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ABSTRACT

This research is aimed to produce an efficient implementation technique for the 2-stage
(G2) and 3-stage (G3) implicit Runge-Kutta Gauss methods in solving mathematical
stiff problems. Both methods are constructed by using Maple software and have been
implemented by using Matlab software numerically. This research applied four imple-
mentation strategies which are full Newton without compensated summation (FNWSN),
full Newton with compensated summation (FNCS), simplified Newton without com-
pensated summation (SNWCS) and simplified Newton with compensated summation
(SNCS). Comparison have been done with the implementations of Hairer and Wanner
scheme, Cooper and Butcher scheme, and González scheme. Results for stiff test prob-
lems showed that SNCS is the most efficient technique in solving some real life mathe-
matical problems such as the Kepler, Oregonator, Van der Pol, HIRES and Brusselator
problems. According to the numerical results, the implementation of G2 using SNCS
by the Hairer and Wanner scheme is the most efficient technique for solving Kepler
and Brusselator problems, while SNCS by the González scheme is the most efficient
technique for solving other problems. On the contrary for G3, SNCS by the Hairer and
Wanner scheme gives the most efficient technique for solving Kepler and Van der Pol
problems, while SNCS by the González scheme gives the most efficient technique for
solving other problems. In conclusion, for both G2 and G3 methods, SNCS plays an
important role to improve the efficiency of implicit Runge-Kutta Gauss methods in solv-
ing mathematical stiff problems. As for the implications, the implementation technique
used in this research can be extended during tertiary education on the subject numer-
ical ordinary differential equations that focusses on implementation schemes by other
researchers as well as to some other implicit Runge-Kutta methods.
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TEKNIK PELAKSANAAN YANG EFISIEN BAGI KAEDAH RUNGE-

KUTTA GAUSS TERSIRAT DALAM MENYELESAIKAN

MASALAH MATEMATIK KAKU

ABSTRAK

Kajian ini bertujuan untuk menghasilkan satu teknik perlaksanaan yang efisien bagi
kaedah peringkat-2 (G2) dan peringkat-3 (G3) kaedah tersirat Runge-Kutta Gauss dalam
menyelesaikan masalah matematik kaku. Kedua-dua kaedah ini diterbitkan menggu-
nakan perisian Maple and dilaksanakan menggunakan perisian Matlab secara berangka.
Kajian ini menggunakan empat strategi perlaksanaan iaitu Newton penuh tanpa lebihan
penjumlahan (FNWCS), Newton penuh bersama lebihan penjumlahan (FNCS), New-
ton yang dipermudahkan tanpa lebihan penjumlahan (SNWCS), Newton yang diper-
mudahkan bersama lebihan penjumlahan (SNCS). Dalam perlaksanaan ini juga, per-
bandingan telah dibuat ke atas perlaksanaan skim Hairer dan Wanner, skim Cooper
dan Butcher dan skim González. Berdasarkan keputusan masalah ujian matematik
kaku, SNCS adalah teknik perlaksanaan yang paling efisien yang telah digunakan dalam
menyelesaikan masalah matematik sebenar seperti masalah Kepler, Oregonator, Van der
Pol, HIRES dan Brusselator. Berdasarkan keputusan masalah berangka, teknik perlak-
sanaan G2 menggunakan SNCS skim Hairer dan Wanner adalah teknik yang paling
efisien dalam menyelesaikan masalah Kepler dan Brusselator manakala SNCS skim
González adalah teknik yang paling efisien dalam menyelesaikan masalah-masalah lain.
Berbeza pula bagi G3, SNCS skim Hairer dan Wanner adalah teknik perlaksanaan pal-
ing efisien dalam menyelesaikan masalah Kepler and Van der Pol manakala SNCS skim
González adalah teknik perlaksanaan paling efisien dalam menyelesaikan masalah yang
lain. Kesimpulannya, bagi kedua-dua kaedah G2 dan G3, SNCS adalah sangat pent-
ing untuk meningkatkan keefisienan dalam menyelesaikan masalah matematik kaku.
Sebagai implikasi, teknik perlaksanaan yang digunakan dalam kajian ini boleh dikem-
bangkan dalam pengajian tinggi dalam subjek penyelesaian berangka persamaan pem-
bezaan biasa yang menumpukan teknik skim pelaksanaan oleh skim penyelidik lain dan
juga kepada beberapa kaedah Runge-Kutta tersirat yang lain.
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CHAPTER 1

INTRODUCTION

1.1 Introduction to Numerical ODEs

Ordinary differential equations (ODEs) represent a mathematical model for many sys-

tems in various discipline of knowledge. Unfortunately, most of the ODEs have no

equations for exact solution therefore numerical methods play as an important tech-

nique to approximate the solution for the ODEs system. Nowadays, highly accurate

solution for many kinds of complicated ODEs can be obtained by numerical approxi-

mation with the help of sophisticated software for computational mathematics.

1.1.1 Ordinary Differential Equations

Differential equations can be used to solve many system in real life problems including

chemical, physical and biological processes. Ordinary differential equations are a type

of differential equations that consist of derivatives of unknown solution with respect to

only one independent variable.
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First order ODEs can be written in the following form:

y′ = f (x,y), y(x0) = y0, f : [x0,xn]×R
n→R

n. (1.1)

f is autonomous if it is a function of only y. But it is called non autonomous if f

is explicitly depends on x. In the equation, x is time variable or known as the indepen-

dent variable and y is the dependent variable, x0 is the initial time and y0 is the initial

value. Function f is used to determine the unknown function y satisfying the ODEs. R
n

is a set of real number and N is a set of positive integers. If the value of x0 and y0 are

given, then equation (1.1) is known as the initial value problems.

Ordinary differential equation also can be solved analytically. However, analytical

approach are difficult to solve stiff ODEs problem. Numerical method is required to

solve this kind of ODEs problem. Therefore, approximation of a solution can be per-

formed when the exact solution of the ODEs problem is unknown.

Runge-Kutta (RK) methods, linear multistep methods and general linear meth-

ods are among the popular numerical methods used nowadays. Butcher mentioned that

Runge-Kutta methods only involve one step method due to the finding by Runge, Heun

and Kutta (Butcher, 2016). One of a simple RK method is the explicit Euler method.

In 1883, Bashforth and Adam invented the linear multistep method (Bashforth,

1883). This method is an extended Euler method whereby the several previous solutions

and derivative values are used in approximating the solution at a particular point.
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In 1996, Butcher proposed general linear methods (Butcher, 2016). It is for-

mulated by Runge-Kutta and linear multistep methods in natural mean. General linear

methods are advantages in terms of the capabilities of having one to large number of

input quantity and stage as its inherent from Runge-Kutta and linear multistep methods.

It is also known as multistage-multivalue methods. Multivalue method is a method that

collect input in vectors forms at the beginning of step and a similar collection is passed

on as an output from the current step and as input into the following step. Multistage

method is a computation in forming the output quantities. In this research, only implicit

RK method will be focused. A brief introduction to Runge-Kutta methods is given in

subsection 1.1.2

In some applications such as in science and engineering, there exist a compli-

cated phenomena that involve very wide time scales for example the problems that in-

volve energy conservation, combustion, density, pressure and temperature conditions

(Faou et al., 2004) and (Kadoura et al., 2014). For mathematicall modelling, stiffness

is a special parameter that can be found in the ODEs system. A system is stiff when

it involves different components that changing rapidly and slowly together. In litera-

ture, some researchers defined stiff problem as a system that covers widely differing

time constant or mathematically is a system with a large Lipschitz constant (Kadoura

et al., 2014). It means that if the partial derivatives ∂ f
∂y

are continuous and bounded, the

Lipschitz constant is defined by the following equation.

L =

∥

∥

∥

∥

∂ f

∂y

∥

∥

∥

∥

> ρ , (1.2)

where ρ is defined by

ρ = ‖λi‖, i = 1,2, ...n. (1.3)

and λ is the eigenvalues of ∂ f
∂y

.
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To understand stiffness, consider the Prothero Robinson (PR) problem which is given in

equation (1.4).

y′ = λ (y−g(x))+ g′(x), y(0) = g(0), (1.4)

where g(x) = sin(x) with exact solution y(x) = g(x) and λ is stiffness parameter. When

λ is large negative number such -1000000, PR problem is considered as a stiff problem

resulting in using a much smaller stepsize to achieve convergence solution and as re-

quested by stability (Gorgey, 2012) and (Butcher, 2016). A detailed explanation on stiff

problems is given in section 1.2

Any type of numerical methods have errors that can spoil the solution or cause

less efficient and less accurate solution. Generally, common error is divided into two

types. Namely local and global errors. Local error is a type of error that is produced

by numerical method in a single step where the value at the beginning of that step

is assumed to be exact. Global error is another type of error that is caused by the

accumulation of local errors after n steps. The accumulation does not means that the

summation of local errors at each n steps but it is bounded by the sum of the bounds on

the local errors (Butcher, 2016). Local errors, ln can be defined by

ln = un(xn)− yn, (1.5)

where, un is the solution curve and yn is exact solution curve. The global error, εn is

given by

εn = y(xn)− yn, (1.6)
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where y(xn) is the solution curve at n steps. Equation (1.6), εn can be rewrite as

εn = y(xn)−un(xn)+ ln, (1.7)

where εn is the actual error after n steps. Hence, there are two components of global

error, one is due to the local errors at the present step and the other is due to the local

errors at the previous steps.

Beside these errors, there is another error known as round-off errors. These er-

rors can destroy the numerical solutions if it is significant in numerical approximation.

Detailed about round-off errors is given in chapter 4 on section 4.1.4. In the next sec-

tion, a brief introduction on Runge-Kutta methods is given.

1.1.2 Introduction to Runge-Kutta Methods

Runge-Kutta methods are developed to find the approximate solution for ordinary dif-

ferential equations. In general, the Runge-Kutta methods can be defined as

Yi = yn−1 + h
s

∑
j=1

ai j f (xn−1 + c jh,Y j), (1.8)

yn = yn−1 + h
s

∑
j=1

b j f (xn−1 + c jh,Y j), (1.9)

where i, j = 1,2, ...,s, s is the number of stage. Yi represents the internal stage values

and yn represent the updated of y at the nth step. a is the coefficient used to find the

internal stages using the linear combinations of the stage derivatives. b represents the

quadrature weights which indicates how the approximation to the solution depends on

the derivatives of the internal stages. c is the vector of abscissas which indicates the

positions within the step of the stage values. The coefficient a and c must hold the

row-sum condition such as given in the Table 1.1. The coefficient in the general equa-
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tion (1.8) and (1.9) can be represented by a partitioned tableau known as the Butcher

tableau (Butcher, 2016) of the form

c A

bT
,

where A is a matrix that consist of the a values of RK methods.

Table 1.1
Row-Sum Condition of Explicit RK and Implicit RK Methods

Explicit RK Implicit RK

∑i−1
j=1 ai j = ci ∑s

j=1 ai j = ci

i, j = 2, ...,s i, j = 1, ...,s

The row-sum condition differentiate the implicit RK (IRK) and the explicit RK

(ERK). The sum over j is goes up to i− 1 for the explicit RK and form the triangular

matrix A contains the coefficient a (Deuflhard and Bornemann, 2012). The classical

Runge-Kutta method of order-4 (RK4) is an example of popular ERK. In the implicit

RK, the sum over j is up to s and the coefficient matrix A is not triangular. Implicit

methods can be divided into several other categories, for example, fully-implicit if ma-

trix A is not lower triangular, semi-implicit if A is lower triangular with at least one

non-zero diagonal element, diagonal implicit if A is lower triangular with all the diago-

nal elements are equal and non-zero diagonally implicit Rune-Kutta (DIRK) and singly

implicit if A is matrix with a single non-zero eigenvalue singly implicit Runge-Kutta

(SIRK). Table 1.2 describe these properties.

Explicit methods are easy to implement as the internal stages can be calculated

sequentially without depending on later stages and are also easy to code. However,

explicit methods cannot be used to solve stiff problems since they have poor stability

behavior (refer to section 1.2). On the other hand, implicit methods are suitable for
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Table 1.2
Butcher Tableau of Explicit RK and Implicit RK Methods

Explicit RK Implicit RK

0

c2 a21

c3 a31 a32

...
...

. . .

cs as1 as2 · · · as,s−1

b1 b2 · · · bs−1 bs

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s

...
...

...
. . .

...

cs as1 as2 · · · as,s

b1 b2 · · · bs

solving stiff problems but are more costly to implement. The implementation of im-

plicit methods is discussed in Chapter 3 on section 3.4.

Some explicit methods are the Euler’s method, explicit midpoint rule, explicit

trapezoidal rule and other higher order explicit methods. The explicit Euler method is

the simplest explicit Runge-Kutta method which is of order-1. The examples of implicit

methods are the implicit Euler method, implicit midpoint rule, implicit trapezoidal rule,

Gauss methods, Lobatto methods and other higher order implicit methods. In fact, only

2-stage (G2) and 3-stage (G3) Gauss methods are involved in this research. Table 1.3

gives the Butcher tableau for the 2-stage and 3-stage Gauss methods.

Table 1.3
Butcher Tableau of G2 and G3 Methods

2-stage Gauss 3-stage Gauss

1
2 −

√
3

6
1
4

1
4 −

√
3

6

1
2 +

√
3

6
1
4 +

√
3

6
1
4

1
2

1
2

1
2 −

√
15

10
5
36

2
9 −

√
15

15
5
36 −

√
15

30

1
2

5
36 +

√
15

24
2
9

5
36 −

√
15

24

1
2 +

√
15

10
5
36 +

√
15

30
2
9 +

√
15

15
5
36

5
18

4
9

5
18
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For the 2-stage Gauss method, the defining equations are given in equation (1.10), (1.11)

and (1.12) while for the 3-stage Gauss method the defining equations are given in equa-

tion (1.13), (1.14) and (1.15).

The stage equations of 2-stage Gauss are defined by

Y1 = yn−1 + h

(

1

4

)

F1 + h

(

1

4
−
√

3

6

)

F2,

Y2 = yn−1 + h

(

1

4
+

√
3

6

)

F1 + h

(

1

4

)

F2. (1.10)

The internal stage derivative equations of the 2-stage Gauss are defined by

F1 = f

(

xn−1 + h

(

1

2
−
√

3

6

)

,Y1

)

,

F2 = f

(

xn−1 + h

(

1

2
+

√
3

6

)

,Y2

)

. (1.11)

The update equation of the 2-stage Gauss is defined by

yn = yn−1 + h

(

1

2

)

F1 + h

(

1

2

)

F2. (1.12)

The equations (1.13) are the stage equations of the 3-stage Gauss method.

Y1 = yn−1 + h

(

5

36

)

F1 + h

(

2

9
−
√

15

15

)

F2 + h

(

5

36
−
√

15

30

)

F3,

Y2 = yn−1 + h

(

5

36
+

√
15

24

)

F1 + h

(

2

9

)

F2 + h

(

5

36
−
√

15

24

)

F3, (1.13)

Y3 = yn−1 + h

(

5

36
+

√
15

30

)

F1 + h

(

2

9
+

√
15

15

)

F2 + h

(

5

36

)

F3.
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The internal stage derivative equations of 3-stage Gauss are defined by

F1 = f

(

xn−1 + h

(

1

2
−
√

15

10

)

,Y1

)

,

F2 = f

(

xn−1 + h

(

1

2

)

,Y2

)

, (1.14)

F3 = f

(

xn−1 + h

(

1

2
+

√
15

10

)

,Y3

)

.

The update equation of 3-stage Gauss is defined by

yn = yn−1 + h

(

5

18

)

F1 + h

(

4

9

)

F2 + h

(

5

18

)

F3. (1.15)

Next, in the following section, the theory of Runge-Kutta methods such as the

elementary weights, elementary differentials and the order conditions are given for the

set of rooted trees (Butcher, 2016).

Let T denote the set of rooted trees up to order-4

T =





















(1.16)

It is important to understand the theory of Runge-Kutta methods such as elemen-

tary differential, elementary weight and order conditions. The elementary differentials

can be derived using chain rule. The following subsection shows the derivation up to

fourth derivative. It also can be represented by the root trees t as defined in equa-

tion (1.16). The tree can be labeled using the coefficients A, bT and c. The tree and

the labels are also represent the order and order conditions of the Runge-Kutta methods

respectively.
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1.1.2.1 Elementary Differentials

The elementary differential are defined using chain rule and are given up to the fourth

derivative as follows

y′ = f (y(x)) = f,

y′′ = f ′(y(x))y′ = f ′(y(x))( f (y(x))) = f′f,

y′′′ = f ′′(y(x))( f (y(x)), f (y(x)))+ f ′(y(x))( f ′(y(x))( f (y(x)))) = f′′(f, f)+ f′ff,

y(4) = f ′′′(y(x))( f (y(x)), f (y(x)), f (y(x)))+ 3 f ′′(y(x))( f (y(x)), f ′(y(x)) f (y(x)))

=+ f ′(y(x)) f ′′(y(x))( f (y(x))( f (y(x))))+ f ′(y(x)) f ′(y(x)) f ′(y(x)) f (y(x)),

= f′′′(f, f, f)+ f′′(f, f′f)+ f′f′′(f, f)+ f′f′f′f.

The expressions f, f′f, . . . are known as the elementary differentials. Elementary

differentials are related to the rooted-trees. Hence, for up to order four, the trees can be

constructed such as

y′ = f

y′′ = f′f

y′′′ = f′′(f, f)

+ f′f′f

y(4) = f′′′(f, f, f)
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+ f′′(f, f′f)

+ f′f′′(f, f)

+ f′f′f′f

1.1.2.2 Elementary Weight and Order Conditions

A tree can be labeled using the coefficients A, bT and c. The root is labelled with bT ,

terminal vertices with c and non-terminal vertices with A. Corresponding to each t is a

real number called the elementary weights and are denoted by Φ(t) (Butcher, 2016).

bT e bT c bT c2 bT Ac bT c3 bT cAc bT Ac2 bT A2c)

f f′f f′′(f, f) f′f′f f′′′(f, f, f) f′′(f, f′f) f′f′′(f, f) f′f′f′f

Comparison of successive term in Taylor series expansions of computed solution

with the exact solutions is used to derived the order conditions of Runge-Kutta meth-

ods. The order conditions are used to investigate the error in carrying out a single step

of a Runge-Kutta method. The exact solution at xn, y(xn) = y(xn−1 + h) to order p is

represented by the Taylor series expansion.

The formal Taylor expansion of the solution at xn + h is given by

y(xn−1 + h) = y(xn−1)+ hy′(xn−1)+
h2

2!
y′′(xn−1)+ . . .+

hp

p!
y(p)(xn−1 +O(hp+1),

= y(xn−1)+
p

∑
k=1

hk

k!
y(k)(xn−1)+O(hp+1).

The Taylor series expansion of the exact solution with y(x0) = y0 has the following
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form (Butcher, 2016):

y(xn−1 + h) = y(xn−1)+
p

∑
k=1

hk

k!
∑

r(t)=k

α(t)F(t)(y(xn−1))+O(hp+1),

= y(xn−1)+
p

∑
k=1

hk

k!
∑

r(t)=k

k

σ(t)γ(t)
F(t)(y(xn−1))+O(hp+1),

= y(xn−1)+
p

∑
k=1

hk ∑
1

1

σ(t)γ(t)
F(t)(y(xn−1))+O(hp+1),

For all t ∈ T ,

y(xn−1 + h) = y(xn−1)+ ∑
t∈T

hr(t) 1

σ(t)γ(t)
F(t)(y(xn−1))+O(hp+1).

The number of ways of labeling with an ordered set α(t) is given by

α(t) =
r(t)!

σ(t)γ(t)
,

and the number of ways labeling with an unordered set β (t) with

β (t) =
r(t)!

σ(t)
.

From α(t) and β (t), it is obtain

yn(h) = ∑
t∈T

α(t)
hr(t)

r(t)!
γ(t)Φ(t)F(t)(y0).

Since

y(x+ h) = ∑
t∈T

α(t)
hr(t)

r(t)!
F(t)(y0).

Then γ(t)Φ(t) = 1. Hence, the order conditions will be as follows (Butcher, 2016)

Order p = Φ(t) =
1

γ(t)
for t : r(t) ≤ p, (1.17)
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for t : r(t) ≤ p, where

r(t) Order of t, it is convenient with number of vertices.
σ(t) Symmetry of t, it is convenient with order of automorphism group.
γ(t) Density of t.
α(t) Number of ways of labeling with an ordered set.
β (t) Number of ways labeling with an unordered set.
F(t)(y0) Elementary differential.

Brief detail of trees up to order-4 is given in Table 1.4. As the order increases, the

number of order conditions increases rapidly and becomes unmanageable. For this rea-

son, simplifying assumptions are introduced to simplify the order conditions (Butcher,

1963). In matrix form they are given by

B(p) : bT ck−1 =
1

k
, k = 1, ..., p, (1.18)

C(q) : Ack−1 =
ck

k
, k = 1, ...,q, (1.19)

D(r) : bTCk−1A =
1

k
[bT −bTCk], k = 1, ...,r, (1.20)

where C = diag(c1, ...,cs). The B(p) condition refers to the bushy trees ( , , etc).

The minimum of p and q when B(p) and C(q) hold are called the stage order.

To understand better about the simplifying assumption, consider Example 1.1.1.

Example 1.1.1

Verify that 2-Stage Gauss Method is Order-4.

2-stage Gauss method has s = 2. So it must satisfy B(4) and C(2).

B(p) : bT ck−1 =
1

k
,

bT e = 1,

bT c =
1

2
,
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bT c2 =
1

3
,

bT c3 =
1

4
.

The computation are given in Appendix A referring to the Maple sheet eq1 till eq4.

C(q) : Ack−1 =
ck

k
,

C(1) : Ae = c,

Ae =







1
4

1
4 −

√
3

6

1
4 +

√
3

6
1
4













1

1






= c,

=







1
2 −

√
3

6

1
2 +

√
3

6






.

C(2) : Ac =
c2

2
,

Ac =







1
4

1
4 −

√
3

6

1
4 +

√
3

6
1
4













1
2 −

√
3

6

1
2 +

√
3

6






,

=







1
6 −

√
3

12

1
6 +

√
3

12






,

c2

2
=







( 1
2−

√
3

6 )2

2

( 1
2+

√
3

6 )2

2






,

=







1
6 −

√
3

12

1
6 +

√
3

12






.
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Table 1.4
Elementary Weights and Order Conditions Up To Order-4 (Butcher and Hojjati, 2005)

r(t) t Φ(t) Order conditions

1 ∑s
i=1 bi = 1 bT e = 1

2 ∑s
i=1 bici =

1
2 bT c = 1

2

3 ∑s
i=1 bic

2
i =

1
3 bT c2 = 1

3

3 ∑s
i=1 biai jc j =

1
6 bT Ac = 1

6

4 ∑s
i=1 bic

3
i =

1
4 bT c3 = 1

4

4 ∑s
i=1 biciai jc j =

1
8 bT (cAc) = 1

8

4 ∑s
i=1 biai jc

2
j =

1
12 bT Ac2 = 1

12

4 ∑s
i=1 biai ja jkck =

1
24 bT A2c = 1

24

Several IRK methods will be used in solving several ODEs problems. Some

ODEs problems have the equation of exact solution. The difference between the approx-

imate solution and the exact solution is called the error of approximation. Normally, the

efficiency of the methods can be represented by the graph of the error versus the CPU

time. In addition, the efficiency can be improved by proper method of implementation.

Thus, several implementations were tested in solving several ODEs problems including

chemistry and physics problems.

In many cases, ordinary differential equation plays an important rule in solving

a simple linear equation. Several analytical methods can be used to solve the equations

such as separable variable, factorisation, substitution and other methods. However, an-

alytical solution for nonlinear equations are always hard to solve. On the other hand,
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several type of numerical methods mentioned earlier is also quite important since it can

solve for an approximate solution of the nonlinear equations whenever the exact solu-

tion is unknown. The combination of a good implementation and very small error can

result a good approximate solution which is very close to the exact solution. The explicit

and implicit Runge-Kutta methods are able to produce a good approximate solution for

certain problems depend on the nature of equations.

The explicit and implicit Runge-Kutta methods are differ in term of the equa-

tions, coefficient and steps. Although explicit methods are easier to implement com-

pared to the implicit methods, the methods need more time to obtain the approximate

solution (Cash, 1975). The implementation is not significant when the time taken by

explicit methods are more than double the time consumed by the implicit methods.

The difference of processing time occurs because of the internal stage equations of

the explicit methods depend on each other. The second stage equation need the value

of the first stage equation and so on. On the other hand, for implicit method, every

internal stage equations are independent which contribute to the shorten processing

time. Besides, the explicit Runge-Kutta is less stability compare to implicit Runge-

Kutta (Shampine, 1984).

1.2 Problem Statement

The explicit method is very easy to implementation as the internal stages can be cal-

culated directly without depending on the later stages. Beside that, this method also

incurs a cheap implementation cost. The stability of the explicit methods is classified

as not A-stable (Iserles, 2009). Thus, the explicit methods cannot be used to solve stiff

problems compared to the implicit methods as they have poor stability (Sanderse and

Koren, 2012).
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To clarify the property of stiffness, let use explicit Euler (EE) and implicit Euler

(IE) to solve the PR problem. The Prothero-Robinson (PR) problem is consider stiff at

-1000000. Figure 1.1 shows the accuracy of the EE and IE methods for the Prothero-

Robinson problem with λ equal to -1 and -1000000 and stepsize h=0.5. It is observed

that when λ=-1, EE and IE can solve stiff PR problem with good accuracy as shown in

the Figure 1.1(a) and Figure 1.1(b).
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(a) h=0.5, λ = −1
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(b) h=0.5, λ = −1
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(c) h=0.5, λ = −1000000
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(d) h=0.5, λ = −1000000

Figure 1.1. The Accuracy of Explicit Euler and Implicit Euler for Nonstiff and Stiff
Prothero Robinson Problem

However, when the value of λ=-1000000, Figure 1.1(c) shows the accuracy of

EE was destroyed means the approximation was not efficient but IE method maintains

with good accuracy. The destruction of the accuracy is because of the problem behave

with the large value of stiffness parameter λ . Since λ is a large negative value, the first

terms decay very quickly, leaving y(x) = g(x). Therefore, a problem is stiff if the ability

to find reliable numerical approximations to its solution hinges on stability rather than
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accuracy alone, and when some components of the solution decay much more rapidly

than others. For example, the explicit Euler is not A-stable or even A(α) stable for any

α < π
2 . This is true for all explicit methods since none of the explicit can be A(α)-stable.

Therefore, none of the explicit methods are suitable for solving stiff problems.

A detailed discussion on stiffness is given by Shampine and Gear (1979). They

discuss ways of determining whether equations are stiff and the importance of stiff equa-

tions. Furthermore they comment that if the system is known to be very stable, the

governing equations are likely to be stiff if some variables are known to change on time

scales very different from others. Further reading on A-stability can be found in Butcher

(2008).

The implicit methods play an important role in solving a stiff problems and

differential algebraic equations. However, the implicit methods are expensive and dif-

ficult to implement as the stage-by-stage scheme is no longer available and need to be

replaced by an iterative computation. Even it is difficult to implement, the implicit

methods gives a fewer stages for the same order and better stability if compared to the

explicit methods. Due to this better stability, the implicit methods are widely used in

the applications of physics, chemistry and medical problems.

To construct a good method for solving stiff problems, one need to consider three

important criteria such as high accuracy, good stability and a low implementation cost.

Gauss methods have good stability as well as high accuracy, but the Gauss methods are

very expensive to implement because of the implicit structure of their matrix’s coeffi-

cients. In addition to that, the Gauss methods have different and complex eigenvalues

which makes the implementation a little bit tricky.
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For the family of Gauss methods, a group of researchers from Spain suggested

a new implementation scheme to solve stiff problems but their investigations did not

employed compensated summation (González-Pinto et al., 1994). Although some re-

searchers have proposed a new implementation schemes of higher order IRK methods

that minimize the computational cost, the modifications does not involve compensated

summation (refer to section 4.2.3). Besides, there is also researcher claimed new ef-

ficient implementation based on Gauss methods that is proposed in 2014 but it solved

linear and nonlinear ODEs for nonstiff problems (Agam and Yahaya, 2014). Therefore,

in this research it will be of interest to use simplified Newton and compensated sum-

mation techniques into some implementation schemes proposed by some researchers

such as the standard implementation scheme by Hairer and Wanner (1999), Cooper and

Butcher (1983), González-Pinto et al. (1994) and González-Pinto et al. (1995) in solv-

ing some real life problems.

1.3 Research Objectives

The objectives of this research are

1. to study the effect of round-off errors for 2-stage and 3-stage Gauss methods in

solving stiff problems.

2. to investigate the implementation of simplified Newton and full Newton with and

without compensated summation.

3. to compare the implementation ideas from several researchers such as Cooper

and Butcher (1983), González-Pinto et al. (1994), González-Pinto et al. (1995)

and standard method by Hairer and Wanner (1999) for the 2-stage and 3-stage

Gauss methods.

4. to find the most efficient implementation strategy for the 2-stage and 3-stage

Gauss methods in solving stiff problems.
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1.4 Research Questions

In this research, several questions of interest are wished to attempt. Some of these are

1. How are the effect of round-off errors in solving stiff problems by the 2-stage and

3-stage Gauss methods?

2. How are the implementation of simplified Newton and full Newton with and with-

out compensated summation are done?

3. What is the difference between the implementation ideas by Cooper and Butcher

(1983), González-Pinto et al. (1994), González-Pinto et al. (1995) and the stan-

dard method?

4. What is the most efficient implementation strategy for solving stiff problems?

1.5 Significant of Research

At the end of the research, it is hoped that

1. The computational cost for the implicit methods can be reduced by using the most

efficient implementation strategy suggested.

2. The most efficient implementation strategy can be identified for the Gauss meth-

ods in solving stiff problems.

3. Researchers have broad knowledge on the implementation techniques for implicit

Runge-Kutta methods.

4. Researchers can start using implicit Runge-Kutta methods which is proven to be

more reliable and efficient in solving real life problems and widen the applications

to real life problems.

5. The round-off errors can be reduced by using compensated summation technique.
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1.6 Scope of Study

This research focuses on the implicit Runge-Kutta methods. The implicit methods that

will be emphasized in this research are the 2-stage and 3-stage Gauss methods. The

construction of the 2-stage and 3-stage Gauss methods are done using Maple 2016. Pre-

liminary study is about understanding the ideas of implementation for implicit methods

recommended by various researchers including the standard/common implementation

method. The first stage in this research is to perform test problems using Prothero

Robinson and Kaps problem. The best implementation strategies will be selected to

solve real life problems in the numerical experiment. The numerical experiments are

done on real life problems such as Kepler, Oregonator, Van der Pol, HIRES and Brus-

selator. All the numerical experiments are performed using MATLAB 2016 software.

1.7 Thesis Outline

There are 6 chapters in this thesis.

Chapter 1 is about the Introduction. This chapter include the background of this

study, problem statement, objectives, significant of research and scope of this research.

Chapter 2 is the literature review. In this chapter, some history of implementation

of Runge-Kutta methods, the implementation of 2-stage and 3-stage Gauss methods.

In Chapter 3, discussion on the construction of 2-stage and 3-stage Gauss meth-

ods, the implementation of implicit Runge-Kutta methods by other researchers, imple-

mentation of 2-stage and 3-stage Gauss methods in MATLAB.
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Chapter 4 gives the test problems on the Prothero Robinson and Kaps problems.

The best implementation of every strategies in the test problems was chosen for numer-

ical experiment in solving real life problems in Chapter 5. The numerical results are

given by the efficiency diagrams. The efficiency is measured using computational time

versus error with certain stepsize.

Chapter 5 gives the numerical analysis of this research. This chapter give all

the numerical results for real-life problems. The numerical results are also given by the

efficiency diagrams.

Lastly, Chapter 6 gives the conclusions and the future work.




