
VISUALISED WORKED EXAMPLES FOR
LEARNING INTRODUCTORY

PROGRAMMING AT
TERTIARY LEVEL

MARIAM NAINAN A/P T. K. NAINAN

SULTAN IDRIS EDUCATION UNIVERSITY

2021

VISUALISED WORKED EXAMPLES FOR LEARNING
INTRODUCTORY PROGRAMMING AT

TERTIARY LEVEL

MARIAM NAINAN A/P T. K. NAINAN

THESIS PRESENTED TO QUALIFY FOR A
DOCTOR OF PHILOSOPHY

FACULTY OF ART, COMPUTING, AND CREATIVE INDUSTRY
SULTAN IDRIS EDUCATION UNIVERSITY

2021

iv

ACKNOWLEDGEMENT

This study was made possible with the support of the following: supervisor Associate
Professor Dr. Balamuralithara A/L Balakrishnan, who gave guidance, support, and
encouragement throughout the process; co-supervisor Professor Dr. Ahmad Zamzuri
Bin Mohamad Ali as well as other academic staff of Faculty of Art, Computing and
Creative Industry, who gave valuable input; friends who were supportive in different
ways; family members who gave their prayerful support; my parents who gave loving,
prayerful, and sacrificial support; and my God, Heavenly Father, and Saviour, who
sustained, guided, and strengthened me.

v

ABSTRACT

The objectives of this study were to design and develop visualised worked examples
for introductory programming at tertiary level, evaluate their effectiveness compared
to subgoal labelled worked examples, explore students’ engagements with visualised
worked examples, and explore students’ preferences and perceptions of the two types
of worked examples. Quasi-experiment was conducted with 87, 79, and 78 students in
three sessions in an introductory programming course in a foundation programme at a
university in Selangor. Test data were collected and analysed using analysis of
covariance and chi square tests. Students’ engagements with visualised worked
examples were observed and analysed qualitatively. Another intervention was
conducted with 38 students in undergraduate programmes from the same university,
who were presented both types of worked examples. Questionnaire data were
collected and analysed quantitatively and qualitatively. The findings of this study
showed no significant differences in effectiveness for knowledge and skill
development but, for programming language and patterns knowledge development,
pattern applications were significantly associated with type of worked examples (χ2(2)
= 16.48, p < .001; χ2(2) = 11.18, p = .004; χ2(1) = 5.07, p = .024). Also, students were
engaged with visualised worked examples. Additionally, 73.7% of the students
preferred visualised worked examples and students perceived that visualised worked
examples supported their understanding in various aspects. The conclusion was that
visualised worked examples were able to significantly reduce the likelihood of wrong
or omitted program statements in students’ pattern applications. Also, students were
engaged with visualised worked examples behaviourally, and by implication,
cognitively. In addition, visualised worked examples were preferred by more students
with positive perceptions. The implications were that this study extended research on
worked example design, employing concepts of attention cueing and learner control,
for programming education and provided empirical evidence of worked examples
usage for programming education practice.

vi

CONTOH-CONTOH KERJA DIVISUALISASI UNTUK PEMBELAJARAN
PENGATURCARAAN PENGENALAN DI PERINGKAT

PENGAJIAN TINGGI

ABSTRAK

Objektif-objektif kajian ini adalah untuk merancang dan mengembangkan contoh-
contoh kerja divisualisasi untuk pengaturcaraan pengenalan di peringkat pengajian
tinggi, menilai keberkesanannya berbanding dengan contoh-contoh kerja dilabel
matlamat kecil, meneroka penglibatan pelajar dengan contoh-contoh kerja
divisualisasi, dan meneroka pilihan dan persepsi pelajar terhadap dua jenis contoh
kerja. Kuasi-eksperimen dilakukan dengan 87, 79, dan 78 orang pelajar dalam tiga
sesi dalam kursus pengaturcaraan pengenalan dalam program asasi di sebuah
universiti di Selangor. Data ujian dikumpulkan dan dianalisis mengguna analisis
kovarians dan ujian chi square. Penglibatan para pelajar dengan contoh-contoh kerja
divisualisasi diperhatikan dan dianalisis secara kualitatif. Intervensi tambahan
dilakukan dengan 38 orang pelajar dalam program sarjana muda dari universiti yang
sama, yang diberikan kedua-dua jenis contoh kerja. Data soal selidik dikumpulkan
dan dianalisis secara kuantitatif dan kualitatif. Dapatan kajian ini menunjukkan tiada
perbezaan yang signifikan dalam keberkesanan terhadap pengembangan pengetahuan
dan kemahiran tetapi, terhadap pengembangan pengetahuan bahasa dan corak-corak
pengaturcaraan, aplikasi corak berhubung secara signifikan dengan jenis contoh kerja
(χ2(2) = 16.48, p < .001; χ2(2) = 11.18, p = .004; χ2(1) = 5.07, p = .024). Juga, para
pelajar terlibat dengan contoh-contoh kerja divisualisasi. Tambahan pula, 73.7%
daripada para pelajar suka contoh kerja divisualisasi dan pelajar-pelajar berpendapat
bahawa contoh kerja divisualisasi menyokong pemahaman mereka dalam pelbagai
aspek. Kesimpulannya ialah contoh kerja divisualisasi dapat mengurangkan dengan
signifikan kemungkinan penyata-penyata aturcara yang salah diguna atau tertinggal
dalam aplikasi corak para pelajar. Juga, pelajar-pelajar terlibat dengan contoh kerja
divisualisasi secara tingkah laku, dan dengan implikasinya, secara kognitif. Tambahan
pula, contoh kerja divisualisasi disukai oleh lebih ramai pelajar dengan persepsi-
persepsi positif. Implikasi-implikasi adalah bahawa kajian ini memperluaskan
penyelidikan mengenai reka bentuk contoh kerja, yang mengguna konsep petunjuk
perhatian dan kawalan pelajar, untuk pendidikan pengaturcaraan dan memberi bukti
empirikal bagi penggunaan contoh-contoh kerja untuk amalan pendidikan
pengaturcaraan.

vii

CONTENTS

 Page

DECLARATION OF ORIGINAL WORK ii

DECLARATION OF THESIS iii

ACKNOWLEDGEMENT iv

ABSTRACT v

ABSTRAK vi

CONTENTS vii

LIST OF TABLES xvii

LIST OF FIGURES xxii

LIST OF ABBREVIATIONS xxiv

LIST OF APPENDICES xxv

CHAPTER 1 INTRODUCTION

1.1 Introduction 1

1.2 Background to the Study 3

1.3 Problem Statement 10

1.4 Proposed Worked Example Design 15

1.5 Research Objectives 18

1.6 Research Questions and Research Design 19

1.7 Theoretical Framework 21

1.7.1 Example-Based Learning 22

1.7.2 Cognitive Load Theory 22

1.7.3 Schema Theory 23

viii

1.7.4 Goals and Patterns Knowledge 23

1.7.5 Block Model 24

1.7.6 Problem Solving Process 24

1.7.7 Generative Learning Theory 25

1.7.8 Attention Cueing 25

1.7.9 Learner Control 26

1.8 Operational Definitions 27

1.8.1 Introductory Programming Knowledge and Skill 27

1.8.1.1 Development of Knowledge and Skill for 27
 Problem Solving

1.8.1.2 Development of Knowledge of Language, 28
 Goals, and Patterns

1.8.2 Example-Based Learning 28

1.8.3 Worked Example 29

1.8.4 Labelled Worked Example 29

1.8.5 Attention Cueing 30

1.8.6 Learner Control 30

1.8.7 Visualised Worked Example 31

1.8.8 Engagement with Worked Examples 31

1.9 Scope of the Study 32

1.10 Limitations of the Study 34

1.11 Significance of the Study 35

1.12 Summary and Organisation of the Thesis 37

CHAPTER 2 LITERATURE REVIEW AND CONCEPTUAL MODEL

2.1 Introduction 39

2.2 Issues and Challenges of Learning and Teaching Programming 40

ix

2.2.1 Relatively High Failure Rates in Introductory 40
Programming Courses

2.2.2 Lack of Programming Competency after Completing 41
Course

2.2.3 Issues and Challenges of Program Comprehension Ability 42

 2.2.4 Issues and Challenges of Program Creation Ability 47

 2.2.5 Issues and Challenges of Problem Solving Ability 48

 2.2.6 Summary of Knowledge and Skill Development 52
 Requirements

2.3 Programming Knowledge and Skill 52

2.3.1 Block Model for Program Comprehension 53

2.3.2 Programming Goals and Patterns Knowledge 55

2.3.3 Human Cognitive Architecture and Schema Theory 56

2.3.4 Problem Solving Process 59

2.3.5 Introductory Programming Knowledge and Skill 60

2.4 Review of Existing Approaches to Address Identified Issues 62

and Challenges

2.4.1 Development of Knowledge of Programming Language 63
 and Concepts

2.4.2 Development of Goals-Patterns Knowledge and 63

Problem Solving Ability

2.5 Development of Programming Knowledge and Skill in 67
Effective Manner

 2.5.1 Example-Based Learning (Learning from Worked 68
Examples)

2.5.2 Cognitive Load Theory 70

2.5.3 Existing Research on Worked Examples for Introductory 71
 Programming

x

2.6 Development of Knowledge of Programming Language and 75
 Concepts

2.7 Development of Knowledge of Goals and Patterns 76

2.7.1 Labelled Worked Example Design and Subgoal Learning 80

2.7.2 Existing Research on Labelled Worked Examples for 83
 Programming

2.7.3 Pattern-Oriented Example Set 86

2.8 Development of Problem Solving Skill 88

2.8.1 Problem Analysis and Subproblems 89

2.9 Technological Support 92

2.9.1 Generative Learning Theory 93

2.9.2 Attention Cueing 94

2.9.3 Learner Control, Interactivity, and Engagement 99

2.9.4 Control-Structure Boundary Highlighting 104

2.10 Conceptual Model 105

2.10.1 Example-Based Learning (from Section 2.5.1) 106

2.10.2 Analysis and Subproblems (from Section 2.8.1) 107

2.10.3 Pattern-Oriented Example Set (from Section 2.7.3) 109

2.10.4 Attention Cueing (from Section 2.9.2) 110

2.10.5 Learner Control (from Section 2.9.3) 111

2.10.6 Control-Structure Boundary Highlighting (from 115
Section 2.9.4)

2.10.7 Engagement with Worked Examples (from Section 2.9.3) 116

2.11 Assessing Students’ Development 119

2.11.1 Assessing Development of Knowledge and Skill for 119
 Problem Solving

xi

2.11.2 Assessing Development of Knowledge of Language, 121
 Goals, and Patterns

2.12 Summary 123

CHAPTER 3 METHODOLOGY

3.1 Introduction 124

3.2 Perspectives on Knowledge and Knowing from Philosophy 125

3.3 Research Methodology 125

3.3.1 Research Approach 126

3.3.2 Overall Research Design and Justification 126

3.3.2.1 Design, Development, and Validation 127

3.3.2.2 Evaluation 128

3.3.2.3 Exploration 130

3.3.2.4 Research Design Flow 133

3.3.3 Target Population 136

3.4 Study 1 – Quasi-Experiment with Pretests, Posttests, and 136
Observation

3.4.1 Sampling for Study 1 137

3.4.2 Selected Introductory Programming Course 140

3.4.3 Selection of Topics for Learning Materials and Tests 142

3.4.4 Pretests and Posttests 143

3.4.5 Procedure 147

3.4.6 Worked Examples and Test Items Development and 150
 Expert Validation

3.4.6.1 Expert Validation of Worked Examples 151

3.4.6.2 Expert Validation of Test Items 157

3.4.7 Pilot Study 162

xii

3.4.8 Main Study 170

3.4.9 Worked Examples Used for Study 1 171

3.4.10 Pretests and Posttests Scoring and Interrater Reliability 172

3.4.11 Quantative Analysis of Tests Data to Address RQ2 178

3.4.12 Qualitative Analysis of Tests Data to Address RQ3 183

3.4.13 Observation Data Analysis to Address RQ4 191

3.5 Study 2 – Intervention Study with Questionnaire 199

3.5.1 Study Design 199

3.5.2 Sampling for Study 2 200

3.5.3 Selected Introductory Programming Course 204

3.5.4 Selected Topic 204

3.5.5 Procedure 205

3.5.6 Questionnaire Items 207

3.5.7 Expert Validation of Questionnaire Items 213

3.5.8 Questionnaire Data Analysis 214

3.5.8.1 Quantitative Data Analysis to Address RQ5 215

3.5.8.2 Qualitative Data Analysis to Address RQ6 218

3.6 Ethical Approval and Student Consent 222

3.7 Summary 223

CHAPTER 4 DESIGN, DEVELOPMENT, AND VALIDATION

4.1 Introduction 225

4.2 Design 226

4.2.1 Example-Based Learning 226

4.2.2 Analysis and Subproblems 226

4.2.3 Pattern-Oriented Example Set 231

xiii

4.2.4 Attention Cueing 236

4.2.5 Learner Control 240

4.2.6 Control-Structure Boundary Highlighting 241

4.2.7 Design Layout 242

4.3 Development 243

4.4 Issues Encountered During Development 247

4.5 Expert Validation of Design and Development 249

4.6 Summary 252

CHAPTER 5 FINDINGS

5.1 Introduction 254

5.2 Study 1: Problem Solving Performance 255

5.2.1 Intervention Session 1 256

5.2.2 Intervention Session 2 263

5.2.3 Intervention Session 3 268

5.2.4 Summary of Results on Problem Solving Performance 272

5.3 Study 1: Knowledge of Programming Language, Goals, and 273
Patterns

5.3.1 Input Pattern Component 274

5.3.2 Selection Pattern Component 275

5.3.3 Output Pattern Component 278

5.3.4 Computation Pattern Component 280

5.3.5 Summary of Results on Knowledge of Language, Goals, 283
and Patterns

5.4 Study 1: Engagement with Visualised Worked Examples 283

5.4.1 Triggered Highlighting for All Worked Examples, All 286
 Subproblems

xiv

5.4.2 Triggered Highlighting for All Worked Examples, Some 287
 Subproblems

5.4.3 Triggered Highlighting for Two Worked Examples, All 288
 Subproblems

5.4.4 Triggered Highlighting for Two Worked Examples, Some 288
 Subproblems

5.4.5 Triggered Highlighting for One Worked Example, All 288
 Subproblems

5.4.6 Triggered Highlighting for One Worked Example, Some 289
 Subproblems

5.4.7 Did Not Trigger Highlighting 289

5.4.8 Highlight Triggering Behaviour and Problem Solving 289
Performance

5.4.9 Navigation through Set of Worked Examples 290

5.4.10 Navigation Behaviour and Problem Solving Performance 291

5.5 Study 2: Preferences for Worked Example Designs 292

5.6 Study 2: Perceptions of Worked Example Designs 303

5.6.1 Perceptions of Visualised Worked Example Design 306

5.6.2 Perceptions of Labelled Worked Example Design 310

5.7 Summary 311

CHAPTER 6 DISCUSSION

6.1 Introduction 312

6.2 Study 1: Problem Solving Performance 313

6.3 Study 1: Programming Language, Goals, and Patterns Knowledge 318

6.4 Study 1: Limitations and Threats to Validity of Quasi-Experiment 325

6.5 Study 1: Engagement with Visualised Worked Examples 329

6.6 Study 1: Limitations of the Observation 335

6.7 Study 2: Preferences of Worked Example Design 336

xv

6.8 Study 2: Perceptions of Worked Example Design 337

6.8.1 Visualised Worked Example Design 337

6.8.2 Labelled Worked Example Design 344

6.8.3 Perceptions of Visualised Worked Examples and Design 345
 Features

6.9 Study 2: Limitations and Threats to Validity 346

6.10 Overall Discussion 347

6.11 Summary 353

CHAPTER 7 CONCLUSIONS, CONTRIBUTIONS, AND FUTURE WORK

7.1 Introduction 354

7.2 Conclusions 355

7.2.1 Research Objective 1 and RQ1 355

7.2.2 Research Objective 2 and RQ2 356

7.2.3 Research Objective 3 and RQ3 357

7.2.4 Research Objective 4 and RQ4 357

7.2.5 Research Objective 5 and RQ5 359

7.2.6 Research Objective 6 and RQ6 359

7.3 Contributions 360

7.3.1 Worked Example Design Research 360

7.3.2 Programming Education Research 361

7.3.3 Attention Cueing and Learner Control Research 362

7.3.4 Research Implications for Programming Education 364
Practice

7.4 Future Work 366

7.4.1 Visualised Worked Example Design 366

7.4.2 Replication Studies 368

xvi

 7.5 Summary 369

REFERENCES 371

APPENDICES

xvii

LIST OF TABLES

Table No. Page

1.1 Worked Example with Subgoal Labels (as Comments) in Bold 11

2.1 Visualised Worked Example Components, Expected Student Actions 117
and Potential Learning Benefits

3.1 Information on Practical Classes Involved in Study 1 139

3.2 Actual Number of Students for Each Intervention Session in Study 1 140

3.3 Patterns Covered in the Practical Class Sessions 141

3.4 Intervention Sessions, Patterns Covered, and Practical Class Sessions 143
in Which They were Conducted

3.5 Patterns Covered in Pretest Items, Posttest Items, and Worked 145
Examples for Session 1

3.6 Patterns Covered in Pretest Items, Posttest Items, and Worked 145
Examples for Session 2

3.7 Patterns Covered in Pretest Items, Posttest Items, and Worked 146
Examples for Session 3

3.8 Example of Program Statements and Corresponding Solution Plan 147

3.9 Information on Subject Matter Experts 151

3.10 Selection Options for Worked Examples and Test Items Evaluation 152

3.11 Expert Evaluation of Worked Examples for Session 1 153

3.12 Expert Evaluation of Worked Examples for Session 2 154

3.13 Expert Evaluation of Worked Examples for Session 3 155

3.14 Expert Evaluation of Test Items for Session 1 158

3.15 Expert Evaluation of Test Items for Session 2 159

3.16 Expert Evaluation of Test Items for Session 3 160

3.17 Demographic Information of Students in Pilot Study 163

xviii

3.18 Worked Example Patterns, Solution Plans Illustrated, and Actions 164
Taken

3.19 Pretest and Posttest Item Patterns, Solution Plans Expected, and 165
Actions Taken

3.20 Maximum, Mean, Lowest, and Highest Scores for Selected Pretest 168
and Posttest Items

3.21 Minimum, Maximum, and Average Times for Pilot Study Sessions 169

3.22 Sample Pretest Item with Solution, Solution Plan, and Points Allocated 173

3.23 Sample Posttest Item with Solution, Solution Plan, and Points Allocated 174

3.24 Number of Items and Maximum Scores for Tests for All Sessions 175

3.25 Scoring Protocol for Pretest Item 1 for Session 1 176

3.26 Coding Table for Analysis of Responses to Posttest Items for Session 1 185

3.27 Percentage of Agreement for Coding of Patterns Components for 187
Posttest Items in Session 1

3.28 Sample Coding Sheet for Coding of Observed Events 197

3.29 Information on Practical Classes Involved in Study 2 203

3.30 Actual Number of Students Involved in Study 2 203

3.31 List of Items Presented in Questionnaire and Original Items Where 211
Applicable

3.32 Information on Education and Technology Experts 213

3.33 Expert Evaluation of Questionnaire Items for Study 2 214

3.34 Research Questions and Research, Data Collection, and Analysis 224
 Methods

4.1 Comparison Between Labelled and Visualised Worked Example 228

Designs (Sample 1)

4.2 Comparison Between Labelled and Visualised Worked Example 230
Designs (Sample 2)

4.3 Comparison Between Labelled and Visualised Worked Example 233
Designs (Sample 3)

xix

4.4 Highlighting of Selected Subproblem and Related Program 237
Statements (Sample 1)

4.5 Highlighting of Selected Subproblem and Related Program 238

Statements (Sample 2)

4.6 Highlighting of Selected Subproblem and Related Program 239
Statements (Sample 3)

4.7 Highlighting of Selected Subproblem and Related Problem 240
Specification Elements

4.8 Control-Structure Boundary Highlighting When Statements 241
in Structure Highlighted

4.9 Four-Section Design Layout of Visualised Worked Example 242
(with Sample Content)

4.10 Expert Evaluation of Visualised Worked Example Design and 251
 Development

4.11 Comments of Experts on Visualised Worked Example Design and 252
 Development

5.1 Demographic Information for Session 1 256

5.2 Descriptive Statistics on Time Taken to Complete Session 1 257

5.3 Number of Invalid Cases and their Posttest Scores Obtained for 258
Session 1

5.4 Demographic Information for Valid Cases for Session 1 258

5.5 Descriptive Statistics for Pretest Scores for Session 1 259

5.6 Mann-Whitney U Test Result for Pretest Scores for Session 1 260

5.7 Descriptive Statistics for Posttest Scores for Session 1 261

5.8 ANCOVA Test Result for Posttest Scores for Session 1 263

5.9 Demographic Information for Session 2 263

5.10 Descriptive Statistics on Time Taken to Complete Session 2 264

5.11 Descriptive Statistics for Pretest Scores for Session 2 264

5.12 Mann-Whitney U Test Result for Pretest Scores for Session 2 265

xx

5.13 Descriptive Statistics for Posttest Scores for Session 2 266

5.14 ANCOVA Test Result for Posttest Scores for Session 2 267

5.15 Demographic Information for Session 3 268

5.16 Descriptive Statistics on Time Taken to Complete Session 3 268

5.17 Descriptive Statistics for Pretest Scores for Session 3 269

5.18 Mann-Whitney U Test Result for Pretest Scores for Session 3 269

5.19 Descriptive Statistics for Posttest Scores for Session 3 270

5.20 ANCOVA Test Result for Posttest Scores for Session 3 272

5.21 Contingency Table for Input Pattern Component with Column 274
Percentages

5.22 Contingency Table for Selection Pattern Component with Column 276
Percentages

5.23 Standardised Residuals for Selection Pattern Component 277

5.24 Contingency Table for Output Pattern Component with Column 278
Percentages

5.25 Standardised Residuals for Output Pattern Component 279

5.26 Contingency Table for Computation Pattern Component with Column 281
Percentages

5.27 Contingency Table for Computation Pattern Component as a 2 x 2 Table 281

5.28 Standardised Residuals for the Computation Pattern Component 282

5.29 Frequencies of Highlight Triggering Patterns Used by Groups 290

5.30 Frequencies of Navigation Patterns Used 291

5.31 Frequencies of Navigation Patterns Used by Groups 292

5.32 Frequency Distribution of Worked Example Design Choices 293
for Each Item (with Row Percentages)

5.33 Contingency Table for Item 1 by Group with Column Percentages 295

5.34 Contingency Table for Item 2 by Group with Column Percentages 296

xxi

5.35 Contingency Table for Item 3 by Group with Column Percentages 297

5.36 Contingency Table for Item 4 by Group with Column Percentages 298

5.37 Contingency Table for Item 1 by Prior Programming Knowledge with 299

Column Percentages

5.38 Contingency Table for Item 2 by Prior Programming Knowledge with 300
Column Percentages

5.39 Contingency Table for Item 3 by Prior Programming Knowledge with 301
Column Percentages

5.40 Contingency Table for Item 4 by Prior Programming Knowledge with 302

Column Percentages

5.41 Main Categories and Subcategories with Frequencies by Worked 304
Example Design

6.1 Grouping of Positive Perceptions on Visualised Worked Example 343
Design

xxii

LIST OF FIGURES

Figure No. Page

1.1 Conceptual Model of Current Study 17

1.2 Theoretical Framework for Current Study 21

2.1 Introductory Programming Competency Components of Current Study 62

2.2 The Integrated Model of Multimedia Interactivity 101

2.3 Learner-Controlled Attention Cueing 112

2.4 Conceptual Model of Visualised Worked Example 118

2.5 Illustration of Scoring of a Test Item Response for Quantitative Analysis 120

2.6 Illustration of Coding of a Test Item Response for Qualitative Analysis 122

3.1 Research Questions and Selected Methods of Current Study 132

3.2 Main Research Design Stages for Current Study 133

3.3 Research Methods and Data Collection and Analysis Methods 135

3.4 Sequence of Activities for Students in Intervention Session During 148
Practical Class Session

3.5 Sample of Labelled Worked Example 171

3.6 Sample of Visualised Worked Example 172

3.7 Web Pages of Interest and Movements Allowed Between Them 193

3.8 Screenshot of Active Presenter for Viewing Interaction Videos 194

3.9 Study Design for Learning Activity for Group A and Group B 200

4.1 Sample Visualised Worked Example Web Page with Highlighting 244

4.2 Visualised Worked Example Web Page Corresponding to Table 4.1 246

4.3 Visualised Worked Example Web Page Corresponding to Table 4.2 246

4.4 Student-Visualised Worked Example Learning Environment Interaction 247

xxiii

5.1 Boxplots for Posttest Scores for Session 1 261

5.2 Boxplots for Posttest Scores for Session 2 266

5.3 Boxplots for Posttest Scores for Session 3 271

5.4 Classification of Behaviour Patterns for Highlight Triggering 286

xxiv

LIST OF ABBREVIATIONS

ANCOVA Analysis of Covariance

CSS Cascading Style Sheets

En Expert n

HTML Hyper Text Markup Language

RQn Research Question n

Sn Student n

SPn Subproblem n

SPSS Statistical Package for the Social Sciences

WEn Worked Example n

xxv

LIST OF APPENDICES

A Evaluation of Worked Examples Form

B Evaluation of Assessment Questions Form

C Evaluation of Questionnaire Items Form

D Questionnaire Given to Students

E Evaluation of Design and Development Form

F Coding Frame

G Panel of Experts

CHAPTER 1

INTRODUCTION

1.1 Introduction

Programming education is mandatory for students in universities who are enrolled in

computing-related undergraduate degree programmes, such as computer science or

software engineering. Students in such programmes typically enrol in an introductory

programming course in their first year of study, and subsequently, advanced

programming courses. Moreover, nowadays, the use of information and

communication technology is so widespread that even science and engineering

undergraduate degree students have to learn programming as well. Such students are

usually required to take at least an introductory programming course (Malhotra &

Anand, 2019). Furthermore, with the advancement and importance of Industry 4.0,

which has information and communication technology as part of its foundation,

2

programming education is becoming increasingly important (dos Santos et al., 2018).

Hence, it is common for students in non-computing-related undergraduate degree

programmes to enrol in introductory programming courses. In some universities,

foundation programmes leading to an undergraduate degree, may also include an

introductory programming course in their curriculum. Additionally, introductory

programming courses may be taught at diploma level in colleges.

But, learning introductory programming is challenging for students (Kunkle &

Allen, 2016; Lahtinen et al., 2005; Qian & Lehman, 2017). Although diverse methods

and tools for learning and teaching introductory programming have been researched

and utilised, issues and challenges still persists (Luxton-Reilly et al., 2018; Medeiros

et al., 2018). Being the first programming course that students encounter, it is

imperative that students in introductory programming courses are assisted in

achieving success in their learning, especially in light of relatively high failure rates

(Bennedsen & Caspersen, 2019; Medeiros et al., 2018; Watson & Li, 2014) and lack

of programming competency after completing the course (McCartney et al., 2013;

McCracken et al., 2001).

The current study sought to investigate issues related to development of

introductory programming knowledge and skill of students at tertiary education

institutions.

3

1.2 Background to the Study

Learning introductory programming involves learning a programming language and

understanding related programming concepts, as well as, learning how to comprehend

programs and create programs to solve problems. To help students better understand

programming language statements, researchers have developed program visualisation

tools, which explain program execution using a simplified model (Luxton-Reilly,

2018; Sorva et al., 2013). Program visualisation tools offer assistance in

understanding programs at individual statement level. But, students must also be able

to comprehend programs at more abstract level. Studies have shown that students lack

abstraction ability for program comprehension (Allen et al., 2017; Busjahn & Schulte,

2013; Luxton-Reilly et al., 2018; Whalley et al., 2006). Busjahn and Schulte (2013)

interpreted this lack of ability in relation to the Block model (Schulte, 2008) which

explains the complexity of program comprehension.

In addition to learning how to comprehend programs, students are expected to

be able to create programs as solutions to problems (Luxton-Reilly et al., 2018;

Medeiros et al., 2018; Robins et al., 2003). Researchers have found that, even though

students have knowledge of programming language statements, they do not

necessarily know how to apply that knowledge to create program solutions (Heinonen

et al., 2014; Jenkins, 2002; Lahtinen et al., 2005). Difficulty in designing programs to

solve problems was among the issues identified in the context of a Malaysian

university as well (Tan et al., 2009).

4

With regards to helping students learn how to create programs in problem

solving, researchers have developed intelligent tutoring systems that guide students

while they solve problems (Crow et al., 2018; Lane & VanLehn, 2005). Such systems

may assist students in solving the particular problem but may not provide support in

generalising from the problem in order to develop knowledge of generalised solutions

or patterns. Similarly, online systems have been developed to assist students in

learning how to create programs. But, evaluation of the effectiveness of learning from

such systems is limited. For example, Lee and Ko (2015) evaluated three different

types of online learning resources: a tutorial system, an educational game system, and

program creation platform. The researchers found no substantial gain in learning

among students for all the three systems. Additionally, Kim and Ko (2017) analysed

30 online tutorial systems to identify features in relation to pedagogical effectiveness.

They found that, while most systems emphasised how to apply particular

programming language statements, the majority lacked instruction on when and why

students should use them. In other words, the goals to be achieved when employing

such statements were not emphasised.

Some researchers have stressed that students should have knowledge of

programming goals and patterns (Castro & Fisler, 2016; De Raadt et al., 2009;

Soloway, 1986). Goals and patterns are generalised information about problems and

their solutions (Soloway, 1986). These researchers claimed that the ability to

comprehend programs at an abstract level and to create program solutions may be

facilitated if students organise their knowledge in the form of goals and patterns

(Castro & Fisler, 2016; De Raadt et al., 2009), similar to the manner in which

programming experts organise their knowledge (Soloway, 1986). So, they taught

5

goals and patterns explicitly (De Raadt et al., 2009; Proulx, 2000). The researchers

found that students’ acquisition and application of goals and patterns knowledge

improved. However, adoption of such an instructional approach requires major

changes in curriculum, and possibly, assessments as well.

Researchers have also developed tools based on the notion of goals and

patterns (Guzdial et al., 1998; Hu et al., 2013). Students used such tools to decompose

problems into goals and compose solutions using patterns. However, the tools do not

give feedback to students on the correctness of their decomposition and composition

processes. So, use of these tools may not lead to accurate structuring of goals and

patterns knowledge.

Some researchers have proposed problem-based learning in light of

constructivist perspective of learning (e.g., (Kay et al., 2000)). Similarly, others have

proposed project-based learning, also based on constructivism (e.g., (Sorva &

Seppälä, 2014)). However, in agreement with Clark et al. (2012) as well as Mayer

(2004), the current study focussed on the constructivist view of learning rather than

the constructivist view for teaching. Problem- and project-based learning are

classified as constructivist views for teaching that are informed by constructivist view

of learning (Mayer, 2004). Such a view for teaching is premised on the notion that

learning should match the practitioners’ working situation. Hence, emphasis is given

to ill-structured or complex real-world problems and group-based or collaborative

learning (Luxton-Reilly et al., 2018). Although such approaches may lead to increased

motivation and social interaction, there is lack of consistent evidence in knowledge

gains (Luxton-Reilly et al., 2018). Moreover, when teaching new concepts and skills,

6

researchers have argued that fully guided instruction, or providing information that

fully explains the learning material, is more suitable than problem- and project-based

learning (Kirschner et al., 2006). The reason for giving complete information is that

students will create more accurate knowledge structures and do so more easily

(Kirschner et al., 2006).

The foundational principle of constructivism is that students construct relevant

knowledge structures in their own minds (Hoy, 2013; Mayer, 2004). They do not

passively absorb information as knowledge. Irrespective of whether fully guided or

other forms of instruction are employed, learning is only achieved when students

engage in active cognitive processing to make sense of instructional material and

construct knowledge (Mayer, 2004). However, the instructional approach adopted

should be appropriate for the learning situation. Its suitability depends on factors such

as the particular subject matter, students’ knowledge level, and time constraints

(Sorva & Seppälä, 2014). An instructional approach is not necessarily less or more

effective compared to other approaches. It is more or less suitable, depending on

varying factors (Sorva & Seppälä, 2014).

Problem- or project-based learning may not be appropriate for programming

because of the tightly integrated nature of programming concepts (Robins, 2010).

Learning a new concept usually requires understanding several other interconnected

concepts. Helping students learn a few new concepts well, before moving on to

others, may be more suitable for introductory programming courses. Students who

struggle with concepts early in the course will have trouble coping with more

complex concepts later in the course, which in turn, will contribute to failure in the

7

course (Luxton-Reilly et al., 2018). Conversely, students who are successful early in

the course will find it more manageable when dealing subsequently with advanced

concepts (Luxton-Reilly et al., 2018; Robins, 2010). Furthermore, problem-based

learning may not be suitable because of the time constraints in a semester-based

programme of study.

Introductory programming courses at universities and colleges are typically

delivered through lectures and practical sessions in computer laboratories.

Traditionally, during practical sessions, the approach used has been to give students

problems to solve (Sweller & Cooper, 1985; van Merriënboer, 2013). This is similar

to the practice in other domains like mathematics and science. But, during initial

stages of knowledge and skill development, learning through problem solving may

not be effective (Sweller et al., 2019; van Merriënboer, 2013; van Merriënboer &

Sweller, 2005). When students are recently introduced to new programming language

statements, they may not have sufficient knowledge to solve problems on their own

(Medeiros et al., 2019; van Merriënboer, 2013; van Merriënboer & Sweller, 2005).

Furthermore, they may not be able to construct knowledge from the specific problem-

solving exercises, more so, when they hastily start with improper solution designs and

then make futile attempts at correcting them (Ginat, 2007).

To develop students’ introductory programming knowledge and skill within

the time schedule of the course, a fully guided instructional approach is deemed to be

more suitable. A fully guided approach that has been found to be more effective to

help students during initial skill acquisition is example-based learning or learning by

studying worked examples (Renkl, 2014; 2017). With example-based learning,

8

students do not start learning by solving problems. Instead, they study worked

examples, which contain problem specifications and complete solutions. After worked

example study, students proceed to solve problems on their own.

Learning from worked examples has been found to be more effective than

learning through problem solving in domains such as mathematics and science

(Sweller & Cooper, 1985; Sweller et al., 2019). However, in order to fully benefit

from example-based learning, students must examine and understand how the solution

solves the problem (Renkl, 2014). To do so, students must cognitively engage with,

(i.e., actively process) the worked example (Renkl, 2014; 2017). Renkl highlighted

the principle of self-explanation as crucial for effective example-based learning.

Students construct knowledge through their self-explanations.

For the programming domain, the solution in a worked example would consist

of a complete program with statements written in a programming language. Students

need to understand how the individual statements work. They should also understand

how groups of related statements work together to achieve higher-level purposes, that

is, to understand the program at a more abstract level. This, in turn, would help them

to learn about programming goals. Furthermore, they should generalise from the

specific worked examples and recognise patterns in the solutions. In this manner,

students would be able to construct knowledge structures in the form of goals and

patterns. Ideally, worked examples should help students develop an understanding of

the problem solving process as well.

9

Different worked example designs have been proposed to encourage self-

explanation when studying worked examples. In the context of interactive computer-

based learning environments, Atkinson and Renkl (2007) proposed three interactive

mechanisms: missing steps to be filled by students with feedback, self-explanation

prompts with feedback, and help on demand. Although these interactive mechanisms

did facilitate learning, the researchers cautioned that they must be carefully designed

to trigger processing of relevant aspects of the worked example content. Furthermore,

when students’ knowledge level is low, filling missing steps and providing self-

explanations may cause high processing demands which may overwhelm students

(Renkl, 2014). More recently, Renkl (2017) also employed self-explanation prompts.

Another worked example design to foster self-explanation is to embed

explanations for steps, or groups of steps, in the solution. These explanations may be

inserted in the form of text labels (Catrambone, 1998; Renkl, 2014). The labels are

intended to explain that the group of steps achieve a certain subgoal (Catrambone,

1998; Renkl, 2014). Therefore, the labels have been named subgoal labels and the

worked example design has been called subgoal labelled worked example design

(Catrambone, 1998). For the programming domain, the solution in a subgoal labelled

worked example would consist of program statements which are grouped and

labelled.

With subgoal labels inserted in different parts of the solution, students are

relieved of working out the purposes or subgoals of those parts. Thus, students may be

able to understand the program at a more abstract level in terms of goals. This may

help them to learn about programming goals. However, even though the explanations

10

are given, students still need to explain to themselves how the individual program

statements work and how they achieve the subgoals. Furthermore, they need to

explain to themselves how the subgoals contribute to the overall goal. Once they have

knowledge of goals and associated program statements, students should be able to

create programs to solve problems with similar goals. Thus, subgoal labelled worked

example design seemed to be an appropriate worked example design to be used for

teaching and learning introductory programming.

1.3 Problem Statement

Although the effectiveness of subgoal labelled worked examples for learning problem

solving has been studied in other domains (Catrambone, 1994; 1996; 1998;

Catrambone & Yuasa, 2006; Gerjets et al., 2004), research on subgoal labelled

worked examples for introductory programming has been sparse. Recently, Morrison

et al. (2015) studied its effect for a text-based programming language. Additionally,

Margulieux and Catrambone (2016) investigated its use for a block-based

programming language. Both studies showed promising results. A sample worked

example with subgoal labels for the programming domain is shown in Table 1.1. It

shows a problem specification and complete program solution with embedded labels.

11

Table 1.1

Worked Example with Subgoal Labels (as Comments) in Bold

Problem Solution

Write a program to find and display
the sum of 5 numbers entered by the
user.

//initialise sum to 0
sum = 0;

//repeat 5 times for 5 numbers
for (i = 0; i < 5; i++) {

 //prompt and get number
 cout << “Enter a number: ”;
 cin >> number;

 //add number to sum
 sum = sum + number;
}

//display sum of numbers
cout << “Sum is ” << sum;

Grouping and labelling program statements in this manner is an application of

the meaningful building block principle of example-based learning (Renkl, 2014). It

demonstrates that the program is composed of groups of statements (or meaningful

building blocks) that achieve certain purposes or subgoals, as described by the labels.

It represents the solution as a composition of various building blocks.

The design intentions of subgoal labelled worked examples for teaching and

learning introductory programming can be summarised as follows:

 Guide students’ attention to the different parts of the program solution by

labelling each part to encourage cognitive engagement.

 Assist students to understand that the program solution is made up of parts,

each of which achieves a different subgoal.

12

 Encourage students to explain to themselves how the program statements work

to achieve those subgoals and to understand the underlying programming

concepts.

But, subgoal labelled worked example design does not illustrate how subgoals

are derived from the problem. In other words, it does not illustrate problem analysis.

Problem analysis is concerned with identifying the requirements of a problem and

decomposing the problem into subproblems. It is important that problem analysis

should also be represented in worked examples so that students learn that the problem

solving process involves both problem analysis and solution generation.

Emphasising problem analysis is important because studies have shown that

students have difficulty in problem analysis and do not adequately analyse problems

during problem solving (Hanks & Brandt, 2009; Loksa & Ko, 2016; McCracken et

al., 2001). For example, some researchers have commented:

Many times the students try to solve a problem without completely

[understanding] it. Sometimes this happens because the student has difficulties

interpreting the problem statement and others simply because students are too

anxious to start writing code and don’t read and interpret correctly the problem

description. (Gomes & Mendes, 2007, p. 2)

Additionally, Qian and Lehman had this to say: “novices often show difficulties in

understanding the task and decomposing the problem” (p. 6). Other studies have

shown that students have ineffective problem solving behaviour, resulting in random

or haphazard activities because they do not follow a systematic problem solving

13

process of problem analysis and solution generation (Bennedsen & Caspersen, 2005;

Gaspar & Langevin, 2007; Heinonen et al., 2014).

It is pointed out here that, in the current study, the terms subproblem and

subgoal are used interchangeably. The term subproblem is used, in the context of

problem analysis, to refer to the result of decomposition of a problem into smaller

parts. The term goal is used, from the perspective of solution generation, to refer to

what the solution achieves with respect to the problem. Therefore, the term

subproblem and subgoal refer to the same thing but are viewed from different

perspectives: subproblem from problem analysis perspective and subgoal from

solution generation perspective. Furthermore, the term goal, in general, is used to

refer to the overall goal as well as to a subgoal.

When labels are embedded in the solution in subgoal labelled worked

examples, the outcomes of problem analysis (i.e., the subproblems) are conflated with

the outcomes of solution generation (i.e., composition of parts which achieve different

subgoals). The current study proposed that worked examples for teaching and learning

introductory programming should emphasise problem analysis in addition to solution

generation. Rather than inserting subgoal labels in the solution, subproblems should

be presented separately to give more prominence to problem analysis. But, removing

labels from the solution means that the physical adjacency between the label and

associated group of statements in the program no longer exists. In other words, the

connections between subproblems and associated solution parts are lost. These

connections are important and must be shown because students need to be able to see

which groups of statements are associated with the subproblems. Furthermore, the

14

connections between subproblems and elements in the problem specification from

which they are derived must also be shown. Additionally, these connections should be

shown dynamically as and when students need to see them in accordance to their

learning needs.

Furthermore, worked examples for teaching and learning introductory

programming should assist students to generalise from specific goals and associated

program statements and construct knowledge of generalised goals and solution

patterns. Knowledge of goals and patterns is helpful for students in program

comprehension as well as program creation, as evidenced by researchers who taught

goals and patterns explicitly (De Raadt et al., 2009; Soloway, 1986). Moreover,

worked examples should demarcate the boundary of a control structure so that the

extent of its control is visible. Additionally, worked examples should illustrate how

program statements work.

More specifically, the current study proposed that worked examples for

teaching and learning introductory programming should have the following design

intentions, with the first three being similar to those for subgoal labelled worked

examples:

 Guide students’ attention to the different parts of the program solution to

encourage cognitive engagement.

 Assist students to understand that the program solution is made up of parts,

each of which addresses a different subproblem.

15

 Encourage students to explain to themselves how the program statements work

to address those subproblems and to understand the underlying programming

concepts.

 Guide students’ attention to different elements in the problem specification to

encourage cognitive engagement.

 Assist students to understand that the subproblems are derived from different

elements in the problem specification as a result of problem analysis.

 Encourage students to generalise from specific goals and solutions to general

goals and associated solution patterns.

 Allow students to indicate when and for how long they wish the connections

between subproblems and related parts of the worked example should be made

visible, according to their learning needs.

 Enable students to see the extent of control of control structures used in the

program.

 Enable students to understand how program statements.

1.4 Proposed Worked Example Design

The current study proposed a new worked example design to fulfill the design

intentions listed above. In order to emphasise problem analysis, the new worked

example design listed the subproblems identified for the given problem separate from

the program solution in a new section of the worked example named analysis. The

purpose was also to assist students to understand that problem analysis results in a list

of subproblems derived from the problem.

16

 But, it was still necessary for students to connect the subproblems to related

parts of the worked example. In other words, the new worked example design must

visualise, or make visible, the connections. Consequently, the proposed design was

named visualised worked example design. The term visualised was taken to mean to

make something visible to the eye (Deuter et al, 2015). It was not meant to implicate

that visualised worked examples were designed to accommodate visual learning style

(Huang, 2019).

The current study proposed to employ technological support to make visible

the connections between subproblems and related parts of the worked example by

incorporating two concepts of learning technology: attention guidance or cueing (De

Koning et al., 2009; Mayer & Moreno, 2003) and learner control or interactivity

(Domagk et al., 2010; Landers & Reddock, 2017). Attention cueing makes uses of

cues or signals in learning material to guide students’ attention to specific parts of the

material (De Koning et al., 2009; Mayer & Moreno, 2003). Attention cueing was

employed in visualised worked example design to guide students’ attention to the

different parts of the program solution as well as different elements in the problem

specification, connected to a subproblem. So, attention cueing was used to help

students visualise the connections between subproblems and related parts of the

worked example. It was also used to assist students to understand that the program

solution is made up of parts and to explain to themselves how those parts work to

address the subproblems. Furthermore, it was to assist students to understand that the

subproblems are derived from different elements in the problem specification as a

result of problem analysis. Learner control allows a student to manipulate the learning

environment in a way that he or she deems is suited for his or her own learning

17

(Domagk et al., 2010; Landers & Reddock, 2017). Learner control was used in

visualised worked example design to allow students to indicate when and for how

long they wished the connections between subproblems and related parts of the

worked example should be made visible.

Hence, the rationale for employing attention cueing and learner control was to

foster engagement with worked exmples and encourage students to self-explain. This,

in turn, could lead to better learning. In the context of the current study, visualised

worked examples were hypothesised to contribute to development of introductory

programming knowledge and skill through engagement with worked examples. This

aspect of the conceptual model of the current study is shown in Figure 1.1.

Figure 1.1. Conceptual Model of Current Study

The current study also proposed that visualised worked examples should be

presented as a set, following the example set principle (Renkl, 2014). The purpose

was to encourage students to generalise from the worked examples and construct

knowledge of general goals and solution patterns. Moreover, inspired by the design of

block-based programming languages (Maloney et al., 2010; Price & Barnes, 2015),

Development
of

Introductory
Programming

Knowledge
and Skill

VISUALISED

WORKED

EXAMPLES

FOR

INTRODUCTORY

PROGRAMMING

Engagement
with

Worked
Examples

18

the current study proposed that the boundaries of control structures in the program

solution should be outlined so that they are clearly visible to students. Additionally, to

enable students to understand how the program works, the effect of the program in

terms of its output for given input should also be illustrated in visualised worked

examples.

1.5 Research Objectives

The current study sought to examine issues and challenges of development of

introductory programming knowledge and skill and to propose a new worked example

design. The current study also sought to compare the new worked example design to

subgoal labelled worked example design. (It is noted that the term labelled worked

example is used to refer to subgoal labelled worked example for the remainder of the

thesis.) More specifically, the objectives of the current study were:

1) To identify issues and challenges of teaching and learning introductory

programming at tertiary level and design and develop visualised

worked examples, for development of introductory programming

knowledge and skill.

2) To investigate the effectiveness of visualised worked examples

compared to labelled worked examples for developing students’

knowledge and skill, in terms of their performance in solving

introductory programming problems.

19

3) To investigate the effect of visualised worked examples compared to

labelled worked examples on the development of students’ knowledge

of programming language, goals, and patterns for solving introductory

programming problems, in terms of pattern application.

4) To explore how students engage with visualised worked examples

during their worked example study activity.

5) To explore which worked example design more students prefer for

learning introductory programming: visualised worked example design

or labelled worked example design.

6) To explore students’ perceptions of visualised worked example design

compared to labelled worked example design.

1.6 Research Questions and Research Design

The research questions in accordance to the six objectives of the current study were as

follows:

RQ1 How should visualised worked examples, used for development of

introductory programming knowledge and skill, be designed and

developed, to address identified issues and challenges of teaching and

learning introductory programming at tertiary level?

20

RQ2 Is there a difference in effectiveness of visualised worked examples

compared to labelled worked examples, for developing students’

knowledge and skill, in terms of their performance in solving

introductory programming problems?

RQ3 How do visualised worked examples affect development of students’

knowledge of programming language, goals, and patterns for solving

introductory programming problems, compared to labelled worked

examples, in terms of pattern application?

RQ4 How do students engage with visualised worked examples during their

worked example study activity?

RQ5 Which worked example design do more students prefer for learning

introductory programming: visualised worked example design or

labelled worked example design?

RQ6 What are students’ perceptions of visualised worked example design

compared to labelled worked example design?

The research paradigm adopted for the current study was pragmatism. A

combination of quantitative and qualitative approaches was used to best fit the

purposes of the study. Accordingly, the research methods employed were chosen

based on the research questions. The research method adopted to address RQ1 was a

review of the relevant literature and development. For RQ2 and RQ3 to evaluate the

21

impact of visualised worked examples compared to labelled worked examples on

learning, quasi-experiment research method was chosen and data was collected

through problem solving assessments. During the quasi-experiment, observation

method was also used to collect data on students’ engagement with visualised worked

examples to answer RQ4. For RQ5 and RQ6 concerning students’ preferences for and

perceptions of the worked example designs, another intervention study was conducted

and data was collected using questionnaires. Development of the research questions

and the selected research methods are elaborated in Chapter 3.

1.7 Theoretical Framework

The theoretical framework for the current study is illustrated in Figure 1.2.

Figure 1.2. Theoretical Framework of Current Study

Visualised
Worked

Examples
for

Introductory
Programming

Teaching and
Learning

Introductory
Programming

Technological
Support

Instructional
Approach

Attention
Cueing

Learner
Control

Example-
Based

Learning Goals and
Patterns

Knowledge

Block
Model

Cognitive
Load Theory

Schema
Theory

Generative
Learning
Theory Problem

Solving
Process

22

1.7.1 Example-Based Learning

Example-based learning, or learning from worked examples, is an instructional

approach to help students learn how to solve problems by studying worked examples,

prior to solving problems on their own (Atkinson et al., 2000; Renkl, 2014; Renkl,

2017; Sweller & Cooper, 1985; Ward & Sweller, 1990). Example-based learning is

suitable for initial problem solving skill acquisition when students do not have

sufficient domain knowledge (Paas et al., 2003), as explained by cognitive load

theory.

1.7.2 Cognitive Load Theory

The theory that explains the effectiveness of learning from worked examples is

cognitive load theory (Kalyuga & Singh, 2016; Paas et al., 2003; Sweller et al., 2019;

van Merriënboer & Sweller, 2005). The theory explains that human cognitive

architecture consists of working memory and long-term memory (Kalyuga & Singh,

2016; Sweller et al., 2019). Active cognitive processing for learning utilises working

memory. But, working memory is limited in capacity. When students study worked

examples, they do not need to solve the problems. So, cognitive processing demand is

reduced. This leaves more working memory capacity for constructing knowledge for

storage in long-term memory (Jonassen, 2010; Kalyuga & Singh, 2016; Sweller et al.,

2019).

23

1.7.3 Schema Theory

Schema theory deals with how knowledge is organised in long-term memory. A

schema is organised pieces of information representing knowledge related to a topic

(Ambrose et al., 2010; Hoy, 2013). A person’s knowledge organisation impacts its

application. If a person’s knowledge is organised in a manner that matches the

information processing needs of the situation where it is required, then knowledge

application is facilitated (Ambrose et al., 2010).

 An expert’s knowledge structures or schemas about a topic or domain is well

organised with structural connections between the different pieces of information

(Ambrose et al., 2010; Hoy, 2013). Experts generalise from specific problems and

create schemas of general problem types and associated principles or procedures for

their solution (Sweller et al., 2019). When encountering new problems of a problem

type, the related schema is retrieved and associated principles or procedures are

applied. In this manner, experts are able to solve problems efficiently (Moreno,

2006b).

1.7.4 Goals and Patterns Knowledge

In the programming domain, researchers have theorised that expert programmers

organise their knowledge in the form of programming goals and patterns (Soloway,

1986; Soloway & Ehrlich, 1984). This knowledge enables them to comprehend and

create programs more effectively and efficiently than novice programmers. Experts

24

are able recognise instantiations of known patterns in programs, and thereby,

determine the goals of the programs (Robins et al., 2003; Soloway, 1986). Similarly,

expert programmers are able to identify common goals in new problems and

instantiate associated patterns for the solutions (Guzdial et al., 1998).

1.7.5 Block Model

Comprehending programs requires understanding programs at different levels and

from different perspectives. The Block model proposed by Schulte (2008) defines

four levels, namely, atoms, blocks, relations, and macro structure. Programs can also

be understood in three dimensions: text surface, execution, or intention. These

different levels and dimensions indicate that program comprehension is complex. The

process of program comprehension is also cyclic as a person moves from one level to

another for one or more statements and also changes from one dimension to another

(Schulte et al., 2010). Understanding programs at the block level in terms of text

surface and intention may be facilitated if one has knowledge of goals and patterns.

1.7.6 Problem Solving Process

The problem solving process for the programming domain consists of problem

analysis and solution generation (Deek et al., 1999; McCracken et al. 2001; Winslow,

1996). Problem solving is manageable if the problem is decomposed into subproblems

through problem analysis (Deek et al., 1999; McCracken et al. 2001). Once

25

subproblems have been identified, partial solutions for achieving each subproblem

can be determined (McCracken et al., 2001). These partial solutions can then be

organised and integrated to form the complete solution (Deek et al., 1999; McCracken

et al. 2001). The problem solving process for other domains, such as mathematics,

similarly involves problem analysis and solution generation (Schoenfeld, 1980).

1.7.7 Generative Learning Theory

According to generative learning theory, learning is a generative activity which results

in creation or modification of knowledge structures (Kalyuga & Singh, 2016).

Learning occurs when students actively construct meaning from instructional material

(Fiorella & Mayer, 2016). Students need to select relevant information to process,

organise the information into meaningful relationships, and integrate the information

with existing knowledge structures (Fiorella & Mayer, 2016). Generative learning

theory is informed by Wittrock’s theory of meaningful learning, Mayer’s select-

organise-integrate model of meaningful learning, and Chi’s interactive-constructive-

active-passive framework (Kalyuga & Singh, 2016).

1.7.8 Attention Cueing

Cueing or signalling is an instructional tactic to direct students’ attention to important

elements in instructional material (De Koning et al., 2009; Lorch, 1989; Lorch et al.,

2011; Mautone & Mayer, 2001; Mayer & Moreno, 2003). Attention cues are deemed

26

to be effective in helping students select and organise information and integrate it

with existing knowledge (Lorch, 1989; Lorch et al., 2011). Attention cues guide

students to relevant information to process. This aspect of attention cueing is

important when students do not have sufficient knowledge to differentiate between

relevant and irrelevant information. Attention cues help students organise the

information into relevant structures and relate them to information they already have

(Lorch, 1989; Lorch et al., 2011). In this manner, attention cues facilitate generative

learning (Mautone & Mayer, 2001).

1.7.9 Learner Control

Learner control relates to the degree of adjustment a person can make in a computer-

based learning environment to suit his or her learning needs (Landers & Reddock,

2017; Carolan et al., 2014). Learner control concept has overlap with the concept of

interactivity. Interactivity encourages a learner to engage with the learning

environment via physical actions or behavioural activity (Domagk et al., 2010).

Behavioural activity generates a response from the environment which may lead to

cognitive activity (Domagk et al., 2010). This may ultimately engender generative

learning (Carolan et al., 2014).

27

1.8 Operational Definitions

1.8.1 Introductory Programming Knowledge and Skill

In the current study, introductory programming knowledge was defined as knowledge

of a programming language and knowledge of goals and patterns (Castro & Fisler,

2016; De Raadt et al., 2009; Soloway, 1986). Introductory programming skill was

defined as skill in comprehending programs and problem solving skill (Robins et al.,

2003). Problem solving skill consisted of skill in analysing problems and creating

programs as solution to problems (Medeiros et al., 2018; Parsons et al., 2015; Selby,

2015).

1.8.1.1 Development of Knowledge and Skill for Problem Solving

Development of knowledge and skill for problem solving was assessed through

problem solving assessments. Students were given introductory programming

problems for which they had to write program solutions using a programming

language (Luxton-Reilly et al. 2018). Development of introductory programming

knowledge and skill was operationalised as performance in these assessments, which

was measured as scores computed through quantitative analysis of the students’

responses for the assessments. During worked example study, students were expected

to comprehend the solutions presented in worked examples. Program comprehension

skill was indirectly assessed through the problem solving assessment because

students’ performance in the programming assessment was an indication of their

28

ability to comprehend the solutions in the worked examples.

1.8.1.2 Development of Knowledge of Language, Goals, and Patterns

Development of knowledge of programming language, goals, and patterns was

assessed through qualitative analysis of students’ responses for the problem solving

assessments. The analysis involved coding of the responses with respect to application

of required pattern components in solutions to the assessments (Castro & Fisler, 2016;

Kopec et al., 2007; Seppälä et al., 2015). Development of knowledge of programming

language, goals, and patterns was operationalised as correctness of application of

required pattern components. Correct application indicated knowledge of the goals,

patterns, and the associated programming language statements. Incorrect application

or missing pattern components indicated lack of knowledge of the goals, patterns or

associated programming language statements.

1.8.2 Example-Based Learning

Example-based learning was defined as an instructional approach where students

study worked examples first before they solve problems (Atkinson et al., 2000; Renkl,

2014; 2017). Prior to worked example study, students were presented with

information on new programming topics during lectures. The worked examples

illustrated the application of the new topics in solutions to programming problems

(Atkinson et al., 2000). Example-based learning, or worked example study was used

29

during practical class sessions when students were at the initial stages of problem

solving knowledge and skill acquisition.

1.8.3 Worked Example

A worked example contained a problem specification and a solution which was a

complete program that solves the given problem (Renkl, 2014; 2017). In addition, a

worked example contained sample runs of the program execution. A worked example

was presented to students in a web-based learning environment, with one worked

example per web page. Worked examples were presented as a set on multiple web

pages (in keeping with the example-based learning example set principle (Renkl,

2014). The web pages were linked in sequence from first to last through hyperlinks.

1.8.4 Labelled Worked Example

A labelled worked example was defined as a worked example where the statements in

the program were grouped according to the subgoals they achieved (Catrambone,

1996; 1998; Morrison et al., 2015). Textual labels were inserted at the head of each

group of statements to explain the goal achieved. The labels also acted as cues to draw

students’ attention to the subgoal and associated group of statements (Catrambone,

1996; 1998). Labelled worked example design applied the meaningful building block

principle of example-based learning (Renkl, 2014).

30

1.8.5 Attention Cueing

Attention cueing was defined as an instructional tactic to emphasise certain elements

and to guide students’ attention to them (De Koning et al., 2009; Lorch et al., 2011).

Attention cueing was achieved through labelling or highlighting. Labelling was

operationalised as textual labels inserted in the program solution. Highlighting was

operationalised as change in background colour of the highlighted textual elements.

The highlighting was also operationalised as outlining of the boundary of control

structure statements.

1.8.6 Learner Control

Learner control was defined as the control a student has to adjust the learning

environment in order to accommodate his or her learning experience (Landers &

Reddock, 2017; Carolan et al., 2014). It was the potential given by the learning

environment for students to initiate responses from the environment in reaction to

students’ actions (Domagk et al., 2010). Learner control was operationalised as the

potential for students’ mouse actions on the interface of the web-based learning

environment to trigger responses in the form of highlighting and to navigate through

the set of worked examples web pages.

31

1.8.7 Visualised Worked Example

Visualised worked example was defined as a worked example that had an additional

analysis section where subproblems derived from the problem specification were

listed. It also employed attention cueing, through highlighting, and learner control.

Visualised worked example employed learner control in conjunction with attention

cueing so that highlighting was initiated in response to students’ mouse actions. The

elements that were highlighted were the selected subproblem, the program statements,

and the elements in the problem specification associated with that subproblem. All

these elements were highlighted simultaneously. The highlighting of program

statements associated with the subproblem was an application of the meaning building

block principle of example-based learning (Renkl, 2014). If the highlighted program

statements were enclosed within or included a control structure, then the control

structure boundary was also highlighted.

1.8.8 Engagement with Worked Examples

Engagement with worked examples consisted of three components: behavioural,

cognitive, and emotional (Fredricks et al., 2004). These were aligned to three

components of the model of interactivity in computer-based learning environments

(Domagk et al., 2010), namely, behavioural activity, cognitive/metacognitive activity,

and emotion. Behavioural activities were operationalised as students’ mouse actions

on the interface of the web-based learning environment, which triggered responses.

The learning environment’s responses were presumed to initiate cognitive and

32

metacognitive activities which, in turn, led to further behavioural activities.

Behavioural activity was observable. Since cognitive activity was not observable,

behavioural activity acted as a proxy for cognitive activity. Behavioural activity

represented behavioural engagement. Cognitive activity represented cognitive

engagement. Emotional engagement was represented by students’ perceptions of

worked example design with regards to emotion.

1.9 Scope of the Study

The current study focused on learning introductory programming at university or

college level. With respect to programming knowledge, an introductory programming

course may emphasise one, or sometimes two, of several programming paradigms.

The common choices are procedural or imperative, object-oriented, and functional

programming (Nandigam & Bathula, 2013). The scope of the current study was

limited to the procedural programming paradigm. The factors leading to this choice

were:

 The procedural programming concepts of data types, variables, and control

structures are listed as programming fundamentals and classified as essential

computing foundational knowledge for degree programmes like software

engineering according to the ACM/IEEE curricular guidelines (Joint Task

Force on Computing Curricula, 2015).

33

 There has been an emphasis recently on computational thinking (Wing, 2006)

which stresses algorithmic construction based on the procedural paradigm

(Parsons et al., 2015).

 Learning object-oriented programming usually also involves learning

procedural programming. Rist (1996) has argued that learning object-oriented

programming adds the burden of learning object-oriented concepts on top of

procedural concepts, as cited by Garner et al. (2005). But, learning procedural

programming can be done independently of object-oriented programming.

 In interviews conducted with instructors of introductory programming courses

in 28 of the 39 Australian universities offering such courses, more than 50% of

the instructors chose to teach the procedural paradigm in their courses (Mason

et al., 2012). The percentage for object-oriented paradigm was 25.0% and for

functional paradigm was 2.3%. Some instructors chose to mix paradigms but

typically started with procedural paradigm first and covered object-oriented

concepts in the last few weeks. The researchers also commented on the

downward trend among instructors teaching an objects-first approach based on

comparison of data collected from previous studies. Even though the study

considered only Australian institutions and it was conducted several years ago,

it seemed reasonable to assume that procedural programming paradigm would

still be relevant for introductory programming courses in other countries and

at the current time as well.

34

In summary, learning programming in the context of the current study was

limited to learning introductory programming at universities and colleges based on the

procedural paradigm.

1.10 Limitations of the Study

The current study utilised a quasi-experiment for evaluating the effectiveness of

visualised worked examples compared to labelled worked examples. To enable

generalisability of the results to the target population, ideally random sampling and

random assignment of students to experimental and control groups should have been

carried out (Johnson & Christensen, 2014). The reason for not using random sampling

was practical limitations. Random assignment of students to groups was also not

carried out because intact classes were used. The whole class of students were

assigned as either a control group or an experimental group. However, the quasi-

experiment design was strengthened by conducting pretests for both groups in order to

examine the equivalence of the groups.

The sample size for the quasi-experiment was also another limitation of the

current study. This was due to limited accessibility to classes imposed by practical

concerns of instructors of the introductory programming course where the quasi-

experiment was conducted. Replication studies in other introductory programming

courses in the future should help strengthen the interpretations of the findings of the

current study.

35

Introductory programming courses cover a variety of topics that are considered

fundamental to development of introductory programming knowledge and skill. For

the quasi-experiment in the current study, the intervention sessions were limited to

only three practical class sessions. This limitation was also due to practical concerns

of instructors of the course. The topics in those class sessions were selection control

structures, repetition control structures, and accumulators. Learning introductory

programming entails learning a programming language. For the current study, the

programming language used in the course was the C programming language. Future

studies should examine further topics and other programming languages.

1.11 Significance of the Study

The current study contributes to society where information and communication

technology plays an important role in the daily life of people. Undergraduate

engineers and scientists, equipped with good programming knowledge and skill, are

better able to utilise such technology for the benefit of the people. Improving learning

of introductory programming is important for future engineers and scientists who

need the knowledge and skill in the era of Industry 4.0. Universities and colleges that

adopt worked example study in their introductory programming courses may enhance

the outcomes of programming education of their graduates.

The findings of the current study contribute toward an understanding of how

learning technology concepts of attention cueing and learner control may be

employed with instructional principles of worked example design to create the new

36

visualised worked example design for learning introductory programming. It also

contributes to research in computer science education in terms of the use of worked

examples for programming education.

The findings of the current study provide evidential support to instructors in

introductory programming courses who wish to adopt worked example study as an

instructional strategy. The current study sought to address the problem of lack of

problem analysis skill among students learning introductory programming through

deliberations on how to emphasise problem analysis. The findings provide guidelines

on how to design worked examples which emphasise problem analysis as well as

encourage students to actively process worked examples for effective development of

programming knowledge and skill.

The findings of the current study are of benefit to students who may utilise

visualised worked examples during practical class sessions or for independent

learning, either after a lecture or before a practical class session. This is particularly

relevant for introductory programming courses where students face difficulties in

solving problems on their own when their knowledge and understanding have not

consolidated yet. The new visualised worked example design may foster self-

explanation so that they can benefit from worked example study.

37

1.12 Summary and Organisation of the Thesis

Learning how to program is a must for students who are studying computing-related

programmes at tertiary level. Learning programming should result in development of

knowledge of programming language, goals and patterns, and the skill to solve

programming problems. The current study proposed worked example study as an

alternative approach which has been found to be more effective than learning through

problem solving. However, to help students gain the potential benefits from worked

example study, the worked examples need to be designed to foster engagement.

Labelled worked example design may foster engagement but has shortcomings. The

current study proposed a new worked example design, visualised worked example

design. This chapter presented the research objectives and questions in relation to the

design, development, evaluation, and exploration of visualised worked examples in

comparison to labelled worked examples. It also presented the conceptual model and

theoretical framework for the current study as well as its scope, limitations, and

significance.

The remainder of the thesis is structured as follows. Chapter 2 elaborates on

the theoretical framework that underpins the current study and presents details of the

conceptual model for visualised worked example design. Chapter 3 discusses the

overall research methodology and the selected research methods to address the

research questions. This is followed by detailed accounts of the implementation of

each of the selected research methods. Chapter 4 presents the design, development,

and validation of visualised worked example design in relation to the conceptual

model presented in Chapter 2. Chapter 5 presents the findings of the current study and

38

Chapter 6 discusses these findings. Chapter 7 concludes on the findings and presents

the contributions of the current study. Future work on visualised worked example

design and suggestions for further research concludes the discussion in Chapter 7.

