                                                                                                                                                                                | 66                         |
|                   | 3.4.3                                                 | Different<br>(DSC)                                                                                                          | tial Scanning Calorimeter                                                                                                                                                                                                                                | 67                         |
|                   | 3.4.4                                                 |                                                                                                                             | nission Scanning Electron<br>opy (FESEM)                                                                                                                                                                                                                 | 69                         |
|                   |                                                       |                                                                                                                             |                                                                                                                                                                                                                                                          |                            |
| RES               | SULTS                                                 | AND DIS                                                                                                                     | CUSSION                                                                                                                                                                                                                                                  |                            |
| <b>RES</b><br>4.1 |                                                       | AND DIS<br>uction                                                                                                           | CUSSION                                                                                                                                                                                                                                                  | 71                         |
|                   | Introd                                                |                                                                                                                             |                                                                                                                                                                                                                                                          | 71<br>72                   |
| 4.1               | Introd                                                | uction<br>cized PLA                                                                                                         | Stability of Neat PLA and                                                                                                                                                                                                                                |                            |
| 4.1               | Introd<br>Plastic                                     | uction<br>cized PLA<br>Thermal<br>Plasticize<br>Thermore                                                                    | Stability of Neat PLA and                                                                                                                                                                                                                                | 72                         |
| 4.1               | Introd<br>Plastic<br>4.2.1                            | uction<br>cized PLA<br>Thermal<br>Plasticize<br>Thermor<br>PLA and<br>Cold-cry                                              | Stability of Neat PLA and<br>ed PLA<br>nechanical Properties of Neat                                                                                                                                                                                     | 72<br>72                   |
| 4.1               | Introd<br>Plastic<br>4.2.1<br>4.2.2                   | uction<br>cized PLA<br>Thermal<br>Plasticize<br>Thermor<br>PLA and<br>Cold-cry<br>Behavion<br>PLA<br>Surface I              | Stability of Neat PLA and<br>ed PLA<br>nechanical Properties of Neat<br>Plasticized PLA<br>stallization and Melting                                                                                                                                      | 72<br>72<br>76             |
| 4.1               | Introd<br>Plastic<br>4.2.1<br>4.2.2<br>4.2.3<br>4.2.3 | uction<br>cized PLA<br>Thermal<br>Plasticize<br>Thermor<br>PLA and<br>Cold-cry<br>Behavion<br>PLA<br>Surface I              | Stability of Neat PLA and<br>ed PLA<br>nechanical Properties of Neat<br>Plasticized PLA<br>stallization and Melting<br>of Neat PLA and Plasticized<br>Morphology and Cross-section<br>PLA and Plasticized PLA                                            | 72<br>72<br>76<br>81       |
| 4.1 4.2           | Introd<br>Plastic<br>4.2.1<br>4.2.2<br>4.2.3<br>4.2.3 | uction<br>cized PLA<br>Thermal<br>Plasticize<br>Thermor<br>PLA and<br>Cold-cry<br>Behavion<br>PLA<br>Surface I<br>of Neat H | Stability of Neat PLA and<br>ed PLA<br>nechanical Properties of Neat<br>Plasticized PLA<br>stallization and Melting<br>of Neat PLA and Plasticized<br>Morphology and Cross-section<br>PLA and Plasticized PLA<br>osites<br>Stability of Neat PLA and PLA | 72<br>72<br>76<br>81<br>87 |

05-45068

**CHAPTER 4** 









|     | 4.3.3   | Cold-crystallization and Melting<br>Behavior of Neat PLA and PLA<br>Nanocomposites                    | 98  |
|-----|---------|-------------------------------------------------------------------------------------------------------|-----|
|     | 4.3.4   | Surface Morphology and Cross-section of Neat PLA and PLA Nanocomposites                               | 105 |
| 4.4 | Plastic | cized PLA Nanocomposites                                                                              | 112 |
|     | 4.4.1   | Thermal Stability of Plasticized PLA<br>and Plasticized PLA Nanocomposites                            | 112 |
|     | 4.4.2   | Thermomechanical Properties of<br>Plasticized PLA and Plasticized PLA<br>Nanocomposites               | 115 |
|     | 4.4.3   | Cold-crystallization and Melting<br>Behavior of Plasticized PLA and<br>Plasticized PLA Nanocomposites | 119 |
|     | 4.4.4   | Surface Morphology and Cross-section<br>of Plasticized PLA and Plasticized PLA<br>Nanocomposites      | 124 |
| 4.5 | Conclu  | usions                                                                                                | 128 |

05-45068

CHAPTER 5 SUMMARY

| 5.1 | Overview                             | 129 |
|-----|--------------------------------------|-----|
| 5.2 | Conclusions                          | 130 |
| 5.3 | Recommendations for Further Research | 131 |

| REFERENCES | 133 |
|------------|-----|
| APPENDIX   | 155 |













# **LIST OF TABLES**

| Table No. |                                                                                             | Page       |
|-----------|---------------------------------------------------------------------------------------------|------------|
| 3.1       | Properties of poly(lactic acid) polymer 3051D Injection Grade                               | 57         |
| 3.2       | Identification of abbreviations for neat PLA and Plasticized PLA (pPLA)                     | 60         |
| 3.3       | Identification of abbreviations for neat PLA and PLA Nanocomposites (PTiO <sub>2</sub> )    | 62         |
| 3.4       | Identification of abbreviations for plasticized PLA<br>Nanocomposites (pPTiO <sub>2</sub> ) | 64         |
| 4.1       | TGA and DTG properties of neat PLA and plasticized PLA (pPLA)                               | 74         |
| 4.2       | Thermomechanical properties of neat PLA and plasticized PLA                                 | 78         |
| 4.3       | Thermal properties of neat PLA and plasticized PLA on cooling                               | 83<br>otbu |
| 4.4       | Thermal properties of neat PLA and plasticized PLA on heating                               | 84         |
| 4.5       | TGA and DTG properties of neat PLA and PLA nanocomposites                                   | 91         |
| 4.6       | Thermomechanical properties of neat PLA and PLA nanocomposites                              | 95         |
| 4.7       | Thermal properties of neat PLA and PLA nanocomposites on cooling                            | 99         |
| 4.8       | Thermal properties of neat PLA and PLA nanocomposites on heating                            | 101        |
| 4.9       | TGA and DTG properties of pPLA and plasticized PLA nanocomposites                           | 114        |
| 4.10      | Thermomechanical properties of pPLA and plasticized PLA nanocomposites                      | 117        |
| 4.11      | Thermal properties of pPLA and plasticized PLA nanocomposites on cooling                    | 120        |
| 4.12      | Thermal properties of pPLA and plasticized PLA nanocomposites on heating                    | 122        |





# LIST OF FIGURES

| No. Fig | ires                                                                                                                            | Page      |
|---------|---------------------------------------------------------------------------------------------------------------------------------|-----------|
| 1.1     | Flow chart of thesis structure                                                                                                  | 14        |
| 2.1     | Classification of biodegradable polymers                                                                                        | 17        |
| 2.2     | Lactic acid stereoisomers                                                                                                       | 21        |
| 2.3     | Synthesis route of poly(lactic acid)                                                                                            | 22        |
| 2.4     | Application areas of nanotechnology in various<br>multidisciplinary science and industries with a food<br>packaging application | 35        |
| 2.5     | The terminology of nanomaterial used in food packaging                                                                          | 38        |
| 2.6     | Various types of nanofiller                                                                                                     | 47        |
| 3.1     | PLA 3051D in pellet form                                                                                                        | 57        |
| 832 3.2 | Flow chart of samples compositions                                                                                              | 59 ptbups |
| 3.3     | Preparation of Plasticized PLA(pPLA)                                                                                            | 60        |
| 3.4     | Preparation of PLA Nanocomposites (PTiO <sub>2</sub> )                                                                          | 62        |
| 3.5     | Preparation of Plasticized PLA Nanocomposites (pPTiO <sub>2</sub> )                                                             | 64        |
| 3.6     | Q500 TGA                                                                                                                        | 65        |
| 3.7     | Q800 DMA                                                                                                                        | 67        |
| 3.8     | Q20 DSC                                                                                                                         | 68        |
| 3.9     | SU 8020 Field Emission Scanning Electron Microscopy                                                                             | 70        |
| 3.10    | Q 150R S sputter coater instrument                                                                                              | 70        |
| 4.1     | TGA and DTG curves of neat PLA                                                                                                  | 72        |
| 4.2     | TGA curve of neat PLA and plasticized PLA                                                                                       | 73        |
| 4.3     | DTG curves of neat PLA and plasticized PLA                                                                                      | 74        |
| 4.4     | Storage modulus $(E')$ of neat PLA and plasticized PLA                                                                          | 76        |
| 4.5     | Loss modulus ( $E$ ") of neat PLA and plasticized PLA                                                                           | 77        |
| 4.6     | Tan delta ( $\delta$ ) of neat PLA and plasticized PLA                                                                          | 77        |



| 4.7  | DSC curves for neat PLA                                       | 81       |
|------|---------------------------------------------------------------|----------|
| 4.8  | DSC cooling curves of neat PLA and plasticized PLA            | 82       |
| 4.9  | DSC 2nd heating curves of neat PLA and plasticized PLA        | 84       |
| 4.10 | Surface morphology of neat PLA at a magnification of 20,000x  | 87       |
| 4.11 | Surface morphology of PLA/TBC5 at a magnification of 25,000x  | 88       |
| 4.12 | Surface morphology of PLA/TBC7 at a magnification of 25,000x  | 88       |
| 4.13 | Surface morphology of PLA/TBC10 at a magnification of 25,000x | 89       |
| 4.14 | TGA curves of neat PLA and PLA nanocomposites                 | 90       |
| 4.15 | DTG curves of neat PLA and PLA nanocomposites                 | 91       |
| 4.16 | Storage modulus ( $E'$ ) of neat PLA and PLA nanocomposites   | 94       |
| 4.17 | Loss modulus ( $E''$ ) of neat PLA and PLA nanocomposites     | 94       |
| 4.18 | Tan delta ( $\delta$ ) of neat PLA and PLA nanocomposites     | 95       |
| 4.19 | DSC cooling curves of neat PLA and PLA nanocomposites         | 98 ptbup |
| 4.20 | DSC 2nd heating curves of neat PLA and PLA nanocomposites     | 100      |
| 4.21 | Surface morphology of neat PLA at a magnification of 20,000x  | 105      |
| 4.22 | Surface morphology of PTi05 at a magnification of 50,000x     | 106      |
| 4.23 | Surface morphology of PTi20 at a magnification of 50,000x     | 106      |
| 4.24 | Surface morphology of PTi35 at a magnification of 50,000x     | 107      |
| 4.25 | Surface morphology of PTi50 at a magnification of 50,000x     | 107      |
| 4.26 | Surface morphology of PTi70 at a magnification of 50,000x     | 108      |
| 4.27 | Element compositions and spectrum of neat PLA                 | 109      |
| 4.28 | Element compositions and spectrum of PTi05                    | 110      |
| 4.29 | Element compositions and spectrum of PTi20                    | 110      |
| 4.30 | Element compositions and spectrum of PTi35                    | 111      |
| 4.31 | Element compositions and spectrum of PTi50                    | 111      |
| 4.32 | Element compositions and spectrum of PTi70                    | 112      |
|      |                                                               |          |



| 4.33       | TGA curves of pPLA and plasticized PLA nanocomposites                    | 113 |
|------------|--------------------------------------------------------------------------|-----|
| 4.34       | DTG curves of pPLA and plasticized PLA nanocomposites                    | 113 |
| 4.35       | Storage modulus ( <i>E</i> ') of pPLA and plasticized PLA nanocomposites | 116 |
| 4.36       | Loss modulus ( $E$ ") of pPLA and plasticized PLA nanocomposites         | 116 |
| 4.37       | Tan delta ( $\delta$ ) of pPLA and plasticized PLA nanocomposites        | 117 |
| 4.38       | DSC cooling curves of pPLA and plasticized PLA nanocomposites            | 120 |
| 4.39       | DSC 2nd heating curves of pPLA and plasticized PLA nanocomposites        | 122 |
| 4.40       | Surface morphology of pPLA at a magnification of 25,000x                 | 124 |
| 4.41       | Surface morphology of pPTi05 at a magnification of 25,000x               | 125 |
| 4.42       | Surface morphology of pPTi20 at a magnification of 25,000x               | 125 |
| 4.43       | Surface morphology of pPTi35 at a magnification of 25,000x               | 126 |
| 4.44       | Surface morphology of pPTi50 at a magnification of 25,000x               | 126 |
| 4.45 pusta | Surface morphology of pPTi70 at a magnification of 25,000x               | 127 |





















### **GENERAL ABBREVIATIONS & NOMENCLATURE**

|                                                    | $\Delta H_c$        | Enthalpy of crystallization              |  |  |  |  |
|----------------------------------------------------|---------------------|------------------------------------------|--|--|--|--|
| $egin{array}{llllllllllllllllllllllllllllllllllll$ |                     | Enthalpy of cold-crystallization         |  |  |  |  |
|                                                    |                     | Enthalpy of fusion                       |  |  |  |  |
|                                                    |                     | Enthalpy of crystalline PLA              |  |  |  |  |
|                                                    |                     | Maximum rate of degradation              |  |  |  |  |
|                                                    |                     | Storage modulus                          |  |  |  |  |
|                                                    | <i>E</i> "          | Loss modulus                             |  |  |  |  |
|                                                    | mrr                 | Melting, recrystallization and remelting |  |  |  |  |
|                                                    | $T_c$               | Crystallization temperature              |  |  |  |  |
|                                                    | T <sub>c</sub> , on | Onset of crystallization temperature     |  |  |  |  |
| -45068                                             | $T_{cc}$ v pus      | Cold-crystallization temperature         |  |  |  |  |
|                                                    | Td, onset           | Onset of degradation temperature         |  |  |  |  |
|                                                    | Td, max             | Maximum degradation rate temperature     |  |  |  |  |
| T <sub>g</sub><br>T <sub>m</sub>                   |                     | Glass transition temperature             |  |  |  |  |
|                                                    |                     | Melting temperature                      |  |  |  |  |
|                                                    | $T_{m1}$            | Melting peak at low temperature          |  |  |  |  |
|                                                    | $T_{m2}$            | Melting peak at high temperature         |  |  |  |  |
|                                                    | $W_L$               | Weight loss                              |  |  |  |  |
|                                                    | Xc                  | Crystallinity                            |  |  |  |  |
|                                                    |                     |                                          |  |  |  |  |
|                                                    |                     |                                          |  |  |  |  |

| ATBC              | Acetyl tributyl citrate |
|-------------------|-------------------------|
| ATEC              | Acetyl triethyl citrate |
| CaCO <sub>3</sub> | Calcium carbonate       |
| CEO               | Cinnamon essential oil  |

**(**) 05-

05-45

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shał





CFA Chemical foaming agent ChNs Chitin nanocrystals CNC Cellulose nanocrystal CNF Cellulose nanofibers CNT Carbon nanotubes  $CO_2$ Carbon dioxide DBP Di-n-butyl phthalate DMA Dynamic mechanical analysis DSC Differential scanning calorimeter EDX X-ray energy dispersive **EeRSO** Epoxidized rubber seed oil EPA **Environmental Protection Agency** EPO Epoxidized palm oil ESO Epoxidized soy oil **EVO** Epoxidized vegetable oil 05-450683FDA Food and Drug Administration **FESEM** Field emission scanning electron microscopy GRAS Generally Recognized as Safe HDPE High density poly(ethylene) HDT Heat deflection temperature HNT Halloysite nanotubes IC Industrial composting IR Infrared LDPE Low density poly(ethylene) MMT Montmorillonite **MWCNT** Multi-walled carbon nanotubes PA Polyamide PAN Poly(acrylonitrile) PBS Poly(butylene succinate) PCL Poly(caprolactone)

O5-4506832 Bustaka.upsi.edu.my Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah





|          | PE               | Poly(ethylene)                              |   |
|----------|------------------|---------------------------------------------|---|
|          | PEG              | Poly(ethylene glycol)                       |   |
|          | PET              | Poly(ethylene terephthalate                 |   |
|          | PFA              | Physical foaming agent                      |   |
|          | PGA              | Poly(glycolic acid)                         |   |
|          | PHAs             | Poly(hydroxyl alkanoates)                   |   |
|          | PHB              | Poly(hydroxybutyrate)                       |   |
|          | PHV              | Poly(hydroxyl valerate)                     |   |
|          | PLA              | Poly(lactic acid)                           |   |
|          | PMMA             | Poly(methyl methacrylate)                   |   |
|          | PP               | Poly(propylene)                             |   |
|          | PS               | Poly(styrene)                               |   |
|          | PTMC             | Poly(trimethyl carbonate)                   |   |
|          | PVC              | Poly(vinyl chloride)                        |   |
|          | PVOH             | Poly(vinyl alcohol)                         |   |
| 05-45068 | ROP              | Ring-opening polymerization Abdul Jali Shah | J |
|          | TEC              | Triethyl citrate                            |   |
|          | TBC              | Tributyl citrate                            |   |
|          | THF              | Tetrahydrofuran                             |   |
|          | TGA              | Thermogravimetric analysis                  |   |
|          | TiO <sub>2</sub> | Titanium dioxide                            |   |
|          | UV               | Ultraviolet                                 |   |
|          | ZnO              | Zinc oxide                                  |   |











## **CHAPTER 1**

### **INTRODUCTION**



S 05-45068**1.1 Overview**upsi.edu.my



In recent decades, due to the diminishing of petrochemical resources and increase in environmental concerns by plastics, the use of biodegradable plastics prepared from renewable resources materials have been attracting more interest in the public research, scientific community and industrial worlds (Arjmandi, Hassan, Haafiz, Zakaria & Inuwa, 2014; Avella, Buzarovska, Errico, Gentile & Grozdanov, 2009). Biodegradable plastics have undergone extensive research since the 1970s because using biodegradable resources instead of petroleum-based resources is one of the latest available solutions to the environmental problems caused by the disposal of plastic wastes (Nair & Laurencin, 2007; Li, He & Inoue, 2003). Biodegradation is a process when a polymer is degrading down in natural environments that includes the changes in chemical structure, loss of mechanical and structural properties, and finally, changing





into other compounds such as carbon dioxide  $(CO_2)$ , water, minerals, biomass, and humic materials (Jamshidian, Tehrany, Imran, Jacquot & Desobry, 2010).

Polymers commonly known as plastics are widely used in many different applications including in industrial and medicines due to their versatile properties. Plastics can be either natural or synthetic and can be derived from either renewable or non-renewable resources. Plastics are widely used not only as packaging materials, but also in agriculture, the food industry, and even in pharmaceutical and clinical sectors (Anuar et al., 2017). It is almost impossible to live without plastics in our daily life in this modern society. Since the early 1990s, the evolution of the bioplastics industry has changed directions dramatically. Hence, the latest generation is moving towards durable and degradable bioplastics having a high biobased content (Nagarajan, 05-4506 Mohanty & Misra, 2016). PustakaTBainun

Today, biodegradable polymer plastics have been widely used in food packaging and agriculture because these polymers give some advantages such as low molecular weight, low density, environmentally friendly, cheaper cost availability, and good thermal properties (Kumar, Tyagi & Sinha, 2011). Besides, the emergence of novel biomedical technologies has led to the need for biodegradable materials platforms including tissue engineering, regenerative medicine, gene therapy, controlled drug delivery, and bio-nanotechnology. The end-product of these biodegradable materials also have been commonly used in furniture, food, and clothing industries (Ali, Awale, Fakhruldin & Anuar, 2016).



Among the various possible routes to eliminate environmental pollution by plastics wastes, biodegradability and bio-recyclability of polymer from renewable resources such as poly(lactic acid) (PLA), are regarded as attractive solutions, and it has become a rather widely adopted opinion that biodegradable polymers have a wellgrounded role in solving the waste problems. This is because previously expensive PLA-polymers now have a good chance of being popularized in such a low-priced especially in food packaging (Jacobsen, Fritz, Degée, Dubois & Jérôme, 1999).

#### 1.2 **Research Background**

PLA is a biodegradable polymer that appears to be one of the most attractive applications in agriculture and as packaging material because of its facile availability, good biodegradability, good heat sealability, good barrier properties, and good mechanical properties (Rydz, Musioł, Zawidlak-Węgrzyńska & Sikorska, 2018; Tang, Kumar, Alavi & Sandeep, 2012; Jamshidian et al., 2010). PLA is a class of semicrystalline biodegradable polymer that is derived from renewable resources such as corn, sugarcane, and tapioca through condensation polymerization of lactic acid that comparable to those of traditional petroleum-based polymers because of its strength and stiffness (Righetti et al., 2019). PLA can be processed by typical manufacturing methods such as film casting, injection moulding, extrusion, thermoforming, and fibre spinning (Nampoothiri, Nair & John, 2010).

A huge range of mechanical, thermal and physical properties, degradation rate, structural morphology and other physical properties can be achieved when PLA is





copolymerized with other monomers, blending with other biodegradable polymers, with the addition of plasticizer/s and reinforced with nucleating agents. By improving PLA processability, mechanical and thermal properties, it is an important challenge to be afforded before sending this production to the market and in fact, PLA resins are nowadays marketed for different applications (Armentano et al., 2015; Avella et al., 2009).

In general, biocomposites can be obtained by blending natural fibers with biobased polymers that produced an ecological and low-cost alternative to conventional petroleum-derived materials (Righetti et al., 2019). PLA is often blended with other polymers, fibre and filler to increase biodegradability, to modify the physical and mechanical properties (e.g., strength, elastic modulus), and to reduce costs (Chieng, Ibrahim, Yunus & Hussein, 2014a; Khanam & AlMaadeed, 2014). However, the brittleness and low glass transition temperature  $(T_g)$  of the PLA blend is a major drawback in many applications (Righetti et al., 2019). Therefore, a low molar mass plasticizer such as tributyl citrate (TBC), epoxidized palm oil (EPO) and di-n-butyl phthalate (DBP) is used to remedy this limitation. These plasticizers are miscible with PLA at compositions less than 30 %·w/w, effectively reducing the  $T_g$  and in turn improving the elongation at break (Ali et al., 2016; Anuar et al., 2016; Sejidov, Mansoori & Goodarzi, 2005). On the other hand, plasticization is often used to enhance biopolymers' processability and other properties needed for food packaging applications (Arrieta, Fortunati, Dominici, López & Kenny 2015).

Nanofillers have been widely used as the reinforcement and nucleating agents to enhance physical, mechanical and thermal properties, chemical resistance, surface







appearance, heat distortion temperature, flame retardancy and electrical conductivity (Adeosun, Lawal, Balogun & Akpan, 2012) of the composites. Physical properties of the polymers such as mechanical properties, thermal stability, and barrier properties to oxygen and moisture as a result of the reinforcement effect of nanomaterials can be enhanced by the incorporation of nanomaterials into compatible polymers by creating nanocomposites which have a high surface area to volume ratios (Baek, Kim, Marcy, Duncan & O'Keefe, 2018; Mihindukulasuriya & Lim, 2014; Duncan, 2011; Silvestre, Duraccio & Cimmino, 2011). These advantages can be accomplished with the addition of low loading of nanofiller because of its large surface area and high ratio of the nanoparticles. This effect also largely depends on a few factors such as the shape of the particles, dispersion of the nanoparticles in the polymer matrix and the interaction between the nanofiller and the bulk polymer (Alberton, Martelli, Fakhouri & Soldi,

S 05-4506(2014) pustaka.upsi.edu.my f Perpustakaan Tuanku Bainun Perpustakaan Tuanku Bainun ptbupsi

Much research has been performed to modify PLA composite properties with organic and inorganic fillers such as montmorillonite (MMT), clay, silica, carbon black, calcium carbonate (CaCO<sub>3</sub>), zinc oxide (ZnO), graphite, carbon nanotubes (CNT), halloysite nanotubes (HNT), titanium dioxide (TiO<sub>2</sub>), cellulose nanocrystal (CNC), talc, and metal salts of phenyl phosphoric acid as reinforcing agents (Arrieta et al., 2015; Alberton et al., 2014; Han et al., 2014; Yu et al., 2012; Barrau et al., 2011; Zhijun, Xingxiang, Ning & Jianming 2009; Wen et al., 2009; Wang, Zhang, Ma & Fang, 2008; Tsuji, Takai & Saha, 2006; Lei, Zhang, Rong & Friedrich, 2005). These researchers found that the existence of nanofiller in polymer composites can control the biodegradation rate and enhance the properties of PLA with good reinforcing capabilities for bio-based polymers. Besides, coupling the renewable resources based





monomeric building block and inherent compostability and biodegradability of the various polymers has led to a definite focus being directed into single-use disposable product markets (Lunt, 1998).

#### 1.3 **Problem Statement**

The usage of plastic materials in daily life especially in food packaging is inseparably due to their anti-corrosive, lightweight and high durability features properties. However, most of the plastics are non-biodegradable (synthetic packaging) materials and this will contribute to serious environmental pollution due to the increase in waste disposal problems. Although synthetic packaging film being replaced by eco-friendly packaging films is just impossible to achieve, the use of bioplastics at least requires the future for specific applications like food packaging. Petrochemical-based plastics such as polypropylene (PP), polyethylene (PE), polyethylene terephthalate (PET), polyvinylchloride (PVC), polystyrene (PS), polyamide (PA) have been increasingly used as packaging materials because of their large availability at relatively low cost and due to their good mechanical performance such as tensile and tear strength, carbon dioxide, good barrier oxygen, heat sealability and so on (Siracusa, Rocculi, Romani & Dalla Rosa, 2008). However, the use of these materials caused the declining oil and gas resources and in turn increasing oil and gas prices (Adeosun et al., 2012). Others effect include global warming, uneconomical costs in their recycling, environmental incineration and consumer toxicity risks (Adeosun et al., 2012; Jamshidian et al., 2010; Siracusa et al., 2008; Mohanty, Misra & Hinrichsen, 2000; Chandra & Rustgi, 1998; Amass, Amass & Tighe, 1998).





Confronting with this situation, it is of high importance to develop the polymer packaging material based on biodegradable polymers with controlled properties in the packaging industry in order to relieve the dependence on petrochemical-based polymers and alleviate solid waste disposal problems (Huang et al., 2014; Bordes, Pollet & Avérous, 2009; Ray & Bousmina, 2005). Polyolefin is one of the selected hydrocarbon polymers used for food packaging applications because of its flexibility, toughness and excellent barrier properties (Siracusa et al., 2008). Although hydrocarbon polymers give positives advantages such as incineration with energy recovery and can be mechanically recycled if clean, they are not biodegradable. On the other hand, according to a study by the Institute of Bioplastics and Biocomposites (2016), biodegradable polyesters, biodegradable starch blends and polyhydroxyalkanoates (PHAs) are examples of biodegradables polymers which contributed 10.8 %, 9.4 % and 3.6 % respectively for the production of bioplastics and used mostly for packaging applications (Mangaraj, Yadav, Bal, Dash & Mahanti, 2019).

PLA is a biodegradable material that is degraded slowly and released a low level of non-toxic gases. Under the environmental conditions, it can degrade into methane, water and carbon dioxide, over some time (Castro-Aguirre, Iñiguez-Franco, Samsudin, Fang, & Auras, 2016; Dil, Virgilio & Favis, 2016; Wang et al., 2016; Campoccia et al., 2015). Hence, recently PLA is widely used to replace the conventional nonbiodegradable plastics because of its excellent properties including biodegradability, high modulus, strength and transparency, good heat sealability, excellent flavour and aroma barrier, high surface energy allowing easy printability, resistance to fatty foods and dairy products which equivalent to PET, and have the flexural modulus which higher than PS (Lunt, 1998).







However, semicrystalline PLA is brittle, exhibits a slow crystallization rate, rapid degradation rate, poor thermal stability, poor mechanical properties, low barrier properties and show relatively low resistance to oxygen and water vapor permeation compared with conventional non-degradable polymer resins (Zhao et al., 2019; Singh, Maspoch & Oksman, 2019; Chen & Dou, 2019; Kang et al., 2018; Armentano et al., 2015; Yee, Ching, Rozali, Hashim & Singh, 2016; Yu, Dean & Li, 2006). Therefore, various approaches, including copolymerization, plasticization, blending with other polymers, and the incorporation of organic or/and inorganic fillers have been used to improve the flexibility, toughness, and barrier properties of neat PLA (Kratochvi'l & Kelnar, 2017; Ebadi-Dehaghani, Barikani, Khonakdar & Jafari, 2015; Shi & Dou, 2015; Ahmed, Varshney, Auras & Hwang, 2010).

The most valuable method to overcome PLA weaknesses is by blending PLA with plasticizer and nucleating agent. Generally, the addition of plasticizer into PLA reduces the  $T_g$  and strength of the PLA composites, improved elongation at break and enhanced the crystallization ability of PLA. Meanwhile, filler/s that act as a nucleating agent has been applied to further enhance some properties such as thermal stability, mechanical and barrier properties (Marra, Silvestre, Kujundziski, Chamovska & Duraccio, 2017).

Numerous investigations have been conducted on improving the mechanical and physical properties of PLA composites with the help of nanofiller. The PLA/TiO<sub>2</sub> composites prepared by solution blow spinning (SBS) found that TiO<sub>2</sub> nanoparticles influenced the crystallinity of the composites. The thermal behavior of nanocomposites produced by the SBS technique and the casting method are similar (Costa, Brichi,





Ribeiro & Mattoso, 2016). Efforts also focused on improving properties of embedded PLA and nanofiller (Chen & Dou, 2019; Righetti et al., 2019; Baek et al., 2018), PLA and plasticizer (Singh et al., 2019; Zhao et al., 2019; Kang et al., 2018; Maiza, Benaniba, Quintard & Massardier-Nageotte, 2015; Chieng et al., 2014b; Shirai et al., 2013), however still not satisfactory in improving physical, thermal and mechanical properties, thus limiting their applications (Shankar & Rhim, 2018).

To the best of our knowledge, no study has been carried out on the incorporation of TBC plasticizer and TiO<sub>2</sub> nanofiller for tailoring the dynamic mechanical properties of PLA composites. In this research, the reinforcement of TiO<sub>2</sub> nanofiller and inclusion of TBC plasticizer into PLA matrix aims to improve the thermal stability and thermomechanical properties that consequently alter the morphology and crystallization behavior of PLA composites. Plasticizer was used to reduce the brittleness of PLA while the nucleating agent was introduced to promote the crystallization by providing nucleation sites in the polymer chains. The good dispersion of nanofillers influences the physical and mechanical properties of PLA (Wu, Wu & Zhang, 2017; Li, Dou, Bai & Lu, 2015; Chen, Yao, Gu & Pan, 2013; Papageorgiu, Achilias, Nanaki, Beslikas & Bikiaris 2010). Besides, PLA can be readily cast into thin films upon dissolution in a solvent (Anuar et al., 2017).







#### 1.4 **Research Aim**

The aim of this research is to investigate the reinforcement of plasticized poly(lactic acid) with TiO<sub>2</sub> nanofiller on the thermal stability, thermomechanical, thermal properties and morphology of PLA composites.

#### 1.5 **Objectives**

The objectives of this research are:

- i. To prepare plasticized PLA with and without nanofiller by using solvent casting and thermocompression method.
- To characterize the thermal stability, thermomechanical and thermal 05-4506832 II. properties of plasticized PLA with and without nanofiller.
  - iii. To study the morphology of plasticized PLA with and without nanofiller.

#### **Research Question** 1.6

i. Does the incorporation of plasticizer and nanofiller in PLA matrix improve the thermal stability, thermomechanical and thermal properties of PLA composites?







#### 1.7 Rationale

Durable bioplastics are required for multi-use long-term applications in electronics, automotive and other industries (Nagarajan et al., 2016). At the same time, consumers demand a high quality of bioplastics in food packaging that has a long shelf life and the requirements for recognizing the packaging to observe the foodstuff aspect (Armentano et al., 2015). The solution to the environmental problems caused by plastics waste is also being developed by the use of polymer composites from renewable resources to maintained sustainable ecological technology (Adeosun et al., 2012; Pandey, Chu, Lee & Ahn 2007; Ray & Bousmina, 2006).

PLA is widely applied in the medical apparatus, textiles, food packages, and automotive interiors, as well as agricultural materials (Foruzanmehr, Vuillaume, Elkoun & Robert, 2016; Li et al, 2015; Huang et al., 2014; Wu et al., 2011). In biodegradable packaging, PLA is used for bottles, yogurt cups, and candy/sweet wrappers. This is because PLA film for food packaging has high transparency, available in the market, easy to be processed, economically competitive and environmentally benign characteristics (Arrieta et al., 2015; Armentano et al., 2013; Auras, Harte & Selke, 2004). It also has been used for food service ware, lawn and food waste bags, coating for paper and cardboard, and fiber for clothing, carpets, sheets and towels and wall coverings. In biomedical applications, it is used for sutures, prosthetic materials and materials for drug delivery. For example, TiO<sub>2</sub> nanoparticles and PLA nanofibers have been accepted for new nanomaterials that let's drug molecules quickly self-assemble on the surface of the nanocomposite (Avella et al., 2009). Therefore, PLA







material has a promising future with the potential to replace conventional petrochemical-based plastics such as PE, PP, and PET in various applications.

In addition, the blending of PLA with plasticizers and nanofiller is a practical strategy to improve flexibility and toughness, increase thermal stability and mechanical strength of PLA composites. Nanofiller such as TiO<sub>2</sub> received a lot of attention because of its good thermal stability, environmental compatibility, non-toxicity and low price. Meanwhile, lactide monomer such as TBC is the best plasticizing agent for polylactide because lactide and polylactide have a close chemical relationship to each other and in fact, the plasticizing effect of plasticizer reduced the  $T_g$  of the polylactide by the presence of lactide in PLA polymer (Jacobsen & Fritz, 1996). This research is mainly focused on improving the thermal stability, thermomechanical and thermal properties as well as the morphology of PLA that has the potential to be used in the development of packaging applications.

#### 1.8 **Thesis Structure**

This thesis has five main sections. The first section is Chapter 1 which an introduction to the thesis that contains the aim, objectives and problem statement as shown in Figure 1.1. Chapter 2 is a Literature Review explaining the biodegradable polymers, modification of PLA polymer with plasticizer and nanofiller and the application of PLA polymer in food packaging. Materials, methods and all characterization techniques used in this research are outlined in Chapter 3. The composites were prepared by the solvent casting and thermocompression method. Thermal stability, thermomechanical, thermal









properties, and structural morphology are characterized using TGA, DMA, DSC and FESEM. The fourth section is Chapter 4 which covers the results and discussion of the thermal stability, thermomechanical, thermal properties and morphology of PLA composites. The results are divided into three compositions of samples which are plasticized PLA, PLA nanocomposites and plasticized PLA nanocomposites. Plasticized PLA samples are prepared with various TBC content (5.0, 7.0 and 10.0 %·w/w) in the PLA matrix. The second composition which is PLA nanocomposites used different TiO<sub>2</sub> loading (0.5, 2.0, 3.5, 5.0 and 7.0 %·w/w) without the addition of TBC. Plasticized PLA nanocomposites are the last composition prepared with the optimum TBC content at 7.0 %·w/w reinforced with 0.5, 2.0, 3.5, 5.0 and 7.0 %·w/w of TiO<sub>2</sub>. Chapter 5 as the last section involves conclusions and recommendations for further research.

**(**) 05-4506832

pustaka.upsi.edu.my Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah PustakaTBainun top ptbupsi













kaan Tuanku Bainun Sultan Abdul Jalil Shah





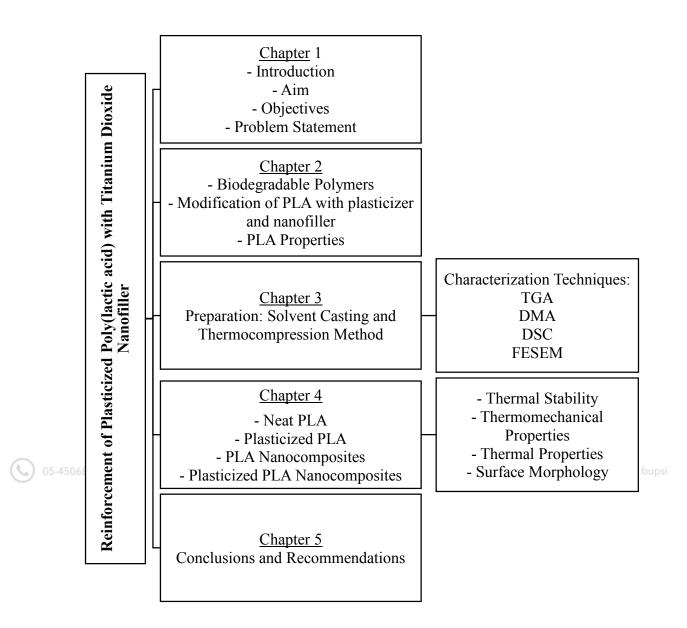



Figure 1.1. Flow chart of thesis structure

