
AN EFFICIENT IMPLEMENTATION OF RUNGE-
KUTTA GAUSS METHODS USING VARIABLE

STEPSIZE SETTING

SARA SYAHRUNNISAA BINTI MUSTAPHA

UNIVERSITI PENDIDIKAN SULTAN IDRIS

2021

AN EFFICIENT IMPLEMENTATION OF RUNGE-KUTTA GAUSS METHODS
USING VARIABLE STEPSIZE SETTING

SARA SYAHRUNNISAA BINTI MUSTAPHA

DISSERTATION SUBMITTED IN FULFILLMENT OF THE REQUIREMENT
FOR THE DEGREE OF MASTER OF SCIENCE (MATHEMATICS)

(MODE BY RESEARCH)

FACULTY OF SCIENCE AND MATHEMATICS
UNIVERSITI PENDIDIKAN SULTAN IDRIS

.
2021

UPSI/IPS-3/BO 32
Pind : 00 m/s: 1/1

INSTITUTE OF GRADUATE STUDIES

DECLARATION OF ORIGINAL WORK

This declaration is made on the ……………..day of……………..20……..

i. Student’s Declaration:

I, ___ (PLEASE

INDICATE STUDENT’S NAME, MATRIC NO. AND FACULTY) hereby declare that the work

entitled ___

__ is my

original work. I have not copied from any other students’ work or from any other sources except

where due reference or acknowledgement is made explicitly in the text, nor has any part been

written for me by another person.

 Signature of the student

ii. Supervisor’s Declaration:

I ___ (SUPERVISOR’S NAME) hereby certifies that

the work entitled __

 __

_____________________________________(TITLE) was prepared by the above named student, and was

submitted to the Institute of Graduate Studies as a * partial/full fulfillment for the conferment

of __ (PLEASE INDICATE

THE DEGREE), and the aforementioned work, to the best of my knowledge, is the said student’s

work.

 ____________________ ________________________

 Date Signature of the Supervisor

Please tick (√)
Project Paper
Masters by Research
Master by Mixed Mode
PhD

ASSOC. PROF. DR. ANNIE GORGEY

GAUSS METHODS USING VARIABLE STEPSIZE SETTING

AN EFFICIENT IMPLEMENTATION OF RUNGE-KUTTA GAUSS

METHODS USING VARIABLE STEPSIZE SETTING

SARA SYAHRUNNISAA BINTI MUSTAPHA, M20181001455,
FACULTY OF SCIENCE AND MATHEMATICS

DEGREE OF MASTER OF SCIENCE (MATHEMATICS)

AN EFFICIENT IMPLEMENTATION OF RUNGE-KUTTA

16 02 21

16/02/2021

UPSI/IPS-3/BO 31

Pind.: 01 m/s:1/1

INSTITUT PENGAJIAN SISWAZAH /
INSTITUTE OF GRADUATE STUDIES

BORANG PENGESAHAN PENYERAHAN TESIS/DISERTASI/LAPORAN KERTAS PROJEK

DECLARATION OF THESIS/DISSERTATION/PROJECT PAPER FORM

Tajuk / Title: ___

No. Matrik /Matric’s No.: ___

Saya / I : ___

(Nama pelajar / Student’s Name)

mengaku membenarkan Tesis/Disertasi/Laporan Kertas Projek (Kedoktoran/Sarjana)* ini disimpan
di Universiti Pendidikan Sultan Idris (Perpustakaan Tuanku Bainun) dengan syarat-syarat kegunaan
seperti berikut:-
acknowledged that Universiti Pendidikan Sultan Idris (Tuanku Bainun Library) reserves the right as follows:-

1. Tesis/Disertasi/Laporan Kertas Projek ini adalah hak milik UPSI.
The thesis is the property of Universiti Pendidikan Sultan Idris

2. Perpustakaan Tuanku Bainun dibenarkan membuat salinan untuk tujuan rujukan dan

penyelidikan.
Tuanku Bainun Library has the right to make copies for the purpose of reference and research.

3. Perpustakaan dibenarkan membuat salinan Tesis/Disertasi ini sebagai bahan pertukaran

antara Institusi Pengajian Tinggi.
The Library has the right to make copies of the thesis for academic exchange.

4. Sila tandakan (√) bagi pilihan kategori di bawah / Please tick (√) for category below:-

SULIT/CONFIDENTIAL

TERHAD/RESTRICTED

 Mengandungi maklumat yang berdarjah keselamatan atau
 kepentingan Malaysia seperti yang termaktub dalam Akta Rahsia
 Rasmi 1972. / Contains confidential information under the Official
 Secret Act 1972

 Mengandungi maklumat terhad yang telah ditentukan oleh
 organisasi/badan di mana penyelidikan ini dijalankan. / Contains
 restircted information as specified by the organization where research
 was done.

 TIDAK TERHAD / OPEN ACCESS

(Tandatangan Pelajar/ Signature) (Tandatangan Penyelia / Signature of Supervisor)
& (Nama & Cop Rasmi / Name & Official Stamp)

Tarikh: _________________

Catatan: Jika Tesis/Disertasi ini SULIT @ TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan
dengan menyatakan sekali sebab dan tempoh laporan ini perlu dikelaskan sebagai SULIT dan TERHAD.

Notes: If the thesis is CONFIDENTAL or RESTRICTED, please attach with the letter from the organization with period
and reasons for confidentiality or restriction.

16/02/202116/02/2021

AN EFFICIENT IMPLEMENTATION OF RUNGE-KUTTA

GAUSS METHODS USING VARIABLE STEPSIZE SETTING

M20181001455

SARA SYAHRUNNISAA BINTI MUSTAPHA

05/03/202116/02/2021

iii

ACKNOWLEDGEMENT

First and foremost, all praises to Allah S.W.T., the most Gracious and the most Merciful
for the strengths and His blessing in completing this research. In the process of
completing this research, I realized how true this gift of writing is for me. You give me
the power to believe in my passion and I could never have done this without the faith I
have in you, the Almighty.

Special appreciation goes to my supervisor, Assoc. Prof. Dr. Annie Gorgey as
my supervisor for her patience, motivation and constant support in supervising this
dissertation. Her invaluable guidance of constructive comments and suggestions
throughout the experimental and dissertation works have contributed to the success of
this research. This dissertation might not be able to complete on time without her
continuous support. I am sincerely appreciates for all the supervision that I received
from her and no other words to describe how grateful I am to have her as my supervisor.
Also, I would like to thank Dr. Nor Azian Aini Mat as my co-supervisor for her valuable
motivation and diligent support throughout my research journey.

Not forgotten, my deepest gratitude goes to my family members especially my
mum for their endless love, prayers and encouragement. Last but not least, my sincere
thanks goes to all my friends for the kindness and moral support throughout my Master
studies. Their time spent with me really helped me to alleviate the stress and cherishes
me whenever I encountered some problems. To those who indirectly contributed in this
research, your kindness means a lot to me. Thank you very much.

iv

ABSTRACT

The research is aimed to find the most efficient implementation strategies by Gauss
numerical methods for solving stiff problems and the best error estimation in the
variable stepsize setting. The numerical methods considered as a research methodology
are the 2-stage (G2) and 3-stage (G3) implicit Runge-Kutta Gauss methods. Two
strategies by Hairer and Wanner (HW) and Gonzalez-Pinto, Montijano and Randez
(GMR) schemes were implemented. The variable stepsize setting employed the
simplified Newton is modified to fit according to HW and GMR schemes in solving the
nonlinear algebraic systems of the equations. The error estimation for the variable
stepsize setting is computed using extrapolation technique with stepsizes h and 2h .
HW and GMR schemes used the transformation matrix T to improve the efficiency of
the methods and also compared with the modified Hairer and Wanner (MHW) scheme
without using any transformation matrix .T Findings showed that G2 method using
MHW scheme gave an efficient implementation in solving Kaps, Oreganator and
HIRES problems while for G3 method, it was efficient in solving Kaps, Brusselator,
Oreganator, Van der Pol and HIRES problems. In terms of error estimation, the G2
method gave the best error estimation for Brusselator, Oreganator, Van der Pol and
HIRES problems, while for the G3 method it was efficient in solving Kaps, Brusselator,
Oreganator, Van der Pol and HIRES problems, both by using HW scheme. In
conclusion, the MHW scheme without any transformation matrix T can be as efficient
as the HW and GMR schemes by using the variable stepsize setting and the MHW
scheme is recommended in solving stiff problems. As for the implications, this research
could be extended to other different types of problems such as delay and fuzzy
differential equations.

v

KECEKAPAN PELAKSANAAN BAGI KAEDAH RUNGE-KUTTA GAUSS

MENGGUNAKAN TETAPAN SAIZ LANGKAH BERUBAH-UBAH

ABSTRAK

Kajian ini bertujuan untuk mencari strategi pelaksanaan yang paling cekap dengan
kaedah numerik Gauss untuk menyelesaikan masalah kaku dan anggaran ralat terbaik
dalam tetapan saiz langkah berubah-ubah. Kaedah berangka yang dianggap sebagai
metodologi kajian adalah kaedah Runge-Kutta Gauss tahap-2 (G2) dan tahap-3 (G3)
tersirat. Dua strategi oleh Hairer dan Wanner (HW) dan Gonzalez-Pinto, Montijano dan
Randez (GMR) dilaksanakan. Pengaturan saiz langkah berubah-ubah menggunakan
Newton yang dipermudah diubah suai agar sesuai dengan skim HW dan GMR dalam
menyelesaikan sistem persamaan algebra tidak linear. Anggaran ralat untuk tetapan saiz
langkah berubah-ubah dikira menggunakan teknik ekstrapolasi dengan saiz langkah h
dan 2h . Skim HW dan GMR menggunakan matriks transformasi T untuk
meningkatkan kecekapan kaedah dan juga dibandingkan dengan skim Hairer dan
Wanner yang diubah (MHW) tanpa menggunakan matriks transformasi T . Penemuan
menunjukkan bahawa kaedah G2 menggunakan skim MHW memberikan pelaksanaan
yang cekap dalam menyelesaikan masalah Kaps, Oreganator dan HIRES sedangkan
untuk kaedah G3, ia berkesan dalam menyelesaikan masalah Kaps, Brusselator,
Oreganator, Van der Pol dan HIRES. Dari segi anggaran ralat, kaedah G2 memberikan
anggaran ralat terbaik untuk masalah Brusselator, Oreganator, Van der Pol dan HIRES,
sementara untuk kaedah G3 ia berkesan dalam menyelesaikan masalah Kaps,
Brusselator, Oreganator, Van der Pol dan HIRES, kedua-duanya dengan menggunakan
skim HW. Kesimpulannya, skim MHW tanpa matriks transformasi T dapat menjadi
secekap skim HW dan GMR dengan menggunakan pengaturan saiz langkah berubah-
ubah dan skim MHW disarankan dalam menyelesaikan masalah kaku. Sebagai
implikasi, kajian ini dapat diperluas ke berbagai jenis masalah lain seperti persamaan
tunda jenis lewat dan persamaan pembezaan kabur.

vi

CONTENTS

DECLARATION

ii

ACKNOWLEDGEMENT

iii

ABSTRACT

iv

ABSTRAK

v

TABLE OF CONTENTS

vi

LIST OF TABLES

ix

LIST OF FIGURES

x

1 INTRODUCTION

1

 1.1 Introduction to Numerical ODEs

1

 1.1.1 Ordinary Differential Equations

2

 1.1.2 Introduction to Runge-Kutta Methods

7

 1.2 Problem Statement

13

 1.3 Research Objectives

16

 1.4 Research Questions

17

 1.5 Significant of Research

17

 1.6 Scope of Study

18

 1.7 Thesis Outlines

19

2 LITERATURE REVIEW

21

 2.1 History of Runge-Kutta Methods 21

vii

 2.2 Efficiency of Gauss Methods

25

 2.3 Implementation Ideas by Other Researchers

29

 2.4 Variable Stepsize Setting

34

3 RESEARCH METHODOLOGY

38

 3.1 Introduction

38

 3.2 Research Design

39

 3.3 Construction of G2 and G3 Methods

42

 3.4 Implementation of Implicit Runge-Kutta Methods

46

4 IMPLEMENTATION OF G2 AND G3 METHODS

50

 4.1 Implementation Issue

50

 4.1.1 Convergence

50

 4.1.2 Tolerance

52

 4.1.3 Initial Value

53

 4.1.4 Round-off Errors

54

 4.2 Variable Stepsize Setting

55

 4.2.1 Error Estimation

57

 4.3 Implementation Strategies

59

 4.4 Implementation Scheme by Gonzalez-Pinto (1994, 1995)

63

 4.5 Implementation Scheme by Hairer and Wanner (1999)

65

5 NUMERICAL EXPERIMENTS

67

 5.1 Real Life Problems

68

 5.1.1 Robertson Problem

69

 5.1.2 Kaps Problem 72

viii

 5.1.3 Brusselator Problem

75

 5.1.4 Oreganator Problem

77

 5.1.5 Van der Pol Problem

79

 5.1.6 HIRES Problem

82

 5.2 Summary on Numerical Results

85

6 CONCLUSIONS AND FUTURE WORKS

88

 6.1 Conclusions

88

 6.1.1 Implementation Ideas

89

 6.1.2 Best Error Estimation

90

 6.1.3 Most Efficient Implementation Strategies for
Gauss Methods

91

 6.2 Future Work

92

LIST OF PUBLICATION AND CONFERENCE

94

REFERENCES

95

APPENDIX A 103

APPENDIX B 117

ix

LIST OF TABLES

1.1 Butcher Tableau of Explicit RK and Implicit RK Methods

10

1.2 Butcher Tableau of G2 and G3 Methods

11

2.1 List of the Explicit Methods Based on the Order and Author
(Butcher, 1996)

23

3.1 The first few shifted Legendre polynomials

43

5.1 Reaction scheme for problem ROBER

70

5.2 The most efficient implementation of real life stiff problems

86

5.3 Error values for each scheme in terms of global error versus tolerance
 13Tol 10

86

5.4 Error values for each scheme in terms of error estimation by using
extrapolation versus tolerance  13Tol 10

87

x

LIST OF FIGURES

1.1 Diagram of One-Step Runge-Kutta Methods

8

1.2 The effect of round-off error on (a) Tolerance and (b) CPU Time between
G2SNCS and G2SNWCS for Prothero Robinson problem using variable
stepsize setting.

15

3.1 Research Design

39

5.1 Global error versus tolerance of (a) G2 and (b) G3 methods for Robertson
problem.

71

5.2 Global error versus CPU time of (a) G2 and (b) G3 methods for Robertson
problem

71

5.3 Error estimation by using extrapolation versus tolerance of (a) G2 and (b)
G3 methods for Robertson problem

71

5.4 Global error versus tolerance of (a) G2 and (b) G3 methods for Kaps
problem

73

5.5 Global error versus CPU time of (a) G2 and (b) G3 methods for Kaps
problem

73

5.6 Error estimation by using extrapolation versus tolerance of (a) G2 and (b)
G3 methods for Kaps problem

74

5.7 Global error versus tolerance of (a) G2 and (b) G3 methods for
Brusselator problem

75

5.8 Global error versus CPU time of (a) G2 and (b) G3 methods for
Brusselator problem

76

5.9 Error estimation by using extrapolation versus tolerance of (a) G2 and (b)
G3 methods for Brusselator problem

76

5.10 Global error versus tolerance of (a) G2 and (b) G3 methods for
Oreganator problem

78

5.11 Global error versus CPU time of (a) G2 and (b) G3 methods for Oreganator
problem

78

xi

5.12 Error estimation by using extrapolation versus tolerance of (a) G2 and (b)
G3 methods for Oreganator problem

78

5.13 Global error versus tolerance of (a) G2 and (b) G3 methods for Van der
Pol problem

80

5.14 Global error versus CPU time of (a) G2 and (b) G3 methods for Van der
Pol problem

80

5.15 Error estimation by using extrapolation versus tolerance of (a) G2 and (b)
G3 methods for Van der Pol problem

81

5.16 Global error versus tolerance of (a) G2 and (b) G3 methods for HIRES
problem

83

5.17 Global error versus CPU time of (a) G2 and (b) G3 methods for HIRES
problem

83

5.18 Error estimation by using extrapolation versus tolerance of (a) G2 and (b)
G3 methods for HIRES problem

84

CHAPTER 1

INTRODUCTION

1.1 Introduction to Numerical ODEs

Ordinary differential equations (ODEs) represent a mathematical model for many

systems in various discipline of knowledge. Fatunla (2014) described that the numerical

approximations are obtained at some specified points in the integration interval. The

numerical method is said to be convergent if the method acquiring the properties of zero

stability and consistency as mentioned by Lambert (1991). In numerical approximation,

there exist a fact regarding conservation law. Shampine (2018) did mentioned that all

linear conservation law are satisfying the numerical approximations of the standard

methods. For nonlinear conservation law, the numerical methods basically do not

produce a solution. Furthermore, the most well-known Adam-Bashforth is recognized

to be a very efficient numerical method for the solution of linear and nonlinear

differential equations including for the non-integer orders (Atangana & Araz, 2020).

This is based on the Lagrange interpolation polynomial, however their accuracy is less

than Newton interpolation’s polynomial. Since many years before, numerical methods

2

for ODEs has been used in many discipline of research areas such as engineering,

chemical, physics, biology, medical, astronomy and others due to its ability that provide

the approximate solutions of nonlinear ODEs arising in those fields.

Nowadays, highly accurate solution for many kinds of complicated ODEs can

be obtained by numerical approximation with the help of sophisticated software for

computational mathematics. Development of computing power has revolutionized the

utility of realistic mechanical and mathematical models in almost all fields as mentioned

previously. Thus, a subtle numerical analysis is needed to implement these

mathematical model that represents the real life problems such as given by Toufik and

Atangana (2017), Owolabi (2019) and Araz (2020). Numerical method is said to be

more advantages than analytical method because of the time consuming by the

analytical method is much longer than numerical method when it comes to complex

problems. The numerical methods are used when there is no solution for analytical

methods. Even though the solution of analytical method is exact, however the analytical

solution is sometimes unknown and in this case the numerical approach is required.

1.1.1 Ordinary Differential Equations

An equations that contained a derivative of one or more unknown functions (or

dependent variable) with respect to one or more independent variable is called

differential equations (DEs). DEs can be used to solve many system in real life problems

including chemical, physical and biological processes. ODEs are parts of DEs that

3

consists only ordinary derivatives of one or more unknown functions with respect to

only one independent variable.

First order ODEs can be written in the following form

   0 0 0, , , :[,] .n n
ny f x y y x y f x x     (1.1)

f is autonomous if it is a function of only y . But it is called non autonomous if f is

explicitly depends on x . In equation (1.1), x is time variable or known as the

independent variable and y is called the dependent variable, 0x is the initial time and

0y is the initial value. Function f is used to identify the unknown function y satisfying

the ODEs.

For some equations that arising in physical modelling, Butcher (2016)

mentioned that some of it are naturally expressed in one form or the other, but the

emphasizing is always appropriate to write a non-autonomous equation in an

corresponding autonomous form. There exists the coefficients n
 where it is referring

to a set of real number while the coefficient N represents a set of positive integers.

Equation (1.1) is known as the initial value problems (IVPs) if the value of 0x and 0y

are given.

ODEs also can be solved analytically. However, analytical approach are difficult

to solve stiff ODEs problem. This is causing by the most rational stiff systems that do

not have analytical solutions, so the numerical methods is required to solve this kind of

ODEs problem. A stiff ODEs is one of the fundamental of the solution that decays much

4

faster than the others (Lapidus & Schiesser, 1976). This behavior is sometimes

troublesome even though it can be solved by numerical methods, because these systems

are characterized by very high stability, which might turn into very high instability

when approximated by standard numerical methods (Butcher, 2016). To overcome the

instability problem, a few researcher in the past decade come out with an idea in

developing many new sophisticated methods. Bjurel, Dahlquist, Lindberg, Linde, and

Oden (1970) and Willoughby (1974) are the main literature survey that contributed to

the finding of this methods. These methods consist of a wide variety of both explicit

and implicit methods. Therefore, it is possible to perform the approximation of a

solution when the exact solution of the ODEs problem is unknown.

There are three types of numerical methods that are popular among

mathematicians in the solution of ODEs. These are Runge-Kutta (RK) methods, Linear

Multistep methods and General Linear methods. Butcher (2016), mentioned the fact

that Runge-Kutta methods only involve one step method. Fatunla (2014) give a brief

explanations regarding one-step method where the consistency of this method ensures

that the scheme is at least of order one. One of a simple RK method is the explicit Euler

method. The explicit and implicit RK methods are able to produce a good approximate

solution for certain problems depends on the nature of equations. The explicit and

implicit RK methods are differ in term of the equations, coefficient and steps. Although

explicit methods are easy to implement if compared to the implicit methods, the

methods need more time to obtain the approximate solution (Cash, 1975). The

implementation is not significant when the time taken by explicit methods are more

than double the time consumed by the implicit methods. The difference of processing

time occurs because of the internal stage equations of the explicit methods depends on

5

each other. The second stage equation need the value of the first stage equation and so

on. On the other hand, for implicit methods every internal stage equations are

independent which contribute to the shorter processing time. Besides, the explicit RK

(ERK) is less stability compare to implicit RK (IRK) (Shampine, 1984). For these

reason, this research is focusing on only IRK methods. A detailed introduction

regarding RK methods is given in Subsection 1.1.2.

In application of mathematical modelling, there exists a special parameter that

is called stiffness ratio and can be found in the ODEs system. A stiff equation is defined

as a differential equation when the solution for solving the equations is numerically

unstable for certain numerical methods, unless the appropriate stepsize selection is

chosen to be extremely small (Liu, Zhang, & Zhang, 2019). Hairer and Wanner (1996)

give few examples of stiff equations where it consists of a differential equations in

chemical reactions, automatic control, electronic networks and biology. In obtaining a

satisfactory results, it is not recommended to use a very small stepsize because this will

lead to longer computational complication and is unfavorable to numerical

approximation which can increase the round-off error. In the meantime, this will affect

the accuracy of the simulation and the numerical results for stiff problems is not

efficient, thus it is required to use a method with better stability to solve it (Liu et al.,

2019). A problem is also called stiff by the fact that when the numerical solution of

slow smooth movements is considerably perturbed by nearby rapid solutions (Hairer &

Wanner, 1999). Simply said, a system is stiff when it involves different components

that changing rapidly and slowly together.

6

To understand stiffness, consider the Prothero Robinson (PR) problem which is given

in equation (1.2).

        , 0 0 ,y y g x g x y g     (1.2)

where    sing x x with exact solution    y x g x and  is stiffness parameter.

When  become large negative number such -10000, PR problem is considered as a

stiff problem resulting in using a much smaller stepsize to achieve convergence solution

and in order to achieve stability as described by Gorgey (2012) and Butcher (2016).

This implies high computational cost and so the search for methods with extended

regions of stability is motivated (Dormand, 2018). A detailed explanation on stiff

problems is given in Section 1.2.

When the numerical methods is applied throughout the investigation, there must

be some errors that might spoil the solution, in other word it might cause less efficient

and less accurate solution. Generally, common error is divided into two type namely

local and global errors. Local error is a type of error that is produced by numerical

method in an individual step where the value at the beginning of that step is assumed to

be exact. When the local errors after n steps is accumulated, then this is where the global

error will produced. In other words, the global error is another type of error that

accumulated from the local error after n steps. Butcher (2016) had mentioned the fact

that the accumulation is not necessarily causing by the summation of local errors at each

n steps, on the other hand it is causing by the sum of the bounds on the local errors.

Dormand (2018) described that the best process for global error computation is based

on a parallel solution of a related system of differential equations. These are constructed

7

to have a solution satisfied by the actual global error of the main system of equations.

Local errors, nl can be defined by

  ,n n n nl u x y  (1.3)

where, nu is the solution curve and ny is called exact solution curve. The global error,

n is written in the following form

  ,n n ny x y   (1.4)

where  ny x is the solution curve at n steps. Equation (1.4) then can be written as

    ,n n n n ny x u x l    (1.5)

where n is the actual error after n steps. Thus, there are two types of global error, one

is related to the local errors at the present step and the other is related to the local errors

at the previous steps.

Other than these errors, there is another error known as round-off error as

mentioned before. These errors can destroy the numerical solutions if it is significant in

numerical approximation. Detailed about round-off errors will be discussed on the next

chapter. In the next section, a detail explanations regarding RK methods is discussed.

1.1.2 Introduction to Runge-Kutta Methods

Runge-Kutta (RK) methods have been popular among mathematicians for many year

and are developed specialize in finding an approximate solution for ODEs. This

methods are originally developed by Runge towards the end of the nineteenth century

8

and generalized by Kutta in the early twentieth century. These methods are easy to

implement compared to Taylor polynomial scheme which requires the formation and

evaluation of higher derivatives as described by Dormand (2018). Basically, an s-stage

RK methods for the step    1 1, ,n n n nx y x y   with stepsize h can be defined as

 1 1
1

,
s

i n ij n j j
j

Y y h a f x c h Y 



   , (1.6)

 1 1
1

,
s

n n j n j j
j

y y h b f x c h Y 



   , (1.7)

where , 1,2,..., ,i j s s is the number of stage. iY represents the internal stage values

for the thi stage and ny represents the update of y at the thn step. The coefficient a is

used to find the internal stages by using the linear combinations of the stage derivatives.

The vector b represents the quadrature weights which indicates how the approximation

to the solution depends on the derivatives of the internal stages. The coefficient c is the

vector of abscissas which indicates the positions within the step of the stage values. A

detailed explanation can be found in Butcher (2016).

It is called a one-step method and can be demonstrated schematically in the following

diagram:

Figure 1.1. Diagram of One-Step Runge-Kutta Methods.

 1ny  1Y    iY    sY ny
 • • • • •
 1nx  1 1nx c h  1n ix c h  1n sx c h  nx
 h

9

The coefficient a and c must hold the row-sum condition as given in the Table 1.1.

The coefficients in the general equation (1.6) and (1.7) shall be represented by a

partitioned tableau known as the Butcher tableau (Butcher, 2016) of the form

 ,
T

c A

b

where A is a matrix that consist of the a values of RK methods and Tb is referring to

vector b which is the quadrature weights.

RK methods are divided into two components, namely the implicit Runge-Kutta

(IRK) and the explicit Runge-Kutta (ERK) methods. The ERK methods form a

triangular matrix A of the coefficient a . One example of famous ERK methods is the

classical RK method of order-4 (RK4). In IRK methods, the coefficient matrix A is not

triangular that make a big difference with ERK methods. There are several types of

implicit methods and it can be divided into few categories, the first one is known as

fully-implicit if matrix A is not lower triangular and it is called semi-implicit if A is

lower triangular with at least one non-zero diagonal element. Besides, the IRK methods

is also known as diagonally-implicit if A is lower triangular with all the diagonal

elements are equal and non-zero or simply called as diagonally implicit Runge-Kutta

(DIRK) and singly implicit if A is matrix with a single non-zero eigenvalue singly

implicit Runge-Kutta (SIRK). Table 1.1 describe these properties.

10

Table 1.1

Butcher Tableau of Explicit RK and Implicit RK Methods

Explicit RK Implicit RK

2 21

3 31 32

1 2 , 1

1 2 1

0

s s s s s

s s

c a

c a a

c a a a

b b b b





,

1 11 12 1

2 21 22 2

1 2 ,

1 2

s

s

s s s s s

s

c a a a

c a a a

c a a a

b b b

.

Explicit methods are easy to implement as the internal stages can be calculated

directly without depending on later stages as described on Subsection 1.1.1. However,

explicit methods cannot be used to solve stiff problems since they have poor stability

behavior (refer to Section 1.2). In other word, implicit methods are suitable for solving

stiff problems however they are more costly to implement. The implementation of

implicit methods is discussed in Chapter 3 on Section 3.4.

Some examples of ERK methods are the Euler method, explicit trapezoidal rule,

explicit midpoint rule and other higher order explicit methods. The simplest ERK

methods is the Euler method which of order-1. For the IRK methods, it consists of some

methods such as the implicit Euler method, implicit midpoint rule, implicit trapezoidal

rule, Gauss methods, Radau methods, Lobatto methods and other higher order implicit

methods (Hairer & Wanner, 1996). For this research, it is only involving 2-stage (G2)

and 3-stage (G3) Gauss methods. The Butcher tableau (Butcher, 2016) for the 2-stage

and 3-stage Gauss methods are given in Table 1.2.

11

Table 1.2

Butcher Tableau of G2 and G3 Methods

 2-stage Gauss method (G2) 3-stage Gauss method (G3)

1 3 1 1 3
2 6 4 4 6

1 3 1 3 1
2 6 4 6 4

1 1
2 2

 

  ,

1 15 5 2 15 5 15
2 10 36 9 15 36 30

1 5 15 2 5 15
2 36 24 9 36 24

1 15 5 15 2 15 5
2 10 36 30 9 15 36

5 4 5
18 9 18

  

 

  

.

G2 method is of order 4 whereas G3 method is of order 6. The defining equations as

referring to equation (1.6) and (1.7) for the 2-stage Gauss method are given in equation

(1.8), (1.9) and (1.10) while in equation (1.11), (1.12) and (1.13), it is referring to the

defining equation for the 3-stage Gauss method.

The stage equations of 2-stage Gauss method are defined by

1 1 1 2

2 1 1 2

1 1 3 ,
4 4 6

1 3 1 .
4 6 4

n

n

Y y h F h F

Y y h F h F





  
          

   
          

 (1.8)

The internal stage derivative equations of the 2-stage Gauss method are defined by

1 1 1

2 1 2

1 3 , ,
2 6

1 3 , .
2 6

n

n

F f x h Y

F f x h Y





  
      

  

  
      

  

 (1.9)

12

The update equation of the 2-stage Gauss method is defined by

 1 1 2
1 1 .
2 2n ny y h F h F

   
     

   
 (1.10)

The equations (1.11) are the stage equations of the 3-stage Gauss method.

1 1 1 2 3

2 1 1 2 3

3 1 1 2 3

5 2 15 5 15 ,
36 9 15 36 30

5 15 2 5 15 ,
36 24 9 36 24

5 15 2 15 5 .
36 30 9 15 36

n

n

n

Y y h F h F h F

Y y h F h F h F

Y y h F h F h F







    
                  

    
                

     
                  

 (1.11)

The internal stage derivative equations of 3-stage Gauss method are defined by

1 1 1

2 1 2

3 1 3

1 5 , ,
2 10

1 , ,
2

1 5 , .
2 10

n

n

n

F f x h Y

F f x h Y

F f x h Y







  
      

  

  
    

  

  
      

  

 (1.12)

The update equation of 3-stage Gauss is defined by

1 1 2 3
5 4 5 .

18 9 18n ny y h F h F h F

     
        

     
 (1.13)

Since this research only focuses on IRK methods, thus several IRK methods will

be used in solving ODEs problems. Some ODEs problems have an equation of exact

solution. There exists an error of approximation where it is referring to the difference

between the approximate solution and the exact solution. Normally, the efficiency of

the methods can be represented by the graph of the error versus the tolerance and

computational (CPU) time. In addition, the efficiency can be improved by proper

13

method of implementation by various researchers. Thus, several implementations were

tested in solving several ODEs problems including chemistry and physics problems.

In numerical methods, ODEs plays an important rule in solving a simple linear

equation. Several analytical methods can be used to solve the equations such as

separable variable, factorization, substitution and other methods. However, analytical

solution for nonlinear equations are always hard to solve. On the other hand, several

type of numerical methods mentioned earlier is also quite important since it can solve

approximate solution of the nonlinear equations whenever the exact solution is

unknown. In obtaining a good result of numerical solutions, the combination of a good

implementation and very small error will lead to the closest exact solution. The IRK

and ERK methods are able to produce a good approximate solution for certain problems

depends on the nature of equations.

1.2 Problem Statement

As ERK method is very easy to implement, so the internal stages can be calculated

directly without depending on the later stages as mentioned on the previous section.

Besides, this method also incurs cheap implementation cost. Even though ERK methods

having this advantages, however the stability of the ERK methods is classified as not

A-stable (Iserles, 2009). Thus, the ERK methods cannot be used to solve stiff problems

compared to the IRK methods as they have poor stability (Sanderse & Koren, 2012).

IRK methods not only possess strongest stability properties, thus it also satisfy the

properties of A-contractivity (algebraic stability) even though it is difficult to implement

14

(Hairer & Wanner, 1981). Therefore they are suitable in solving stiff problems. The

IRK methods not only important in solving stiff problems, furthermore it is beneficial

to differential algebraic equations. Nevertheless, the IRK methods are expensive and

difficult to implement due to the nonlinear equations involved when finding the internal

stage derivatives iY and need to be replaced by an iterative computation which is known

as Newton-Raphson iteration. Even though it is difficult to implement, the IRK methods

gives a fewer stages for the same order and better stability if compared to the ERK

methods. Due to this better stability, the implicit methods are widely used in the

applications of physics, engineering, chemistry and medical problems.

There are two ways to implement Newton-Raphson iterations, which are full

Newton and simplified Newton. Full Newton iteration is preferred for nonstiff problems

as investigated by Muhammad and Gorgey (2018). However, to solve certain real-life

stiff problems such as Van der Pol, Brusselator and Oregonator problems, small

stepsize such as 0.001 is required if using constant stepsize setting. This not only takes

longer computational time, round-off errors also can accumulate and destroy the

solution. Therefore using constant stepsize is no longer appropriate. For this research,

variable stepsize setting will be used to investigate the performances of three different

implementation strategies.

At the beginning of the code, a technique known as compensated summation is

introduced to make sure the round-off errors will not destroy the numerical solutions.

The purpose of compensated summation is to minimize the effect of round-off errors

and it is applied together with simplified Newton iteration. However, based on the

numerical results for Prothero-Robinson test problem with 10000q   , there is no

15

effect in terms of accuracy on G2 method with simplified Newton and compensated

summation (G2SNCS) (Refer Figure 2). The numerical results showed that G2 using

simplified Newton without compensated summation (G2SNWCS) has similar results

with G2SNCS. Therefore, no compensated summation is required to investigate the

performance of G2 and G3 methods using implementation schemes by Hairer and

Wanner (1999), González-Pinto, González-Concepción, and Montijano (1994) and

González-Pinto, Montijano, and Randez (1995).

(a)

(b)

Figure 1.2. The effect of round-off error on (a) Tolerance and (b) CPU Time between
G2SNCS and G2SNWCS for Prothero Robinson problem using variable stepsize
setting.

Although in Muhammad (2018) thesis, he studied of the implementation

strategies by Hairer and Wanner (1999), Cooper and Butcher (1983) and González-

Pinto et al. (1994, 1995) schemes, however he studied only for constant stepsize setting.

In difficult nonlinear ODEs problems, constant stepsize setting will require more

computational time to solve depends on the stiffness ratio. For example, consider the

Robertson problem (Robertson, 1966) or it was known as ROBER problem. Hairer and

Wanner (1996) are the one who gave the name ROBER. A detailed explanation

regarding ROBER problem is given in Subsection 5.1.1.

16

Variable stepsize setting is very important to be implemented for the numerical

approximations of RK Gauss methods. When the variable stepsize setting is used, the

stepsize changing policy will automatically adjusted especially when the difficult

nonlinear problems involved. Hence, in this research, a variable stepsize setting is

investigated in detailed using the implementation schemes from Hairer and Wanner

(1999) and González-Pinto et al. (1994, 1995).

1.3 Research Objectives

This thesis investigated two numerical methods for solving the ordinary differential

equations (ODEs) such as 2-stage Gauss (G2) and 3-stage Gauss (G3) methods. The

main objectives of this research are:

1. To study the implementation ideas for implicit Runge-Kutta methods

recommended by Hairer and Wanner (1999) and González-Pinto et al. (1994,

1995) using variable stepsize setting.

2. To study the best error estimation for the variable stepsize setting in solving stiff

problems.

3. To investigate the most efficient implementation strategy for Gauss methods in

solving stiff problems using variable stepsize setting.

17

1.4 Research Questions

In this research, several questions of interest are wished to attempt. Some of these are:

1. How does the implementation schemes by Hairer and Wanner (1999) and

González-Pinto et al. (1994, 1995) are implemented for implicit Runge-Kutta

methods using variable stepsize setting?

2. Which scheme is giving the best error estimation for the variable stepsize setting

in solving stiff problems?

3. Which implementation strategy is the most efficient for the Gauss methods in

solving stiff problems by using variable stepsize setting?

1.5 Significant of Research

By the end of the research, the researchers are wish to obtain:

1. The computational cost for the implicit methods can be reduced by using the

most efficient implementation strategy suggested.

2. The most efficient implementation strategy can be identified for the Gauss

methods in solving stiff problems.

3. Researchers have broad knowledge regarding the idea of the implementation

techniques for implicit Runge-Kutta methods.

4. Researchers can start using implicit Runge-Kutta methods which is proven to

satisfy the efficiency properties and capable in solving real life problems

especially for Robertson and Van der Pol problems.

18

5. The round-off errors can be reduced even without using compensated

summation technique for the variable stepsize setting.

1.6 Scope of Study

This research focuses on the IRK methods. Only 2-stage (G2) and 3-stage (G3) Gauss

methods that emphasized in this research. Preliminary study of this research is about

understanding the ideas of implementation for IRK methods recommended by various

researchers including the standard/common implementation methods. The first stage in

this research is to perform test problems using Prothero Robinson (1974) problem to

investigate the importance of using simplified Newton with compensated summation

for variable stepsize setting. The implementation strategies by Hairer and Wanner

(1999) and González-Pinto et al. (1994, 1995) are selected to solve real life problems

such as Robertson, Van der Pol, Kaps and Oreganator problems using variable stepsize

setting. All of these problems are given by Hairer and Wanner (1996). A detailed

explanation regarding all of these problems can be found in Section 5.1. The

construction of the G2 and G3 methods as well as the numerical experiments for all the

problems involved are performed using MATLAB R2019a numerical software.

19

1.7 Thesis Outlines

There are 6 chapters in this thesis.

Chapter 1 is about the Introduction. This chapter divided into five main parts.

The first part discussed about the background of this study which is the introduction to

numerical ODEs including some basic knowledge regarding RK methods, problem

statement, objectives, significant of research and scope of this research.

Chapter 2 discussed about the literature review. A brief explanation about

history of implementation of RK methods, efficiency of Gauss methods and the

implementation ideas by other researchers is discussed in this chapter.

In Chapter 3, the discussion regarding research methodology that consists of

research design, the construction of 2-stage (G2) and 3-stage (G3) Gauss methods and

the implementation of implicit Runge-Kutta methods based on the simplified Newton

iteration.

Chapter 4 gives the construction of implementation strategies by Hairer and

Wanner (1999) and González-Pinto et al. (1994, 1995) in solving some real life

problems such as Robertson and Brusselator problems as given by Hairer and Wanner

(1996). The implementation strategies will be used in solving real life problems in

Chapter 5.

20

Chapter 5 gives the numerical experiments of this research. This chapter gives

all the numerical results for real-life problems. The numerical results are given by the

tolerance and computational (CPU) time diagrams. The tolerance diagram indicates the

accuracy of the methods while the CPU time diagram is to measure the efficiency for

certain stepsize. A detailed description of variable stepsize setting and explanation of

error estimation also will be discussed in this chapter.

Lastly, Chapter 6 summarizes the numerical results and presents some

conclusions and also the suggestions for future work.

CHAPTER 2

LITERATURE REVIEW

2.1 History of Runge-Kutta Methods

In numerical analysis, there exists a method that is called the Runge-Kutta (RK)

methods. RK methods consists of implicit and explicit iterative methods, which

includes the popular method which is known as Euler method. The Euler method is

being used in temporal discretization for the approximate solutions of ordinary

differential equations (ODEs) (DeVries & Hasbun, 2011). Carl Runge and Martin

Wilhelm Kutta are the well-known German mathematicians that developed this

methods around 1900 (Butcher, 1996).

Carl Runge was completing his famous paper one hundred years ago and this

work was published in 1895. He extended the approximation of Euler method to a more

elaborate scheme which useful in producing greater accuracy. A detailed explanations

was mentioned by Butcher (1996). The basic idea of Euler method was to generate the

solution of an initial value problems (IVPs) in more precise steps. At the beginning of

22

the step, the rate of change of the solution that evaluated from the derivative formula is

treated as constant in each step. Rechenberg (2001) described the differential equations

that occur in the atomic spectra research had led Carl Runge developed the numerical

method to solve the equations. Hitchens (2015) mentioned the fact that Martin Kutta is

the one who contributed to the numerical method for differential equation in the

aerodynamics.

Development of RK methods are done since past decades by many researchers.

The first published article is in 1895. They searched for greater order of explicit Runge-

Kutta (ERK) throughout the years. Modern development of RK processes has occurred

since 1960, mainly as a direct result of the advances due to Butcher in the development

and simplification of RK error coefficients (Dormand, 2018). Butcher (1996) gave the

chronology of the developed methods by the corresponding author based on the order

hierarchy as given in the Table 2.1.

Before 1970, Kuntzmann (1961) and Butcher (1964) suggested that the IRK

methods are based on Gauss quadrature formulae. To construct a good method in

solving stiff problems, the criteria that need to be considered are high accuracy, good

stability and low implementation cost. The Gauss methods are chosen because they are

highly stable as well as high accuracy and possess higher order than explicit and other

implicit methods where the order p is equal to 2 ,s s is referring to the number of

stages of the IRK methods. The higher the order of Legendre Polynomials, the more

accurate the numerical approximation is (Cerrolaza, Shefelbine, & Garzón-Alvarado,

2018). Even though the Gauss methods possess a good stability and high accuracy

properties, therefore they are expensive to implement because the methods have

23

different and complex eigenvalues which makes the implementation difficult.

Nevertheless, the Gauss methods are categorized as a symmetric method. Gorgey and

Muhammad (2017) mentioned further regarding this behaviour. It is an advantages for

Gauss methods since it provide capability to give more accurate solution. This kind of

property is an extra advantage that cannot be found in ERK methods.

Table 2.1

List of the Explicit Methods Based on the Order and Author (Butcher, 1996)

Order (p) Stages (s) Author Year Reference

2 2 Runge 1985 (Runge, 1895)

3 3 Heun 1900 (Huen, 1900)

4 4 Kutta 1901 (Kutta, 1901)

5 6 Kutta 1901 (Kutta, 1901)

5 6 Nystrom 1925 (Butcher, 1996)

6 8 Huta 1956 (Huta, 1965)

6 7 Butcher 1964 (Butcher, 1964b)

7 9 Butcher 1987 (Butcher, 1987)

8 11 Curtis 1970 (Curtis, 1970)

8 11 Cooper and Verner 1972 (Cooper and Verner, 1972)

10 18 Curtis 1975 (Curtis, 1975)

10 17 Hairer 1978 (Hairer, 1978)

The IRK methods consist of several types of components named with semi-

implicit RK (SIRK) methods, semi-explicit RK (SERK) methods, diagonally-implicit

RK (DIRK) methods and singly-diagonally-implicit RK (SDIRK) methods (Butcher,

24

1996). The IRK methods for which 0ija  , for j i , are called semi-implicit formulae,

the class of which the one-stage RK2 are members. These can be made it as A-stable.

For practical purposes they are simpler to implement than the fully implicit formulae,

since each stage consists of the determination of only a single f . When solving stiff

problems, it was found out that the Gauss and Lobatto IIIA methods suffer from the

order reduction phenomenon. This is one of the disadvantage of one step methods that

can be found when solving stiff problems. For example, the numerical order of

convergences for fully IRK methods such as Gauss-Legendre methods suffers from

order reduction where their order decreases from 2s to s , coefficient s denoted the

number of internal stages (Rang, 2016). To make sure the order reduction is reduced, a

researcher came out with the study of stability and convergence and a new technique

known as symmetrization has been introduced by Gorgey (2012).

The RK methods is called A-stable if the stability function

   
11 TR z zb I zA e

   where    11, ,1 , ,T Ts
se b b b   and  

, 1i j

s

ijA a




satisfy the properties   1R z  for all z  . Otherwise, if   1R   , the RK methods

is called strongly A-stable and L-stable if   0R   (Ehle, 1973). Rang (2016) did

mentioned about A-stability property implies that RK method is dissipative for

Dahlquist’s problem. It is guarantee in getting stable numerical solution if the method

satisfy the A-stability. RK method is called B-stable if they are algebraically stable and

able to solve the nonlinear problems. Some of it are Gauss-Legendre, Radau IA, Radau

IIA and Lobatto IIIC methods. Furthermore, other advantages of Gauss-Legendre

25

methods is also the behaviour that satisfy the simplifying conditions    1 , , 2B B p

and    1 , ,C C s .

Since many decades, many researchers studied this method for solving ODEs

problems such as Chan (1990), Cong (1994), Calvo, Franco, Montijano and Randez

(2009). Zhu, Hu, Tang, and Zang (2016) showed in their article that second order

symmetric RK methods perform better than non-symmetric RK method in long-term

integration and almost energy conservation. Several years before, Chan and Gorgey

(2013) reported that symmetric RK methods with symmetrization techniques give more

accuracy and efficiency for solving stiff linear problem.

2.2 Efficiency of Gauss methods

In numerical analysis, it is very important to choose a method that satisfy the

good stability properties and having higher order of convergence rate. Since RK

methods complies with these properties, thus a method such as Gauss methods are

particularly being chosen because of their advantages that suitable in solving stiff

systems. This is also due to sufficiently high stage and classical orders. The

computational cost of these methods is relatively high because they are fully implicit

and require at each step the evaluation of ms ms system of equation (1.6). The

coefficient m is refers to the dimension of the system and coefficient s is refers to the

stage of derivatives. Even though the computational cost is relatively high, however the

methods provide better solution of same accuracy as the order of the IRK methods. The

26

study showed that the methods numerically integrate various sorts of ODEs such as

non-stiff and stiff problems, Hamiltonian systems and invertible equations. González-

Pinto et al. (1994) investigated an experiment regarding linear stability of IRK methods.

In their research, they proposed a method by Cooper and Butcher (1983) in determining

the most efficient method in solving IRK methods. They concluded that the

implementation by using Gauss method performs much better than DIRK method even

though both of the methods are categorized as A-stable and have the same order 4. This

is such a big difference that can be found during the investigation due mainly to the fact

that the both methods having the same cost per step required on one side. Even though

the Gauss methods having the handicap of solving the implicit system

   nY e y h A I F Y    (similarly, refer to equation 1.6) during the experiments,

however their relatively high stages and good stability properties make them not only

competitive but highly recommended to other methods like DIRK methods for the

solution of nonlinear stiff problems when implemented using special iterative schemes.

Varah (1979) described the comparison of methods used in producing an

efficient implementation of IRK methods. Since we concerned that Butcher methods

have order s or 1s  , while the Gauss methods have order 2s or 2 1s , it can be seen

that for the method that has the properties of same order method, Gauss methods require

less work per step compared to Butcher methods. Moreover, it also turn out that the

Butcher methods having an error constants larger than Gauss methods especially for the

A-stable methods. This leads the methods to produce more steps for the same accuracy.

In addition, this inefficient behaviour make it difficult to compare these methods with

stiff multistep methods like those of Gear (1980). In Gauss-Legendre method, the

operations involved are complex because of the complexities in eigenvalues. If it were

27

programmed directly in a language with complex type declarations, it may be requires

much less work compared to complex multiplication that involving four real ones. For

example, it is more practical to use a factor of two in Fortran on IBM 370 machines.

González-Pinto et al. (1994) also mentioned that Gauss methods having of advantages

of high order of convergence in comparison with the number of stages and good

stability properties that make it suitable for solving stiff systems. Due to this, Gauss

methods requires relatively high computational cost since they are fully implicit.

A research by Agam and Yahaya (2014), they have developed a more efficient

and stable method of new 3-stage IRK methods using collocation method at pertubed

Gaussian points. Basically, the method is different from the existing 3-stage Gauss in

term of the equation of the internal stage value iY and the coefficient of b in the

equation of the update solution
1
.

n
y


 The internal stage derivative  iF Y in the equation

iY of the existing 3-stage Gauss method was replaced with a new one that was

formulated using collocation method. Besides, the coefficient of b in the equation (1.6)

from the general form of RK was replaced with new coefficient b that was computed

using new coefficient c . It is proved that this new method produced an efficient results

than the existing 3-stage Gauss method in solving one dimensional of a linear and a

nonlinear problems of first order ODEs.

Kulikov (2015) constructed nested Gauss and Lobatto methods for solving stiff

differential problems using variable stepsize. The methods preserved the properties of

IRK methods, such as A-stability, symmetry and symplecticity. Symplectic RK

methods was systematically developed by Sanz-Serna (1988). Their idea is based on

28

algorithm of algebraic stability introduced that involving stiff systems studied by

Burrage and Butcher (1979). Sanz-Serna (2016) did mentioned that these methods also

has a wide range of applications not only in Hamiltonian problems but also beneficial

in other applications that required the use of adjoint systems and optimal control

problems. Gorgey and Mat (2018) have mentioned about the combination of two

methods that can be shown to be symmetric and symplectic which is known as

partitioned RK methods (PRK) that also advantageous in solving Hamiltonian system

that is separable. A further explanations about PRK can be found in Abia and Sanz-

Serna (1993) and Sun (2000).

 Generally, Gauss method is also known as a collocation method that based on

the Gaussian quadrature formulas. Since the algebraic accuracy of Gaussian quadrature

formulas for point s is 2 1s while its truncation error is    2 1
1 1 ,s

n n nl y x y O h 

   

hence it is satisfies the order conditions which is 2s . The order of numerical methods

is the crucial indicator in measuring the accuracy of the method. Basically, the higher

accuracy is affected by the relatively higher order of the numerical method. For SDIRK

and SIRK methods, the maximum attainable order for both methods are 1s  . Here, it

is clear that the Gauss method has higher order and higher accuracy, which is the main

objective why this method is chosen as numerical approximation. However, it is

doubtful when this method is applied to a large system simulation because it is fully

implicit with a larger computational cost. This caused the computational cost to grow

increasingly expensive for higher stages methods and higher dimensional system.

Because of this reasons, it is necessarily to reduce its computational cost by using new

method proposed by Liu et al. (2019). This method is known as banded IRK (BIRK)

method and will be discussed further on the Section 2.3.

29

2.3 Implementation Ideas by Other Researchers

Butcher (1997) introduced a classic transformed method which is known as singly

implicit Runge-Kutta (SIRK) method where the method has only one real s fold

eigenvalue. Nevertheless, not all SIRK methods are categorized as A-stable that makes

the maximum attainable order reduced. Thus, Liu et al. (2019) proposed a new method

which is known as banded implicit Runge-Kutta (BIRK) method. The aim of this

method is to reduce the computational cost by making a changes to the Jacobian matrix

from a full coefficient matrix to a banded matrix while maintaining the high accuracy

and good stability properties. The purpose of reducing the computational cost for IRK

methods produced a singly diagonally implicit Runge-Kutta (SDIRK) method, where

the coefficient matrix A is lower triangular with same diagonal elements  rather than

using a full coefficient matrix (Ababneh & Ahmad, 2009). Even though the SDIRK

method has a straightforward computational advantages over the fully IRK method,

however the method has some inconvenience components that makes their stability and

accuracy affected by the simplification of the coefficient matrix A . The main

advantages of BIRK methods is that the method reduced the computational complexity

of the LU factorization and back substitution to the Newton update iteration which this

behaviour did not obtained by Gauss-IRK method. In addition to that, the BIRK method

maintained a good accuracy compared to the Gauss-IRK method. Hence, it can

concluded that the BIRK method is easier to implement programmatically compared to

the SDIRK and SIRK methods. This method of order 2s is also categorized as A-stable.

Berghe and Daele (2011) presented the development of symmetric and

symplectic modified exponentially-fitted Runge-Kutta (EFRK) method. They derived

30

the EFRK methods as a 4-stage Gauss of eighth-order. The suitable frequency is needed

for determining the order and accuracy. The numerical results shows that the solutions

from classical and the 4-stage EFRK method are not largely different compared with

the solutions of 2-stage and 3-stage methods. The construction procedure for the

development of other EFRK method of different order also being recommended. In

addition, the EFRK method preserved the symplectic properties. They also mentioned

that the method gives same result as other exponentially fitted methods such as

multistep methods. Furthermore, the method provide more accuracy than the classical

method, hence their studies considered as a great achievement.

In Skvortsov and Kozlov (2014), an efficient implementation has been

developed for three types of diagonally implicit Runge-Kutta (DIRK) methods. Four

types of implementation scheme involved namely, trivial, modified trivial, standard and

economical schemes. The trivial is about the use of trivial prediction which is the

computed values at the initial point of approximation step that being used as initial

values for iterations. For modified trivial, it is being used to modify stage equation of

the corresponding methods. Different approach is applied to the standard

implementation where the initial values for the iteration are provided as a linear

combination of the previous stage values. For the economical scheme, it is about a

prediction for estimating the initial values of internal stage derivative. Based on the

numerical test problem, it is showing a result that economical scheme secures an

acceptable convergence by a single calculation, but the standard scheme requires two

computations. By right, the economical scheme saves one calculation at each implicit

stage compared to the standard scheme. The schemes also has been tested to solve real

life problems such as Van der Pol, Oregonator and HIRES by using three different

31

values of tolerance. The tested is to capture the size of error, number of internal stages

derivative function and Jacobian.

Nazari, Mohammadian, Charron, and Zadra (2014) performed optimization on

3-stage DIRK methods in finding a scheme that can retains a good order accuracy. The

numerical results shows that the new scheme giving highly accurate solution than their

previous scheme for the problem that involving larger stepsize. Other than that, the new

scheme gives better accuracy for low spatial resolutions with the same stepsize. The

scheme that was developed is also categorized as A-stable which makes it suitable

option for solving stiff problems. Even though the scheme gives better efficiency, the

computation for diffusion coefficient is not really cheap. However the proposed scheme

performs well with large stepsize for the problem involved.

An updated technique known as generalized summation-by-part (GSBP) was

constructed by Boom and Zingg (2015) in solving IRK methods. The methods that was

constructed are based on Lobatto IIIC and Radau IA/IIA discontinuos collocation,

Gauss quadrature points and some algebraically stable and DIRK method. The

numerical simulation shows that the GSBP methods are more competent compared to

the classical summation-by-parts (SBP) methods. The comparison has been

investigated between the Gauss and Radau IA methods when applying the GSBP

methods. The numerical results obtained are both of the methods retains the same

properties, however the Gauss method is more efficient in terms of stage error. For the

non-SBP method with the same number of stages, it gives more efficient result however

it is categorized as not L-stable. The study is extended to fifth-order explicit singly

32

DIRK (ESDIRK) method that beneficial in constructing higher order GSBP methods

which are diagonally implicit (Boom & Zingg, 2015).

Zhang, Sandu, and Tranquilli (2015) discovered a new technique specialize to

recover the order of corresponding IRK methods for their research. They introduced a

refinement procedure to correct stage values that was motivated from the simplified

Newton method. The procedure successfully recover the order of the methods in solving

non-stiff, midly stiff and stiff problems. In some cases, the order is recovered by only

small number of refinement iterations for non-stiff and midly stiff problems, however

for stiff problems large number of refinement iterations is needed since the increasing

stiffness deteriorates the convergence. Before refinement procedure been introduced,

the approximate matric factorization to high order linearly IRK methods is unstable for

stiff problems. After several test problems has been done, they concluded that the

refinement procedure improves the efficiency and it validates the accuracy and stability

based on theoretical findings.

Development of a new Runge-Kutta method has been developed by Ramos

(2019). This development was known as a two-step hybrid block method that was

specialized for numerically solving first-order IVPs. This method largely using the

well-known schemes of RK and multistep methods. A new formula of this method is

obtained by choosing two intermediate points of the interpolation derivation and

collocation at different points through the optimization of the local truncation errors

with continuous approximation. This method are practicing self-starting method where

it does not provide any starting values when using other approaches. Even though this

method might requires more computational cost, however the number of occurrences

33

of the source term f is reduced that resulting in the most competent formulation. For

linear problems, it might be seen the both formulation are essentially the same, but when

the problem where f is difficult, this reformulation will result in an outstanding saving

on computational cost. The existing block methods are using this strategy in getting the

best behaviour of the block formulation. Moreover, this method consists of a good

characteristics which satisfy the convergence order and A-stability property that make

it appropriate for solving stiff problems.

In Kennedy and Carpenter (2019), a general purpose of DIRK methods has been

performed to first order ODEs that involving five types of explicit singly diagonally

implicit Runge-Kutta (ESDIRK) and their implicit-explicit (IMEX) methods. The

purpose of the methods is focusing on achieving a 2-stage order, stiff-accuracy, L-

stability, internal L-stability, an embedded method with good quality, algebraic stability

of matrix eigenvalues with a small magnitudes and a small values of iia . All of the

mentioned characteristics are persistently important in maximizing the scheme

efficiency. An embedded method is being used to facilitate the stepsize control through

error estimation. As the stage order affected the order reduction, focusing on 2-stage

order helps in determining the accuracy. The order reduction is depends on the problem

that being tested. It is observed that the methods produced moderate order reduction for

the Kaps problem while the Van de Pol problem is having a severe order reduction. For

the problems that categorized as excessively stiff behaviour, the utility of the fifth and

sixth order of ESDIRK methods that being used in this research is lower compared to

those lower order methods.

34

In the same year of 2019, a researcher that was known as Zhang had discovered

a new RK methods using unstructured numerical search. The emphasizing of the new

methods is to exhibit a minimum number of stages in constructing RK methods in order

to maximize their order. Nevertheless, higher order RK methods are challenging to be

implemented since their parameter must comply with an exponentially large system of

polynomial equations. In his research, he studied about the strategy in decreasing the

number of stages for higher order method. The research that has been investigated

proved that the 10th-order RK method only required 16 stages. He was the first one that

managed to break a 40 years standing record that proved giving a less number of stages

in achieving the accuracy. The mechanism of techniques and theorems that empowering

the discovery of this method is discussed further in his research (Zhang, 2019).

2.4 Variable Stepsize Setting

Variable stepsize setting is crucial for the solution of nonlinear equations such as

stochastic wave equations of Schrödinger because they are typically nonlinear which

the error might propagate very rapidly and deteriorate the solutions. This was given by

Wilkie and Çetinbaş (2005). In their research, they showed that by implementing the

variable stepsize, the explicit 9th order RK method (with an embedded 8th order

method) of ODEs yields an order 4.5 method for stochastic differential equations

(SDEs) which is part of the stochastic differential systems. When the lower order

methods is implemented with constant stepsize, the solutions produced is highly

inaccurate that might destroy the solutions, hence they become relatively inefficient

35

because of their lower order. This clearly proved that the variable stepsize setting is

suitable in solving higher order methods.

In difficult mathematical applications, it is unrealistic to use a constant stepsize

setting. This is due to the research that was investigated by Chan and Razali (2014)

regarding the two-step symmetrization in a constant stepsize setting. In order to achieve

the convergence, a very small stepsize is required so that the approximate solution is

closed to the exact solution. Razali, Nopiah and Othman (2018) did mentioned about

the ways of computing the approximate solution so that it is close to exact solution. A

specific tolerance and a right method selections is necessary so that the estimated error

lies within the given tolerance at each step and the stepsize for the next step can be

predicted which generate an error within the tolerance.

In 2015, an investigation regarding variable stepsize setting based on reference

separation system for online blind source separation (BSS) was done by Xu, Yuan, Jian,

and Zhao (2015). BSS is about extracting the latent unknown source signals from their

observed mixtures by an array of sensors without highlighting the original source

signals and the mixing coefficients. In order to improve the learning rate and stability

performance, they proposed a new variable stepsize algorithms. During the iteration,

there is increasingly in terms of the correlation between the estimated and original

source signals. To overcome this, the reference separation system was introduced to

approximately estimate the correlation in terms of mean square error (MSE). The MSE

is important in updating the stepsize. In their simulations, they demonstrated that the

proposed method exhibits good convergence rate and gives excellent performance than

the constant stepsize setting for the noise-free case. Aside from that, their proposed

36

method is also converging faster than the classical variable stepsize setting in both

stationary and nonstationary environments.

A research regarding the variable stepsize algorithm for solving the nonlinear

Duffing oscillator (second order nonlinear initial-value ODEs) was investigated by

Rasedee et al. (2017). A variable order stepsize (VOS) together with the backward

difference formulation (BDF) was introduced to solve the numerical approximation of

Duffing oscillator. BDF is functioning in overcome an uninteresting calculations of

integration coefficients everytime the stepsize make a changes as required by the

divided difference formulation that based on the Direct Integration (DI) method. A

further work regarding the Duffing oscillator can be found in Branch and Manshahr

(2016) and Najafi and Nemati (2017). The VOS with backward difference (VOSBD)

method was tested on several nonlinear Duffing oscillators of different parameters.

Their numerical approximations shows that the DI method gives an excellent behaviour

for larger tolerances whereas the VOSBD is better with a stringent tolerance. It can be

concluded that the VOS algorithm provides an efficient computational code without

affecting its accuracy.

As we concern, the variable stepsize setting is very important to be implemented

as many researchers are still finding the best way that suitable to solve certain problems

either in mathematical, biological, chemical, physical, engineering or in any related

fields. In 2017, a new generalized variable stepsize was investigated by Wang, Zhou,

Wang, and Chen (2017) that involving the CQ algorithm for solving the split feasibility

problem (SFP). The proposed technique consists of two algorithms, namely CQ

algorithm with two simpler variable stepsizes and two general KM-CQ algorithms with

37

generalized variable stepsizes. Both of the general algorithms with the generalized

variable stepsizes able to solve the SFP and solve some special variational inequality

even better. The models that being used in this investigation are the compressed sensing

and deconvolution models. The proposed stepsizes with the former ones are then

compared with those models and the numerical results appear to give an excellent

behaviour.

Apart of SDEs, there also exists a stochastic delay differential equations

(SDDEs) and an equation known as stochastic pantograph differential equations

(SPDEs) are parts of it. This was studied by Yang, Yang and Xiao (2020). The exact

solution of nonlinear SPDEs was introduced by Guo and Li (2019) and established the

Razumikhin-type theorems on the αth moment polynomial stability. Yang, Yang,

Wang, and Han (2019) are the one that investigated the mean-square stability of

nonlinear SPDEs. The numerical solutions of SPDEs by using constant stepsize are

investigated by many researchers previously (Fan, Song & Liu, 2009). When the

difficult problems is applied throughout the investigation, it leads to the limited

computer memory that encourages the researchers to implement the variable stepsize

setting and transformation approach for the deterministic pantograph equations to solve

the storage problem. Yang et al. (2020) were originally investigated the asymptotical

mean-square stability under variable stepsize for linear SPDEs by using linear θ-

methods. Linear θ-methods is also categorized as A-stable as proved by Liu (1995).

From the investigation by Yang et al. (2020), they proved that the stability region of

linear θ-methods by using variable stepsize is the same as the deterministic problems

where  1
2 ,1  .

CHAPTER 3

RESEARCH METHODOLOGY

3.1 Introduction

In this research, only 2-stage and 3-stage Gauss methods will be focused. It will covers

the construction of the 2-stage and 3-stage Gauss methods using MATLAB R2019a

software. The construction are based on the implementation schemes by Hairer &

Wanner (1999) and González-Pinto et al. (1994, 1995). Besides, this chapter also

include the MATLAB code for the implementation methods. The implementation are

done based on Newton-Raphson iteration. The Newton-Raphson iteration for (0)f x 

where :() n nf x  is given by

 

 
 1 , ' 0.

'
n

n n n
n

f x
x x f x

f x    (3.1)

The simplified Newton method evaluates Jacobian once while the full Newton method

evaluate Jacobian many times throughout the iterations (Hairer & Wanner, 1996). Only

simplified Newton was used in solving test and real life problems. To complete this

research, the efficiency of 2-stage and 3-stage Gauss methods has been compared based

39

on different schemes proposed by other researchers using different problems taken from

Enright, Hull, and Lindberg (1975) and Gorgey (2012).

3.2 Research Design

Figure 3.1: Research Design

Differential Equations

PDEs

 PDEs

ODEs

Hamiltonian,
Differential

Algebraic Equations
Stiff, Nonstiff

Runge-Kutta
(RK) Methods

Explicit RK Implicit RK

2-stage and 3-stage Gauss

Implementation

Simplified
Newton

Fixed-Point
Iteration

Newton-Raphson
Iteration

Full Newton

Apply without compensated summation
based on researchers schemes:

González-Pinto et al. (1994, 1995)
Hairer and Wanner (1999)

Variable
Stepsize Setting

40

Figure 3.1 represents a research design for the thesis. The thesis starts by

choosing the proper type of differential equations. Since the most important purpose of

this research is to find an efficient implementation technique in solving stiff problem,

thus only ordinary differential equations (ODEs) are considered and it can be clarify by

using Runge-Kutta (RK) methods. 2-stage (G2) and 3-stage (G3) Gauss methods are a

family of implicit Runge-Kutta (IRK) methods and are chosen since they are efficient

in solving stiff problems (Chan & Gorgey, 2013). In 1964, Butcher presented RK

methods based on the Radau and Lobatto quadrature formulas. Since Hairer and

Wanner (1999) implementation scheme was originally implemented to Radau IIA

method, therefore this method of order-3 was also being tested in this research to clarify

either we implemented the right implementation scheme for the G2 and G3 methods.

Although IRK methods are advantages in solving stiff problems, however they

are difficult to implement if compared to explicit RK (ERK) methods as stated in section

1.2 under problem statement. The stage equation (1.8) need to be solved using Newton-

Raphson iteration. Some computationally cheaper variants are often being used when

at each Newton iteration, the methods required the s evaluations of the Jacobian matrix

f y  and a LU decomposition of a sd sd matrix (Antoñana, Makazaga, & Murua,

2018). Since the problems that being investigated in this research is considered as a stiff

problems, thus the fixed point iteration is no longer appropriate to be used and hence

the Newton iteration is implemented to compute the stage vectors iY from equation

(1.6). Even though the Newton iteration is suitable in solving stiff problems, it does not

means that the non-stiff problems cannot implemented this iteration. The Newton

iteration may be still be an attractive choice where in some cases, the quadruple

precision or in arbitrary precision arithmetic calculations with high precision

41

computations is implemented with mixed-precision strategies in order to reduce the cost

of the linear algebra and also the evaluation of the Jacobians that was performed in

lower-precision arithmetic than the evaluations of the right-hand side of the system of

ODEs (Baboulin et al., 2009).

Newton-Raphson iteration can be divided into two parts which are full Newton

and simplified Newton. Full Newton iteration is preferred for non-stiff problems

(Muhammad & Gorgey, 2018). Since the problems that are chosen for this research are

categorized as stiff problems, therefore only simplified Newton was considered

throughout the research. In difficult nonlinear ODEs problems, constant stepsize setting

will require more computational time to solve depends on the stiffness ratio as

mentioned previously in Section 1.2. In order to overcome this, a variable stepsize

setting was investigated in detailed using implementation schemes from Hairer and

Wanner (1999) and González-Pinto et al. (1994, 1995) to investigate their effectiveness

and efficiencies in solving stiff real life problems.

In solving linear and nonlinear problems, it is preferable to choose a higher order

methods such as Radau IIA method of order-5 and G3 method of order-6. This is

because the higher order methods are having the tendency to give a greater accuracy

than lower order methods (Ismail & Gorgey, 2015). Lower order methods require

smaller stepsize than higher order methods. If the stepsize is chosen to be very small,

then this can lead to round-off error where eventually will destroy the solution. Thus, a

compensated summation technique is applied at the beginning of the code to minimize

the effect of round-off errors. A smaller quantities 0i iZ Y e y   as suggested by

Hairer and Wanner (1996) and Butcher (2016) being used together with the code in

42

order to reduce the influence of round-off errors. Chan and Gorgey (2013) and Gorgey

and Chan (2015) had mentioned that compensated summation is very useful when

solving a stiff problem that requires a very small stepsize and also when the accuracy

of the numerical solutions need to be increased by extrapolation technique. A

comparison between simplified Newton with compensated summation (SNCS) and

without compensated summation (SNWCS) using variable stepsize setting by Hairer

and Wanner (1999) and González-Pinto et al. (1994, 1995) implementation schemes

has been investigated. However, the numerical results shows that there is no effect in

terms of accuracy on G2 method with simplified Newton and compensated summation

(G2SNCS), therefore no compensated summation is needed for this research as explain

in Section 1.2 under problem statement. Since there is no effect on compensated

summation using variable stepsize setting, the Matlab code are proceed without

compensated summation. The numerical results will be discussed in Chapter 5.

3.3 Construction of G2 and G3 Methods

Implicit Runge-Kutta (IRK) methods are called A-stable if there are no stability

constraints for , Re 0y y    and 0h  . Dahlquist (1963) introduced this concept

for linear multistep methods, but this concept is also practiced to RK method processes.

A further explanations can be found in Hairer and Wanner (1996). Since their stability

properties has been proven, hence IRK methods are the main methods used in this

research. G2 and G3 methods are chosen since these two methods are convenient for

the solution of stiff differential equations.

43

An s-stage Gauss method satisfies    2 ,B s C s and is of classical order 2s .

The abscissas are the zeros of the shifted Legendre polynomial)1(2sP s  , where ()sP x

denoted the Legendre polynomial of degree s defined on the interval [1,1] (Williams,

2017). Few shifted Legendre polynomials are shown in Table 3.1.

Matrix A can be constructed using the equation 1A CSDS . The C is the root

obtained from the Legendre equation, S is the Vandermonde matrix for C, and D is the

diagonal matrix diag 1 11, ,...,
2 s

 
 
 

. The definition for the Vandermonde matrix is given

in Definition 3.3.1 on page 44.

Table 3.1

The first few shifted Legendre polynomials

s  sP x
0 1
1 2 1x 
2 26 6 1x x 
3 3 220 30 12 1x x x  

Other investigation regarding shifted Legendre polynomials was experimented by

Wang and Chen (2020). They mentioned that the shifted Legendre polynomials

algorithm will increase the reliability on predicting the viscoelastic behaviors and

dynamic properties regarding the pipes conveying fluid problem.

44

Definition 3.3.1 Vandermonde matrix (V) can be defined as follows (Butcher, 2016)

2 1
1 1 1

2 1
2 2 2

2 1
3 3 3

2 1

1
1
1

1

n

n

n

n
m m m

c c c
c c c

V c c c

c c c









 
 
 
 
 
 
 
 

,

where the c’s is taken from the C roots. In linear algebra, Vandermonde matrix is a

matrix with the terms of a geometric progression in each row which is written as m n

matrix that was named after Alexandre-Théophile Vandermonde (1735-1796). A

thorough discussion on this can be found in Ycart (2012). Yaici and Hariche (2019) did

mentioned that both the Vandermonde matrix and its inverse are often appointed in the

control theory, derivation of numerical formulas and in the systems theory. It is also

very important for the solution of polynomial interpolation. The discovery of the

Vandermonde matrix was found around 1965 and even before, where many researchers

deals with the study and its properties, inverse and its determinant (Rushanan, 1989).

In Ye (2017), he proved that every generic m n matrix is a product of Vandermonde

matrix and its transpose. Kim and Kräuter (2018) also mentioned that Vandermonde

matrix is decomposed in order to obtain the variants of the Lagrange interpolation

polynomial.

The Legendre equation 2
2 6(6 1)P x x x   (refer to Table 3.1) was used for 2-

stage Gauss (G2) method and having the roots for the equation 1 3-
2 6

 
  
 

and

1 3 .
2 6

 
  

 
 These roots are the c’s as in the Butcher tableau (refer to Table 1.2). The

construction of the G2 method is given next.

45

1,

1 3 1 3 1 0 3 1 3 10 1
2 6 2 6 2 2101 3 1 3 3 320 1

2 6 2 6

A CSDS 

   
                    
        

   

1 1 3
4 4 6

1 3 1
4 6 4

 
 

 
 

 
 

 . (3.2)

Similarly, the c value for the 3-stage Gauss method is obtained by solving the Legendre

polynomial for 3P . The roots are given as 1 15 1 1 15, and
2 10 2 2 10

    
            

. The shifted

Legendre polynomial for G3 is 3 2
3 2() 0 30 12 1P x x x x    .

1,

5 15 2 5 15
1 0 0 6 3 6

1 15 10 20 15 101Solving for 0 0 ,
2 3 3 3

1 10 20 100 0
3 3 3 3

5 15 2 5 15
6 3 6

10 15 10 15 10 ,
6 3 6

10 20 10
9 9 9

A CSDS

DS



     
   
         
   
   
       

  
 

 
   

  
 
 

 
  

46

1,

5 15 2 5 151 15 1 15 2 150 0 1 6 3 62 10 2 10 5 10
1 1 1 10 15 10 15 100 0 1 ,
2 2 4 6 3 6

10 20 101 15 1 15 2 150 0 1 9 9 92 10 2 10 5 10

5 2 15 5 15
36 9 15 36 30

5 15 2 5 15
36 24 9 36 24

A CSDS

     
      

    
      

     
    
            

      

 

   . (3.3)

5 15 2 15 5
36 30 9 15 36

 
 
 
 
 
 
 

  
  

Matrices (3.2) and (3.3) are obtained by using Maple 2019 mathematical software. A

detailed explanations regarding Legendre polynomials can be found in Butcher (2016).

3.4 Implementation of Implicit Runge-Kutta Methods

The 2-stage (G2) and 3-stage (G3) Gauss method has been implemented by using

simplified Newton of Newton-Raphson iteration. The implementation idea is taken

from Hairer and Wanner (1999) and González-Pinto et al. (1994, 1995) which had been

modified according to the Gaussian method. Previously, Hairer’s code was done for the

Radau IIA method of order-3 where the eigenvalues are real (Hairer & Wanner, 1999).

However for this research, the Hairer’s code was tested on G2 and G3 methods to

investigate their accuracy and efficiency.

47

Consider applying IRK method for solving the initial value problem (IVP) of an ODEs

with dimension N which is given by

     0 0, ,x y y x yy x f  . (3.4)

Generally, the approximate solution obtained by an s-stage RK methods with stepsize

h for the interval  0 , nx x can be defined by the following equations (Butcher, 2016):

      

    

1 1

1 1

0

, ,

, ,

,

n n
n N n

nT
n n N n

n

Y e y h A I F x ch Y

y y h b I F x ch Y

x x h

 

 

    

   

 

 (3.5)

where  denotes the Kronecker product, 1,...)1(, Te  and NI is the N N identity

matrix and ny is the update of the RK method. ny will be updated until the approximate

solution is obtained for each problem that being tested. Normally the numerical solution

is approximated until the desired solution is obtained or until the approximate solution

reached the target interval nx .

In equation (3.5), it can be seen that the function hF is computed to find the interval

stages as well as to find the update ny . This can be a waste of computational time.

Therefore, it is recommended by Hairer and Wanner (1996) to write the update of

equation (3.5) as given by:

  1
1 1

nT
n n ny y b A Y e y

     . (3.6)

In addition to that, to make sure that the influence of round-off errors is reduced, it is

also suggested by Hairer and Wanner (1996) to use a smaller quantity such that

   
1

n n
nZ Y e y    . (3.7)

48

Equation (3.5) then can be written in the form

      1 1,n n
N n nZ h A I F x ch Z e y      , (3.8)

where  nZ consist of 1sN vector which is given by

 
1

n

s

Z
Z

Z

 
 


 
  

.

The RK method such as given in equation (3.8) is nonlinear because of the difficulties

that occurs in solving for  nZ . However, this complexities can be figure out by

implemented the Newton-Raphson iterative method for N dimensional system of

equation such as

   

  
  

1
n

n n
n

F Z
Z Z

J Z

  , (3.9)

where   nF Z is given by 1sN system of equation

  
 

 

1 1 1 1

1 1

,

,

n n
n

n s s n

f x c h z e y
F Z

f x c h z e y

 

 

   
 

  
    

,

and the Jacobian matrix,   n fJ Z
z





 is computed such that

  

1 1 1

1 2

2 2 2

1 2

1 2

N

n
N

N N N

N

f f f
z z z
f f f
z z zJ Z

f f f
z z z

   
   
 
   

   
 
 
 
   
    

 . (3.10)

49

For simplicity, consider writing equation (3.8) as

         1 1,n n n
N n nG Z Z h A I F x ch Z e y       . (3.11)

To solve for  nZ , we need to find the Jacobian matrix as given in equation (3.10). This

can be obtained by taking the derivatives of equation (3.11) with respect to Z such that

       1 1,n n
G N N n nD Z I h A I J x ch Z e y       . (3.12)

The values of  nZ can be obtained by solving equations (3.11) and (3.12) using

Newton-Raphson iteration method introduced in equation (3.9) such that

        
1

n n n
GZ G Z D Z



   , (3.13)

where,

     1n n nZ Z Z
   .

The update ny as given in equation (3.6) is therefore given by

 1
1

nT
n ny y b A Z

  . (3.14)

All of this transformation was introduced in Hairer and Wanner (1996). For cheaper

implementation cost, the coefficient matrix   n
GD Z is only evaluated at the starting

of the iteration. The rest of the computations used the same value of   n
GD Z and this

implementation is known as simplified Newton-Raphson method.

CHAPTER 4

IMPLEMENTATION OF G2 AND G3 METHODS

4.1 Implementation Issues

In solving ordinary differential equations (ODEs) problems, the main issues in the

implementation method that need to be considered is the strategy to achieve high

accuracy, high efficiency and low implementation cost. These criteria are the main

objectives in getting a good numerical approximation because it is related to

computational cost. There are several aspects that need to be considered in achieving

the objectives. Some of them are the convergence, tolerance, initial values and round-

off errors that will be discussed in the next subsection.

4.1.1 Convergence

In getting a good numerical approximation, the problems must satisfy the convergence

test which the convergence rate is given by 1k kZ Z    where 1  and 1k 

51

(Hairer & Wanner, 1996). It is considered satisfies the convergence test when the

approximate solution from step to step are approaching towards the exact solution.

Meaning to say, the convergence test is a relevant identification method in the iteration

of the numerical approximation. Convergence is a type of numerical method related to

truncation errors that provides the numerical solution to converge onto the exact

solution and when the truncation error approach zero at all stepsize indices in the limit

0h  . As the stepsize become smaller, the maximum absolute global truncation error

between the analytical and numerical solutions is giving a smaller error. Atkinson, Han

and Steward (2009) gave a brief explanation regarding this matter. The mechanism to

measure the convergence test is referring to how stepsize, computational (CPU) time

and tolerance behaves with the global error in the numerical approximations. The

tolerance and stepsize are the identical criteria in deciding the converging test when

approaching the exact solution. It is said approaching the convergence if the tolerance

and stepsize are decreasing proportionally with global error. For the CPU time, it is

approaching convergence if the global error decreases as the CPU time increases. The

accuracy is determined by the tolerance and stepsize while the efficiency is shown by

the CPU time graphs that obtained from the numerical approximation. In this scenario,

the access of the accuracy is important before the efficiency because the accuracy can

determine whether the implementation is correct or wrong based on the order of the

IRK method. In other words, we can say that the accuracy is affected by the order of

the method which of order-4 for G2 method and order-6 for G3 method.

In deciding the most efficient implementation among researchers, it is important

to make a comparison which scheme is having the least error and the least CPU time

taken in solving the ODEs problems. The values selection for  and the number of

52

iteration are also plays an important role in improving the convergence test. It is

suggested in Hairer and Wanner (1996) that the most efficient values of  is around

110 or 210 and this values was tested for the code RADAU5. They also mentioned

that the code becomes efficient with the use of relatively high number of iteration of 7

or 10. During this iteration processes, it helps the computations to restart the iteration

with a smaller stepsize  2h in condition where 1  . If this case happened, the

computations is interrupted that lead the iteration to become diverge. We can conclude

that the convergence test is a crucial issue to help the researchers to do the

troubleshooting and avoid unnecessary computations in case the approximate solution

goes wrong and not converging, furthermore gives beneficial to them in saving time.

4.1.2 Tolerance

Investigation regarding tolerance value selection was done by Hairer and Wanner

(1996). From the investigation, it shows that the code RODAS which is referring to

Rosenbrock’s codes of order 4 with an embedded order 3 error estimator is considered

giving best behaviour for low tolerances whereas the code RADAU5 which refers to

Radau IIA method with 3s  of order 5 is recommended for high precision. As the

tolerances become smaller, the more precise the numerical approximation is for the

longer CPU time. The code was tested using Van der Pol, Robertson and Oreganator

problems together with different methods such as RODAS, LSODE, SEULEX and

RADAU5. SEULEX is an extrapolation code which implement the stiff linearly

implicit Euler extrapolation method. For LSODE, Hindmarsh (1980) was the first to

53

implement this code that refers to backward difference formula (BDF) which is the

model for a class of multistep methods.

From the numerical approximation, the Rosenbrock’s code RODAS is giving

the best behaviour for low tolerances between 210 to 510 , while the extrapolation

code SEULEX is superior for stringent tolerances. The more stringent the value of

tolerances, the easier the method to solve the problems. However, it is preferred to use

not a very stringent tolerance as suggested by Muhammad (2018). Due to the cheapness

of the function evaluations by multistep code LSODE, more computing time is required

in general compared to one-step codes does. The code RADAU5 gives the most definite

result for the code where the tolerance value is 5Tol 10 followed by RODAS,

SEULEX and LSODE. Furthermore, it has been proven that using smaller tolerances

gives the precise solution. Since RADAU5 gives the precisest result among the others

and are part of a family of IRK methods, thus we are interested in investigating the

numerical approximation using different IRK methods such as G2 and G3 methods with

the use of the same tolerance value, 5Tol 10 or using tolerance value which is smaller

than that.

4.1.3 Initial Value

An initial value problems (IVPs) is an ordinary differential equations (ODEs) together

with an initial condition or best known as initial value which specifies the value of the

unknown function at a given point in the domain. Initial value are frequently needed

values in solving the IVPs that involving a modelling system in mathematics, physics

https://en.wikipedia.org/wiki/Initial_condition

54

and other sciences. In other words, the differential initial value is referring to an

equation which specifies how the system evolves with time given the initial conditions.

A proper selection of the initial value for ODEs is very important because it can be an

alternative approach to achieve converging solution. By selecting the proper initial

value, it can avoid the codes fail if the initial value inappropriate. Basically, most of the

ODEs have the initial value. It is belongs to the variables in the ODEs. The initial value

is generally assigned as 0x and 0y in the ODEs problem. The number of initial value is

the same as the dimension of the ODEs. Practically, the initial value can be changed

accordingly in the implementation in order to achieve converging solution. To get the

best initial value, basically the researchers will carry out a task for try and error until

the solution converge and achieving their accuracy and efficiency.

4.1.4 Round-off Errors

Round-off errors is an error created due to approximate representation of number

(Butcher, 2016). This happened when the stepsize chosen is very small that can destroy

the solution. Thus, it is suggested to use not a slightly small stepsize to avoid the round-

off error from accumulate at the numerical approximation. When this is happened, it

will affect the accuracy of the iteration and thus cannot represent the order of the IRK

methods. However, some stiff ODEs problems are demanding of using relatively

smaller stepsize in order to achieve convergence. To reduce the effect of round-off error

when smaller stepsize is applied, it is suggested to apply a technique known as

compensated summation. Compensated summation is a technique used to minimize the

effect of round-off error and therefore beneficial in improving the accuracy and

55

efficiency. Higham (1993) explained further about compensated summation in their

research. He did mentioned about the instability sometimes is not caused by the

accumulation of millions of rounding errors, but by the dangerous growth of just a few

rounding errors. The compensated summation works as capturing the round-off error at

each individual step where the round-off error is gathered for y-values. Thus, the

compensated summation is very important to be implemented in getting better

numerical approximation especially when extrapolation is applied together. Detailed

investigation on a numerical results regarding the use of other compensated summation

is also given in Antoñana et al., (2018).

Even though compensated summation technique gives a lot of advantages,

however this technique is not applied to this research. This is regarding the numerical

approximation that has been tested on the Prothero-Robinson problem. The numerical

analysis shows no requirement in using compensated summation with simplified

Newton for variable stepsize setting. This behaviour was explained in details in Chapter

1 under problem statement section. Hence, the Gauss methods of order 2 (G2) and of

order 3 (G3) were implemented only with simplified Newton to study the behaviour in

achieving the convergence.

4.2 Variable Stepsize Setting

In achieving the convergence faster, one of the strategy that can be followed for the

implementations of IRK methods is by employing the variable stepsize instead of

constant stepsize. Variable stepsize are very useful in getting excellent performance for

56

IRK methods. A stepsize control formula that was originally proposed by Gustafsson,

(1994) based on the two-step estimator, which in combination with the standard one-

step estimator, proved that the code RADAU5 fails less steps in the integration of some

stiff problems (Hairer & Wanner, 1996).

A research regarding the variable stepsize control for Radau IIA methods has

been done by González-Pinto, Hernandez-Abreau, and Montijano (2019). In their

research, they proposed a new strategy in pursuing a variable stepsize setting

nevertheless not an extension of Gustafsson (1994). They mentioned that the two-step

estimator does not needed any additional evaluation of the derivative function unlike

the one-step estimator does. This gives a briefly explanation that when the variable

stepsize setting is used, no filtering is needed for that estimator and thus gives beneficial

to the codes which save some extra solutions of real linear systems that are required by

the one-step estimator. From the numerical results obtained, it shows that the code takes

slightly smaller number of steps which is 4897 steps for the two-step estimator, while

one-step estimator gives a value of 4923 steps for the same tolerance 12(Tol 10) and

this results has been tested for Van der Pol problem. Furthermore, stepsize control for

tolerance proportionality has also been considered giving nice global errors with the

supplied tolerances. However, one-step estimator gives fewer Jacobian evaluations than

two-step estimator but the error produced much bigger than two-step estimator. We can

summarized here that two-step estimator or variable stepsize setting gives an efficient

results in solving stiff problems.

57

4.2.1 Error Estimation

In solving stiff ODEs problems of IRK methods, extrapolation technique has been

introduced as an alternative for local error estimation and is applied together with G2

and G3 methods. Bader and Deuflhard (1983) introduced a METANI code, where this

code was known as a first successful extrapolation code for stiff differential equations

which implements the linearly implicit midpoint rule. Extrapolation is a technique to

enhance the stability and efficiency of a method. The general equation of extrapolation

is given by

 2 12
,

2 1

p

p

y y
y





 (4.1)

where p is the order of the RK methods and 2y and 1y are the solutions attained by

using stepsizes, h and 2h respectively. The difference between 1y and 2y gives the

local error estimation. This step halving or best known as step doubling in obtaining the

local error estimation was introduced by Shampine (1985). This technique is also

known as Richardson extrapolation. Extrapolation can be found in two difference

modes such as active and passive modes. Active extrapolation happened when the value

of extrapolation is used to capture the next computation while passive extrapolation

occurs when there is no need in using the extrapolated value for any subsequent

computations (Ismail & Gorgey, 2015).

Since extrapolation can increase accuracy and efficiency, many researchers are

still finding the best ways to apply extrapolation. Gorgey (2012) showed that passive

extrapolation of the G2 method is more competent than the active extrapolation for

linear problems that using constant stepsize setting. In addition to that, Faragó, Havasi,

58

and Zlatev (2013) found out that computational time by using Richardson extrapolation

for both active and passive modes are more than ten times smaller than the

corresponding computing time by the backward Euler formula. Thus, they concluded

that extrapolation is an impressive technique for increasing the accuracy and efficiency

with taking into account the computational cost especially when the accuracy condition

is not too low. Another approaches was investigated in Gorgey and Mat (2018)

regarding the efficiency of IRK methods in solving simple harmonic oscillators. After

a very short period of time, they concluded that passive extrapolation is observed to

produce quadratic error growth while for active extrapolation, a linear error growth is

obtained for a much longer period of time. It can be summarized here that the numerical

results for active extrapolation is observed to give the lowest error if compared with

passive extrapolation. Therefore, there is only one mode that can be applied in the

variable stepsize setting which is the active mode.

Another approach to estimate the local error was given by Gorgey (2012). In

her thesis, symmetrizer is used to estimate the local error for G2 method. Although the

error estimation by using symmetrizer is efficient, the computational time between this

approaches with the traditional error estimation by the extrapolation is not much

different. Therefore, local error for the variable stepsize in this article is estimated using

extrapolation technique.

The variable code that estimate the local error started by setting the coefficient

0x x , 4p  which is the order of G2 method and 6p  which is the order of G3

method. We then set up the minimum and maximum h values that is required for the

problem by setting

59

8
max min() 16 , () 2 10n nh x x h x x     . (4.2)

To make sure that we are choosing the correct value of h for each problem, set

 7
0max ,() /10nh h x x    . (4.3)

If nx h x  , then the first value of the update for stepsize h which is 1y is computed.

Then, another two steps of the update is computed for 2h which is denoted by 2y .

Upon obtaining the values of 1y and 2y , the local error is estimated such that

2 1y y   , (4.4)

where  


 and  1Tol.max ,1.0y


 .

If   , thus the new value of x and the improved result, 2y y   is computed. A

sophisticated stepsize strategy has been used in deciding the stepsize selection. It leads

to the formula

 
1

1
maxmin ,4 ,0.9 ph h h h   

  
   

  
, (4.5)

If condition (4.5) is satisfied, then the h value is accepted. Otherwise we reject it and

the h formula is recomputed by using the following condition

 
1

1.max 0.25,0.9 ph h   
  

   
  

. (4.6)

This variable code implementation is introduced in Hairer and Wanner (1996).

4.3 Implementation Strategies

The strategies that being used for the implementation of the RK methods in this research

is simplified Newton of Newton-Raphson iteration. As mentioned in the previous

60

chapter, no compensated summation is needed for the iteration of variable stepsize

setting. Newton-Raphson is chosen because of the capability in solving the IRK

methods and gives better solution compared to fixed-point iteration. Thus, it gives

efficient implementation for the numerical approximation. Hairer and Wanner (1996)

were the first to implement the simplified Newton technique and Radau IIA method of

order 5 is chosen as a method that being tested. Since then, it became popular for the

solution of stiff problems. Since the Jacobian is only evaluated once before Newton

iteration, therefore this strategy provide less computational cost that gives beneficial in

solving stiff ODEs problems.

In Antoñana et al. (2018), they also implemented the simplified Newton

iterations in getting efficient implementation for the symplectic IRK schemes. Based

on their investigation, when the value of the stiffness constant is increasing the

simplified Newton iteration that being implemented requires more iterations per step.

This observation motivated them to make a modification to the original simplified

Newton iteration to produce new algorithm which is known as Kahan’s compensated

summation. This algorithm requires an evaluations of the Jacobian matrix which at each

step s additional evaluations is required. In their numerical experiments using stiff

pendulum problem, the use of that algorithm does improve efficiency which is reduce

the number of iterations also shows a robustness. However, there is no interest of using

this algorithm for this research, thus only standard simplified Newton is implemented

throughout the research.

In our MATLAB implementation of variable stepsize, there are three script files

of pseudo code for simplified Newton method respectively. The first script file solves

61

the nonlinear part of the method (see Algorithm 4.3.1), the second script file computes

the n steps of the base method (see Algorithm 4.3.2) and the third script file is the

variable code that estimates the local error (see Algorithm 4.3.3).

Algorithm 4.3.1: Newton Iteration  0Z 

 

 

1

Evaluate Jacobian.
Evaluate .

Evaluate / 1 .

if . .Tol, where 10

else Z Z+
for 1 to 10

Evaluate using the same Jacobi

Set trace 0,

an.

Recalcul

 a

ate

nd /

 do

.Y e Z

Z

YY Y Z
Z

i
F Z

y G G

Z





  









  

 

  

 

 


 



 

 

 

   



 

 



10

0.816

and / .

if 1
trace 1

1.0

else if / 1 . .Tol

trace 1

Evaluate / 1 .

Evaluate max 10 , .

if .Tol

return (trace)

i

Z Z Z

YY Z

 



 



 

 








 


 

 





  





 


 




 


 





62

Algorithm 4.3.2: Constant Stepsize  y





 

 

0

0

1

Set TRACE 1and hout=h.
whileTRACE
TRACE 0

0.5
for 1 to

if TRACE 1
do hout hout / 2

Store the value of at the 1-th step

if hout h
TRACE 1

return

return TRACE

x x
y y

i n

Y n

y








 

 
 

 
 


 





In the computational processes, there exists a numerical error where the error is

measured by the difference between two components, which are the numerical solution

and the exact solution. The efficiency graph that was obtained from the numerical

approximation could resolve whether the significant of round-off errors could affected

the implementation of the IRK method. For the case when the round-off errors is

increasing, the efficiency graph will generate a slope where it will change from negative

to positive slope. For some cases, the slope is zero which means the numerical errors is

at the same value and it should decreasing along numerical approximation. However,

round-off errors is not the only components that could significantly affected the

computations. The significant round-off error could be affected if the stepsize used is

very small that might destruct the computation (Butcher, 2016).

63

Algorithm 4.3.3: Variable Stepsize  h

   

 



 

 

 

  

  

min

1

1

1
max

max

while and

if

if TRACE

Estimate the error,

.max ,1.0

if

if 0

min ,4. ,0.9. /

Accept .
else

min ,4.

e

n

n

n

out

out out

out

p

x x h h

x h x

h x x
h h

y y

y

x x h
y y

h h h h

h

h h h



 

















 

 

 



  






 

  


 
 

     




 

  1

lse

.max 0.25,0.9. / ph h 





























   
  

.

4.4 Implementation Scheme by González-Pinto et al. (1994, 1995)

The methods introduced in this research retains the coefficients ,i ib c and ija of the 2-

stage (G2) and 3-stage (G3) Gauss methods. Implementation schemes by González-

Pinto et al. (1994, 1995) is a modification from Cooper and Butcher (1983) where the

scheme consists of modified variables such as 1,S I L T P  and B I L  . B and

S are s s nonsingular real matrices while L is a strictly lower triangular s s matrix.

Originally, the variable , ,B S L and  (real positive number) in Cooper and Butcher

64

(1983) were chosen so that the spectral radius of ()M z which is denoted by [()]M z

is minimum for Re() 0z  . Their scheme were selected because it was classified as the

most efficient implementation for the integration of stiff problems (Peat & Thomas,

1989). Even though the numerical results satisfies the convergence and efficiency

behaviour, however the numerical analysis that has been done before is specialize for

linear and constant coefficient problems only. Since the convergence for nonlinear stiff

problems has not been explored in details, therefore González-Pinto et al. (1994, 1995)

iterative schemes were introduced in solving nonlinear stiff problems for G2 and G3

methods.

The general equation of the iterative scheme given by González-Pinto et al. (1994,

1995) are modified based on equation 3.5 in previous chapter with some modification

from Cooper and Butcher (1983). The derivation of the iterative scheme can be found

in González-Pinto et al. (1994) and the general equation are given as follows:

          
     

1

1

,

,

n n n
N n N

n n n

I h T J E Y e y h A I F Y

Y Y E





        

 

 (4.7)

where 1,2, ,n s . In González-Pinto et al. (1994, 1995), the coefficient k is used

instead of n . In this thesis, we changed into coefficient n because we want to use the

same coefficient as the general equations of Runge-Kutta methods introduced by

Butcher (2016). Smaller quantities    
1

n n
nZ Y e y    is applied to equation (4.7) and

the new equation of the iteration are given by

          
     

1

1

,

.

n n n
N N n

n n n

I h T J E Z h A I F Z e y

Z Z E





        

 

 (4.8)

65

There exists matrix T such that T is a real nonsingular constant matrix of dimension

s and it contained a unique eigenvalue 0  . This matrix T could advantages in

reducing the additional cost that was involved in the implementation.

The matrix T of G2 method is given by

3 0
6
3 3

3 6

T

 
 
 
 
 
 

,

while the value of matrix T for G3 method is given by

 
1 1 3

1, 1 0.0371745516 and ,
120

T S I L S  
     

0 0 0 0.0455241821 0.0441943589 0.0721518521
2 0 0 , 0.140048242 0.139620426 0.118832579 ,
0 0 0 1 0.244595668 1

0.1190762649202001 0.01352480890549548 0.002955703944789629
0.2567321613764653 0

L S

T



   
   

  
   
      



 .2864264722250291 0.008257284502425157 .
0.2617169889707876 0.5210947821158048 0.2027174624121108

 
 


 
  

The matrix T for G2 method is given by González-Pinto et al. (1994) whereas the

matrix T for G3 method is given by González-Pinto et al. (1995).

4.5 Implementation Scheme by Hairer and Wanner (1999)

For implementation scheme by Hairer and Wanner (1999), a new transformation has

been introduced and this changes are done to equations (3.11) – (3.13). Firstly, pre-

multiply (3.11) by  
1

NhA I
 . This gives

66

           1
1 1,n n n

N n nG Z hA I Z F x ch Z e y

       . (4.9)

Similarly, equation (3.12) becomes

        1
1 1,n n

G N n nD Z hA I J x ch Z e y

       . (4.10)

The reason for multiplying the stage derivatives by  
1

NhA I
 is to transform matrix

T so that 1 1S T A T  and      1n n
NW T I Z  can be introduced where S is the

Jordan canonical form of A that has the same diagonal elements.

Since      n n
NZ T I W  , the stage equation (4.9) becomes

             1 1
1 1,n n n

N N n N nG W h S I W T I F x ch T I W e y 

         . (4.11)

To solve for  nW , we need to find the Jacobian so that Newton-Raphson can be applied.

Equation (4.10) becomes

           1 1
1 1,n n

G N N n N nD W h S I T I J x ch T I W e y 

         . (4.12)

Finally, solving for  nW by using Newton-Raphson iteration yields

         
1

n n n
GW G W D W



   , (4.13)

where,

     1n n nW W W
   .

The update ny as given in (3.6) is therefore given by

   1
1

nT
n n Ny y b A T I W

   . (4.14)

CHAPTER 5

NUMERICAL EXPERIMENTS

In this chapter, the numerical results on the efficiency of 2-stage (G2) and 3-stage (G3)

Gauss methods using implementation strategies by Hairer and Wanner (1999) and

González-Pinto et al. (1994, 1995) were discussed for solving real life stiff problems.

The schemes were implemented by using variable stepsize setting with simplified

Newton iteration. All of these numerical results are very important in determining the

convergence test and to identify which implementation scheme gives efficient

behaviour.

 The numerical experiments has been done by using MATLAB R2019a

mathematical software on HP with 2.3GHz Intel ® Core i3-7020U with RAM 8GB. All

of the problems that have been tested are categorized as nonlinear problems. For each

problem, the results are tested in terms of tolerance and computational (CPU) time plots.

The tolerance graph is referring to how the tolerance behaves on a certain given value

Tol and how does it affect the error. It also determined the accuracy of the methods for

the given problems based on the researcher’s implementation schemes. The tolerance

68

used in this numerical experiments is 7Tol 10 . The efficiency of G2 and G3 methods

is measured in terms of CPU time (seconds) using tic and toc build-in function in

MATLAB. Implementation scheme by Hairer and Wanner (1999) is denoted by HW

scheme while González-Pinto et al. (1994, 1995) is denoted by GMR scheme.

5.1 Real Life Problems

There are six problems that has been investigated such as Robertson, Kaps, Brusselator,

Oreganator, Van der Pol and HIRES problems. All of the problems are classified as

stiff nonlinear problems, thus all of these problems consumed more time for the

computations. The schemes is compared based on three different implementations,

which denoted by GMR scheme for González-Pinto et al.(1994,1995), HW scheme for

Hairer and Wanner (1999) and the last one denoted by MHW scheme which refer to

modified HW scheme. The difference between HW and MHW scheme is that no

transformation such that  
1 1 1,NhA I S T A T    and      1n n

NW T I Z  is applied

to MHW scheme. The HW scheme is specially designed for the 3-stage RADAU

method and this scheme has been proven to give a robust implementation. As mentioned

in the previous chapter, the GMR scheme is a modification from Cooper and Butcher

(1983) implementation scheme. Their scheme is proven to give a convergent behaviour

for linear and constant coefficient problems and also very efficient for general

problems. Since the nonlinear stiff problems has been not investigated in details, thus

the GMR scheme is implemented in solving the nonlinear stiff problems for G2 and G3

methods.

69

For MHW scheme, it is quite similar with HW scheme, however the scheme is not

involving the coefficient matrix T for the implementation.

5.1.1 Robertson Problem

The Robertson problem is a chemical reaction problem proposed by Robertson (1966)

that describes the kinetics of an autocatalytic reaction. It was known as ROBER

problem and consists of a stiff system of three nonlinear ODEs (Hairer & Wanner,

1996). The problem can be written in the following form

    0, 0 ,dy f y y y
dt

 

with

 3, 0, .y t T 

The function f can also be written in a system as given by

' 4
1 1 2 3
' 4 7 2
2 1 2 3 2
' 7 2
3 2

0.04 10

0.04 10 3 10

3 10

y y y y
y y y y y
y y

  

   

 

 

 

 

1

2

3

0 1,

0 0,

0 0.

y

y

y







 (5.1)

Table 5.1 shows the structure of the reactions, where 1 2 3, ,k k k are the rate constants and

,A B and C are referring to the chemical species involved.

70

Table 5.1

Reaction scheme for problem ROBER

1

2

3

1.
2.
3.

k

k

k

A B
B B C B
B C A C



  

  

Aiken (1985) describes some idealized conditions and the expectation that it is

involving rate functions and the mass action law is applied to it. The mathematical odel

of ROBER problem consists of a set of three ODEs and can be shown by

'
1 1 1 3 2 3
' 2
2 1 1 2 2 3 2 3
' 2
3 2 2

,
y k y k y y
y k y k y k y y
y k y

    
   

     
  
  

 (5.2)

with         1 2 3 01 02 030 , 0 , 0 , ,
T Ty y y y y y where the coefficients 1 2 3, ,y y y are the

concentrations of ,A B and C respectively, while 01 02 03, ,y y y are the concentrations for

which the time 0.t  Since past decade, the ROBER problem became very popular

among mathematicians for the numerical studies and is favorable to be used as a test

problem for the solution of stiff systems. Originally, the problem was posed on the time

interval 0 40t  , but it is reasonable to integrate on much longer intervals in

determining their stability and efficiency. However, Hindmarsh (1980) discovered that

many codes fail if the problem is integrated at a longer computational time t .

For this numerical experiments, the problem is integrated to 10nx  with stepsize

0.01h  . The numerical result for G2 and G3 methods using Robertson problem is

given in Figures 5.1 – 5.3.

71

a) G2 method b) G3 method

Figure 5.1. Global error versus tolerance of (a) G2 and (b) G3 methods for Robertson
problem.

a) G2 method b) G3 method

Figure 5.2. Global error versus CPU time of (a) G2 and (b) G3 methods for Robertson
problem.

a) G2 method b) G3 method

Figure 5.3. Error estimation by using extrapolation versus tolerance of (a) G2 and (b)
G3 methods for Robertson problem.

72

Figure 5.1 and Figure 5.2 showed two plots which are the loglog absolute global error

versus loglog tolerance plot and loglog global error versus CPU time plot. In Figure 5.1

(a), as the tolerance gets stringent, we can see that the global error for HW scheme of

G2 method decreases and thus gives the smallest errors. However, the HW scheme

requires more computational time than GMR and the MHW schemes. Furthermore, the

GMR scheme as shown in Figure 5.2 (a) is being chosen as the most efficient scheme

in solving Robertson problem for G2 method. For the G3 method, it has been proven

that GMR scheme gives the smallest error among the others as the tolerances get

stringent (refer Figure 5.1(b)). The scheme also very efficient and takes shorter

computational time compared to HW and MHW schemes as shown in Figure 5.2 (b).

 Figure 5.3 shows the error estimation by using extrapolation versus tolerance

for G2 and G3 methods. For G2 method, it shows that the MHW and HW schemes

collide to each other at the last iteration and hence give the smallest error value.

However we intended to choose the MHW scheme as the scheme that gives the best

error estimation. Same goes to G3 method as shown Figure 5.3 (b), the MHW scheme

is proven to give the best error estimation as the tolerance become stringent. For both

G2 and G3 methods, the error estimation obtained is not that significant. This behaviour

shows than the local extrapolation does not effected the implementation scheme.

5.1.2 Kaps Problem

The Kaps problem is used to investigate the decreased order phenomenon (Dekker &

Verwer, 1984). The exact solution of this problem is   2
1

xy x e and  2
xy x e . In

73

an article written by Kennedy and Carpenter (2019), the exact solution of 1y has been

modified which is 2
1 2y y where it is referring to emergent (algebraic variable). This

problem consist of stiffness parameter q and this is a two-dimensional nonlinear test

problem which given by

 ' 2
1 1 2

' 2
2 1 2 2

2 ,

,

y q y qy

y y y y

  

  

 

 

1

2

0 1,

0 1.

y

y




 (5.2)

The problem is integrated to 5nx  , stepsize 0.01h  and constant stiff value

10000q   . The numerical result for Kaps problem is given in Figures 5.4 – 5.6.

a) G2 method b) G3 method

Figure 5.4. Global error versus tolerance of (a) G2 and (b) G3 methods for Kaps
problem.

a) G2 method b) G3 method

Figure 5.5. Global error versus CPU time of (a) G2 and (b) G3 methods for Kaps
problem.

74

a) G2 method b) G3 method

Figure 5.6. Error estimation by using extrapolation versus tolerance of (a) G2 and (b)
G3 methods for Kaps problem.

For the Kaps problem as given in Figure 5.4, the error for the MHW scheme for G2 and

G3 methods gives the smallest error as the tolerance gets stringent. The MHW scheme

also giving the most efficiency behaviour in solving this two dimensional nonlinear test

problem as shown in Figure 5.5 (a) and (b) and it takes shorter computational time

compared to GMR and HW schemes. For the approximate tolerance value of

10Tol 10 as shown in Figure 5.4 (b), the GMR scheme giving the least global error

than MHW scheme. However, the solution of GMR scheme is fluctuated significantly

as the tolerances become stringent meanwhile the global error of MHW scheme is

decreasing as the tolerance get stringent. Thus it can be concluded that the MHW

scheme is the most efficient implementation strategies in solving the Kaps problem for

G2 and G3 methods.

 In Figure 5.6 (a), the MHW scheme also gives an efficient results for G2 method

where the error estimation by using extrapolation is smaller than the others. However,

for G3 method as shown in Figure 5.6 (b), it can be seen that all of the schemes is giving

almost similar solutions as the tolerance get stringent. Furthermore, it can be concluded

75

that the error estimation by using extrapolation does not effected the implementation

strategies.

5.1.3 Brusselator Problem

The Brusselator is a theoretical model of a single chemical reaction or it is known as

autocatalytic reaction that was proposed by physical chemist, Ilya Prigogine and his

collaborators at the Free University of Brussels (Hairer & Wanner, 1996). The problem

is defined by the following equations:

' 2
1 1 2 1
' 2
2 1 1 2

1 4 ,
3 ,

y y y y
y y y y
  

 

 

 

1

2

0 1.5,

0 3.

y

y




 (5.3)

The problem is integrated to 10nx  and stepsize 0.01h  . The numerical result for

Brusselator problem is given in Figures 5.7 – 5.9.

a) G2 method b) G3 method

Figure 5.7. Global error versus tolerance of (a) G2 and (b) G3 methods for Brusselator
problem.

76

a) G2 method b) G3 method

Figure 5.8. Global error versus CPU time of (a) G2 and (b) G3 methods for Brusselator
problem.

a) G2 method b) G3 method

Figure 5.9. Error estimation by using extrapolation versus tolerance of (a) G2 and (b)
G3 methods for Brusselator problem.

Referring to Figure 5.7 (a), it can be shown that the scheme that gives the least error in

solving Brusselator problem for G2 method is the GMR scheme followed by HW and

MHW schemes. GMR scheme is said to give efficient numerical results among the

others as given in Figure 5.8 (a), therefore suitable in solving stiff problem. For the 3-

stage Gauss method as shown in Figure 5.7 (b), the HW scheme is giving the least

global error as the tolerance get stringent, however the scheme need more

computational time to solve the Brusselator problem as shown in Figure 5.8 (b). Hence,

the most efficient implementation scheme is proved by the MHW scheme as shown in

77

Figure 5.8 (b) where it takes shorter computational time since there is a need in

numerical analysis to choose the implementation strategies that gives shorter

computational time in obtaining good numerical results.

 Figure 5.9 shows the numerical results for G2 and G3 methods regarding the

error estimation that implemented using extrapolation technique. For G2 and G3

methods, it turns out that all schemes giving almost similar error at the last iteration.

Thus, it is difficult to choose which implementation schemes is giving the best error

estimation. However, it can be observed that the MHW scheme in Figure 5.9 (a) is

destroyed by the round-off error and hence, it is not recommended to be used in solving

Brusselator problem for G2 method.

5.1.4 Oreganator Problem

The Oreganator is one of the famous model with a periodic solution that was proposed

for the Belusov-Zhabotinskii reaction. It is one of the example of non-equilibrium

thermodynamics that categorized as nonlinear chemical oscillator of stiff problem with

three dimensions (Hairer & Wanner, 1996). The equations of the problem is given by

  

  

 

' 6
1 2 1 1 2

'
2 3 1 2

'
3 1 3

77.27 1 8.375 10

1 1
77.27
0.161

y y y y y

y y y y

y y y

    

  

 

 

 

 

1

2

3

0 1,

0 2,

0 3.

y

y

y







 (5.4)

The problem is integrated to 30nx  and stepsize 0.01h  . The numerical result for

Oreganator problem are given in Figures 5.10 – 5.12.

78

a) G2 method b) G3 method

Figure 5.10. Global error versus tolerance of (a) G2 and (b) G3 methods for Oreganator
problem.

a) G2 method b) G3 method

Figure 5.11. Global error versus CPU time of (a) G2 and (b) G3 methods for
Oreganator problem.

a) G2 method b) G3 method

Figure 5.12. Error estimation by using extrapolation versus tolerance of (a) G2 and (b)
G3 methods for Oreganator problem.

79

Figures 5.10 – 5.12 shows the numerical results obtained for Oreganator problem. From

the numerical results obtained, the G2 and G3 methods as shown in Figure 5.10 is

giving the least global error as the tolerance get stringent which implemented by GMR

scheme followed by MHW and HW schemes. However, the MHW scheme as shown

in Figure 5.11 gives the most efficient implementation strategies by G2 and G3 methods

and thus suitable in solving Oreganator problem.

 In Figure 5.12, the error estimation that being investigated are not giving an

excellent behaviour. This is because the results obtained shows that the schemes is

fluctuated significantly and destroyed by the round-off errors for both G2 and G3

methods especially for GMR and MHW schemes. However, it can be seen that the HW

scheme is giving the best error estimation for both G2 and G3 methods as the tolerance

get stringent.

5.1.5 Van der Pol Problem

The Van der Pol oscillator was originally proposed by the well-known physicist,

Balthasar Van der Pol while he was working at Philips, Amsterdam which is one of the

largest electronics companies in the world. He found a stable oscillations or it is called

as relaxation-oscillations which are now known as a type of limit cycle in electrical

circuits employing vacuum tubes. The Van der Pol equation has being used in both the

physical and biological sciences. The equation consists of stiffness parameter  . The

problem is defined by

80

  

'
1 2

' 2
2 1 2 1

1 1

y y

y y y y




  

 

 

1

2

0 2,

0 0.

y

y




 (5.5)

The problem is integrated to 5nx  , stepsize 0.01h  and 310  . The numerical

results for Van der Pol problem are given in Figures 5.13 – 5.15.

a) G2 method b) G3 method

Figure 5.13. Global error versus tolerance of (a) G2 and (b) G3 methods for Van der
Pol problem.

a) G2 method b) G3 method

Figure 5.14. Global error versus CPU time of (a) G2 and (b) G3 methods for Van der
Pol problem.

81

a) G2 method b) G3 method

Figure 5.15. Error estimation by using extrapolation versus tolerance of (a) G2 and (b)
G3 methods for Van der Pol problem.

Figures 5.13 – 5.15 shows the numerical results of G2 and G3 methods for Van der Pol

problem in terms of tolerance, CPU time and error estimation by extrapolation. In

Figure 5.13, it can be observed that GMR scheme for G2 method gives the least global

error followed by MHW and HW schemes, therefore it can be concluded that the

scheme gives better accuracy for the solution of nonlinear stiff problem. The GMR

scheme also giving the most efficient implementation strategies in solving Van der Pol

problem for the solutions of G2 method since it takes shorter computational time

compared to the others as shown in Figure 5.14 (a). For G3 method as shown in Figure

5.13 (b), as the tolerances become stringent the MHW and GMR schemes are observed

to give almost similar error where both of it are satisfying the efficiency behaviour.

Nevertheless, among these two schemes we intended to conclude that the MHW

scheme is the most efficient implementation strategies in solving Van der Pol problem

by the G3 method as it gives shorter computation time (refer Figure 5.14 (b)).

 In Figure 5.15, both figures (a) and (b) shows the error estimation that estimated

using extrapolation technique. It can be observed that the error estimation obtained by

82

G2 method is giving the best error estimation for GMR and HW schemes and both of

it are suitable for the solution of stiff problems using variable stepsize setting where the

schemes satisfy the convergence property. The MHW scheme as shown in Figure 5.15

(a) is fluctuated significantly and got destroyed by the round-off errors along the

iteration. However, the HW scheme is shown to give the best error estimation for G3

method where it generated the least error estimation as the tolerance become stringent.

5.1.6 HIRES Problem

Schäfer (1975) proposed a HIRES problem and defined it as a reaction of 8 reactants.

The studied is about the photomorphogenesis of a plant that used a high-frequency-

controlled light source to grow a plant. The word HIRES was originally stand for ‘High

Irradiance RESponse’ where the mathematical model of ODEs was given by Hairer and

Wanner (1996). A further explanation of HIRES can be found in Swart, Jacques and

Lioen (1998). HIRES is a nonlinear system of 8 dimensions and categorized as a

moderately stiff problem. The problem is of the following form

'
1 1 2 3
'
2 1 2
'
3 3 4 5
'
4 2 3 4
'
5 5 6 7
'
6 6 8 4 5 6 7
'
7 6 8 7
'
8

1.71 0.43 8.32 0.0007,

1.71 8.75 ,
10.03 0.43 0.035 ,

8.32 1.71 1.12 ,

1.745 0.43 0.43 ,

280 0.69 1.71 0.43 0.69 ,

280 1.81 ,

280

y y y y
y y y
y y y y
y y y y
y y y y
y y y y y y y
y y y y
y y

    

 

   

  

   

     

 

  6 8 71.87 ,y y

 

 

 

 

 

 

 

 

1

2

3

4

5

6

7

8

0 1,

0 0,

0 0,

0 0,

0 0,

0 0,

0 0,

0 0.0057.

y

y

y

y

y

y

y

y

















 (5.6)

83

The problem is integrated to 321.8122nx  and stepsize 0.01h  . The numerical

results for HIRES problem are given in Figures 5.16 – 5.18.

a) G2 method b) G3 method

Figure 5.16. Global error versus tolerance of (a) G2 and (b) G3 methods for HIRES
problem.

a) G2 method b) G3 method

Figure 5.17. Global error versus CPU time of (a) G2 and (b) G3 methods for HIRES
problem.

84

a) G2 method b) G3 method

Figure 5.18. Error estimation by using extrapolation versus tolerance of (a) G2 and (b)
G3 methods for HIRES problem.

Figure 5.16 shows the numerical results for HIRES problem by G2 and G3 methods. It

can be observed that the GMR scheme gives the lowest global error as the tolerance

become stringent for G2 method, whereas the HW scheme is giving the lowest global

error for G3 method. In terms of CPU time as shown in Figure 5.17, the MHW scheme

is the most efficient implementation strategies for both G2 and G3 methods where the

scheme is giving less computational time among the others.

 Lastly, the numerical results for G2 and G3 methods are presented in terms of

error estimation that computed by using extrapolation technique (refer Figure 5.18).

The HW and MHW schemes are observed to give almost similar error estimation for

G2 and G3 methods towards the end of the iteration. However, we intended to choose

the HW scheme as the scheme that gives the best error estimation for both G2 and G3

methods in solving HIRES problem using variable stepsize setting.

85

5.2 Summary on Numerical Results

Based on all the numerical results, it can be summarized that different problems gives

different numerical approximations depends on their stiffness ratio using different

implementation strategies. Apparently, the scheme proposed by Hairer and Wanner

(1999) or denoted as HW scheme gives the weaker yet less efficiency among the others

for the solution of stiff problems using variable stepsize setting. It can be concluded

that HW scheme is not recommended to be used with variable stepsize setting for Gauss

methods. This is due to the implementation that was investigated using 2-stage and 3-

stage Gauss methods. As it is concerned that even though the HW scheme is very

efficient in solving Radau IIA method, thus their efficiency is now proven to give an

efficient implementation limited to this method only, and thus not efficient when

implemented with other IRK methods such as 2-stage and 3-stage Gauss methods. It

might be a reason of the differences in eigenvalues where Radau IIA method only have

a single eigenvalue whereas the Gauss methods have a complex eigenvalue. Other than

that, Radau IIA method also satisfy the properties of A-stable and L-stable whereas

Gauss method only satisfied the A-stable property. The L-stable property only can be

found in Radau IIA method which contributes to the extra advantages. Furthermore, it

can be summarized that the MHW scheme is as efficient as GMR and HW schemes

when implemented with extrapolation technique even though the scheme is without any

transformation matrix T. Table 5.2 shows the summary of the numerical results that was

obtained for the solution of G2 and G3 methods.

86

Table 5.2

The most efficient implementation of real life stiff problems

Problems
Global error versus

tolerance
Global error versus

CPU time

Error estimation
(extrapolation)
versus tolerance

G2 G3 G2 G3 G2 G3
Robertson HW GMR GMR GMR MHW MHW

Kaps MHW MHW MHW MHW MHW
GMR
HW

MHW

Brusselator GMR HW GMR MHW GMR
HW

GMR
HW

MHW
Oreganator GMR GMR MHW MHW HW HW

Van der Pol GMR MHW GMR MHW GMR
HW HW

HIRES GMR HW MHW MHW HW HW

The summary on numerical results that was presented in Table 5.2 can also be illustrated

in terms of the error values for each scheme as shown in Table 5.3 and Table 5.4.

Table 5.3

Error values for each scheme in terms of global error versus tolerance  13Tol 10

Problems Error values for each scheme (G2 method)
GMR HW MHW

Robertson 1.29314433252579e-12 3.74256612837401e-13 1.7390072683974e-11
Kaps 6.15770636140043e-16 3.2662438383076e-11 2.30607329869179e-16

Brusselator 2.63775533058874e-14 2.17300796281834e-13 1.10792004254562e-11
Oreganator 7.75043188081224e-10 1.6635073305158e-08 2.03212543216419e-09
Van der Pol 3.33713731538484e-11 1.18690109433547e-08 6.97397387928324e-11

HIRES 2.05399986098905e-14 3.12527885208792e-12 1.10873918922055e-12

Problems Error values for each scheme (G3 method)
GMR HW MHW

Robertson 1.39703239165766e-13 4.19109717497298e-13 4.44148181970094e-10
Kaps 3.63261375116538e-12 2.90037660036354e-12 1.61425130908426e-15

Brusselator 2.0222790867847e-13 1.25607396694702e-15 4.01943669423046e-14
Oreganator 3.14428090124009e-09 1.60922280152946e-07 6.04281640138125e-09
Van der Pol 2.25200245459964e-10 2.58545366667904e-09 1.62577421763854e-10

HIRES 6.42259813206665e-13 4.07593549004841e-13 2.29913913254419e-12

87

Table 5.4

Error values for each scheme in terms of error estimation by using extrapolation versus
tolerance  13Tol 10

Problems Error estimation values for each scheme (G2 method)
GMR HW MHW

Robertson 1.75203266981614e-15 1.14736773620886e-15 3.4656060859046e-16
Kaps 2.61682076447296e-19 1.74454717631531e-19 2.18068397039413e-20

Brusselator 3.2937050688833e-16 2.1771948760415e-16 3.20996680442016e-16
Oreganator 2.40844495663904e-12 2.40844495663904e-12 7.00129347860186e-14
Van der Pol 6.97818870526122e-15 1.74957147218309e-14 1.13716563140937e-14

HIRES 4.64167305834273e-15 2.7952007132512e-16 6.92498001638361e-16

Problems Error estimation values for each scheme (G3 method)
GMR HW MHW

Robertson 1.53367054264227e-16 1.97431921063568e-18 4.10416148056316e-16
Kaps 2.34880926516375e-20 6.55194163440414e-20 3.70864620815329e-21

Brusselator 4.43059600334046e-18 9.81060543596816e-18 1.58235571547874e-18
Oreganator 2.54015182897119e-14 2.54015182897119e-14 2.54015182897119e-14
Van der Pol 1.89882685857448e-18 1.89882685857448e-18 4.61984574691171e-15

HIRES 5.63961466719843e-18 2.14606993911804e-18 2.38595753801542e-17

The error values that highlighted in red colour as shown in Table 5.3 and Table 5.4

indicates the lowest error obtained among the schemes for certain given tolerance,

13Tol 10 . For the problem that highlighted more than one red colour indicates the

same error values obtained by the schemes.

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

The main objectives of this thesis is to study the implementation schemes by González-

Pinto et al. (1994, 1995) and Hairer and Wanner (1999) by using variable stepsize

setting that involving 2-stage (G2) and 3-stage (G3) Gauss methods. To know either the

implementation is correct or wrong, the first stage is to implement the schemes to Radau

IIA method of order 3. This method is chosen because it is proven to give a robust

implementation when implemented with Hairer and Wanner (1999) implementation

scheme using variable stepsize setting as mentioned previously. It is considered giving

a correct implementation if the numerical approximations satisfies the convergence test

and efficiency behaviour. Thus, the Matlab code is then being implemented using G2

and G3 Gauss methods.

Literature review suggested GMR scheme is constructed for the families of

Gauss methods while HW scheme is constructed for Radau IIA method. However,

89

based on this research, it is shown that the standard implementation scheme with some

tuning using HW scheme known as modified HW (MHW) scheme that does not involve

any transformation matrix T can be as efficient as the HW and GMR schemes.

Therefore, this thesis proved that the transformation matrix T is not necessary and

although they can cause cheaper implementation, however the computational time is

marginally adjustable. Hence, the conclusions of the research are done by answering

the three objectives of this research.

6.1.1 Implementation Ideas

As mentioned previously, Hairer and Wanner (1999) implementation scheme is

specially designed for the 3-stage Radau method and it has been proven to give

robustness and satisfy the efficiency properties. For this research, an investigation

regarding researcher’s scheme has been investigated by using different implicit Runge-

Kutta (IRK) methods which are 2-stage (G2) and 3-stage (G3) Gauss methods. In the

research that was investigated by González-Pinto et al. (1994, 1995), it has been proven

that the Gauss methods gives the least error than the diagonally-implicit Runge-Kutta

(DIRK) methods. In addition to that, they also found out that the performance of 3-stage

Radau method is poorer than the Gauss methods probably due to the one order less. In

other words, Gauss methods are particularly suitable for solving stiff systems because

they have higher order of convergence and good stability properties. This properties has

also been proven in the numerical results that was obtained for this research. The real

life problems that were investigated are the Robertson, Kaps, Brusselator, Oreganator,

Van der Pol and HIRES problems as explained in detailed in previous chapter. Based

90

on the numerical results obtained, it can be summarized that all the scheme involved

which denote by GMR scheme for González-Pinto et al. (1994, 1995), HW scheme for

Hairer and Wanner (1999) and the last one denote by modified HW (MHW) scheme

are suitable in solving certain real life problems by the G2 and G3 methods.

6.1.2 Best Error Estimation

The extrapolation technique has been implemented throughout the research to estimate

the best error estimation among the researcher’s schemes using six real life stiff

problems as described previously. From the numerical approximations obtained, it is

proven that the GMR scheme by using G2 method is giving the best error estimation

for Brusselator and Van der Pol problems, whereas for G3 method it is giving the best

error estimation for Kaps and Brusselator problems. For HW scheme, the G2 method is

giving the best error estimation for Brusselator, Oreganator, Van der Pol and HIRES

problems. The HW scheme by using G3 method is also giving the best error estimation

for all the problems except for the Robertson problem. The comparison also being

compared with the so-called MHW scheme without using any transformation matrix T

and it has been proven that the scheme is giving the best error estimation in solving

Robertson and Kaps problems by using G2 method meanwhile for the G3 method, the

Robertson, Kaps and Brusselator problems also giving the best error estimation. From

the numerical results obtained, it can be summarized that among these three schemes,

the HW scheme is giving the best error estimation because the scheme can solve almost

all real life stiff problems involved in this research.

91

6.1.3 Most Efficient Implementation Strategies for Gauss Methods

In deciding the most efficient implementation strategy for Gauss methods, a comparison

has been made between the schemes by González-Pinto et al. (1994, 1995) which is

denoted by GMR scheme, and the two types of Hairer and Wanner (1999)

implementation schemes which are denoted by HW and MHW schemes. The difference

between HW and MHW schemes are mentioned in previous chapter.

Based on all the numerical results obtained, it can be summarized that the GMR

scheme gives efficient implementation in solving Robertson, Brusselator and Van der

Pol problems using variable stepsize setting by the G2 method whereas for G3 method,

only Robertson problem gives the most efficiency behaviour. GMR scheme not only

satisfies the requirement of high accuracy and high efficiency in solving stiff problems

but also has lower computational cost. This clearly proved that the Robertson problem

is the most efficient stiff problem which implemented with GMR scheme because the

problem is satisfy the efficiency properties for both of G2 and G3 methods.

As mentioned previously, the HW scheme is specially designed for 3-stage

Radau IIA method and it has been proven to give a robust implementation. However,

for this research which implemented by using G2 and G3 methods, the scheme is not

giving good efficiency behaviour among the problems involved. None of the problems

involved are showing good efficiency behaviour. The reason might be because of the

differences in the eigenvalue involved since the 3-stage Radau IIA method is having a

single eigenvalue while the family of Gauss methods is consisting of complex

eigenvalue. Besides, the difference in stability behaviour might affected the numerical

92

analysis. Generally, the Radau IIA method is satisfy the property of A-stable and L-

stable while for the family of Gauss methods, it is only satisfy the property of A-stable.

L-stable is an extra advantages that only can be found in the family of Radau methods.

The scheme is also being compared with the so called MHW scheme. Even

though the MHW scheme is without using any transformation matrix T, however the

scheme is proven to give efficient implementation for the solution of G2 and G3

methods and thus suitable in solving stiff problems using variable stepsize setting. For

the solution of G2 method, the scheme is efficient in solving Kaps, Oreganator and

HIRES problems while for the G3 method, it is efficient in solving all real life problems

except for the Robertson. This behaviour obviously shows that even though the MHW

scheme is without using any transformation matrix T, the scheme is as efficient as GMR

and HW schemes. This research therefore recommended the use of MHW scheme in

solving stiff problems by the implicit Gauss methods as it is shown from all the

numerical experiments that MHW although requires a little computational time, the

scheme is considered to give the most stable behaviour and works as efficient as the

other two schemes.

6.2 Future Work

In this thesis, we have shown that the standard compensated summation is not a crucial

components that need to be implemented when the variable stepsize setting is used even

though it plays an important role in reducing the round-off errors. However, it will be

93

an interest to investigate in detailed the use of other compensated summation such as

Kahan’s compensated summation with implementation using other IRK methods.

Besides, the researchers also interested to conduct the implementation schemes using

higher order stages which implemented with different approach of Runge-Kutta

methods as introduced by various researchers in Section 2.3. This kind of approach is

then can be tested on more real life problems such as linear and nonlinear problems

with real and complex eigenvalues and also a few problems with nonlinear coupling

which implemented using variable stepsize setting.

Furthermore, the researcher also could extend the research based on other error

estimation such as symmetrization instead of extrapolation as described by Gorgey

(2015) in order to determine the error estimation by using variable stepsize setting.

Symmetrization is a technique that is use to dampens the oscillator behaviour caused

by the 2-stage (G2) and 3-stage (G3) Gauss methods. Symmetrizers can be used to

determine the error estimations for the Gauss method instead of extrapolation as it is

proven in Gorgey (2015) that, symmetrizers give less error estimation than by the local

extrapolation. Other than symmetrization and extrapolation, the error estimation also

can be determined by using any embedded method such as splitting and composition

methods as described by Blanes, Casas and Thalhammer (2019). This is the new error

estimator that proposed by them. In addition to these, this research can also explore

different types of problems such as delay differential equations as described by Roussel

(2019) as well as in Holder and Eichholz (2019). Lastly, the research also could be

extended to fuzzy differential equations as mentioned by Yu and Jafari (2019) and

Hussain and Abdul-Abbas (2019).

94

LIST OF PUBLICATION AND CONFERENCE

Publications

Mustapha, S. S., Gorgey, A. & Imran, G. (2021). Error Estimation by using

Symmetrization and Efficient Implementation Scheme for 3-stage Gauss Method.

Journal of Science and Mathematics Letters, 9, 36-44.

Conference

International Conference on Education, Mathematics and Science 2020 (ICEMS2020)

in conjunction with 8th International Postgraduate Conference on Science and

Mathematics 2020 (IPCSM2020).

95

REFERENCES

Ababneh, O. Y. & Ahmad, R. (2009). Construction of third-order diagonal implicit

Runge-Kutta methods for stiff problems. Chinese Physics Letters, 26(8),
080503.

Abia, L. & Sanz-Serna, J. M. (1993). Partitioned Runge-Kutta methods for separable

Hamiltonian problems. Mathematics of Computation, 60(202), 617-634.

Agam, S. A. & Yahaya, Y. A. (2014). A highly efficient implicit Runge-Kutta method

for first order ordinary differential equations. African Journal of Mathematics
and Computer Science Research, 7(5), 55-60.

Aiken, R. C. (1985). Stiff Computation. Oxford: Oxford University Press.

Antoñana, M., Makazaga, J. & Murua, A. (2018). Efficient implementation of

symplectic implicit Runge-Kutta schemes with simplified Newton iterations.
Numerical Algorithms, 78(1), 63-86.

Araz, S. İ. (2020). Numerical analysis of a new Volterra integro-differential equation

involving fractal-fractional operators. Chaos, Solitons & Fractals, 130, 109396.

Atangana, A. & Araz, S. İ. (2020). New numerical method for ordinary differential

equations: Newton polynomial. Journal of Computational and Applied
Mathematics, 372, 112622.

Atkinson, K., Han, W. & Stewart, D. E. (2009). Numerical Solution of Ordinary

Differential Equations. New Jersey: John Wiley & Sons, Inc.

Baboulin, M., Buttari, A., Dongarra, J., Kurzak, J., Langou, J., Langou, J., et al. (2009).

Accelerating scientific computations with mixed precision
algorithms. Computer Physics Communications, 180(12), 2526-2533.

Bader, G. & Deuflhard, P. (1983). A semi-implicit mid-point rule for stiff systems of

ordinary differential equations. Numerische Mathematik, 41(3), 373-398.

Berghe, G. V. & Daele, M. V. (2011). Symplectic exponentially-fitted four-stage

Runge-Kutta methods of the Gauss type. Numerical Algorithms, 56(4), 591-
608.

Bjurel, G., Dahlquist, G., Lindberg, B., Linde, S. & Oden, L. (1970). Survey of stiff

ordinary differential equations. Department of Information Processing, Royal
Institute of Technology, Stockholm.

96

Blanes, S., Casas, F. & Thalhammer, M. (2019). Splitting and composition methods
with embedded error estimators. Applied Numerical Mathematics. 146 (2019),
400-415.

Boom, P. D. & Zingg, D. W. (2015). Investigation of efficient high-order implicit

Runge-Kutta methods based on generalized summation-by-parts operators.
22nd AIAA Computational Fluid Dynamics Conference, 2757, 1-15.

Branch, M. & Mahshahr, I. R. I. (2016). Computing simulation of the generalized

duffing oscillator basedon EBM and MHPM. Mechanics and Mechanical
Engineering, 20(4), 595-604.

Burrage, K. & Butcher, J. C. (1979). Stability criteria for implicit Runge-Kutta

methods. SIAM Journal on Numerical Analysis, 16(1), 46-57.

Butcher, J. C. (1964). Implicit Runge-Kutta processes. Mathematics of

Computation, 18(85), 50-64.

Butcher, J. C. (1996). A history of Runge-Kutta methods. Applied Numerical

Mathematics, 20(3), 247-260.

Butcher, J. C. (1997). An introduction to “Almost Runge-Kutta” methods. Applied

Numerical Mathematics, 24(2-3), 331-342.

Butcher, J. C. (2016). Numerical Methods for Ordinary Differential Equations. United

Kingdom: John Wiley & Sons.

Calvo, M., Franco, J. M., Montijano, J. I. & Rández, L. (2009). Sixth-order symmetric

and symplectic exponentially fitted Runge-Kutta methods of the Gauss type.
Journal of Computational and Applied Mathematics, 223(1), 387–398.

Cash, J. R. (1975). A class of implicit Runge-Kutta methods for the numerical

integration of stiff ordinary differential equations. Journal of the ACM
(JACM), 22(4), 504-511.

Cerrolaza, M., Shefelbine, S. & Garzón-Alvarado, D. (Eds.). (2018). Numerical

Methods and Advanced Simulation in Biomechanics and Biological Processes.
London, UK: Academic Press.

Chan, R. P. K. (1990). On symmetric Runge-Kutta methods of high order. Computing,

45(4), 301–309.

Chan, R. P. K. & Gorgey, A. (2013). Active and passive symmetrization of Runge-

Kutta Gauss methods. Applied Numerical Mathematics, 67, 64–77.

Chan, R. P. K. & Razali, N. (2014). Smoothing effects on the IMR and ITR. Numerical

Algorithms, 65(3), 401-420.

97

Cong, N. H. (1994). Parallel iteration of symmetric Runge-Kutta methods for nonstiff
initial-value problems. Journal of Computational and Applied Mathematics,
51(1), 117–125.

Cooper, G. J. & Butcher, J. C. (1983). An iteration scheme for implicit Runge-Kutta

methods. IMA Journal of Numerical Analysis, 3(2), 127-140.

Dahlquist, G. G. (1963). A special stability problem for linear multistep methods. BIT

Numerical Mathematics, 3(1), 27-43.

Dekker, K. & Verwer J.G. (1984). Stability of Runge-Kutta methods for stiff nonlinear

differential equations. North-Holland: CWI Monographs.

DeVries, P. & Hasbun, J. (2011). A First Course in Computational Physics. Sudbury,

MA: Jones and Bartlett Publishers.

Dormand, J. R. (2018). Numerical Methods for Differential Equations: A

Computational Approach. Boca Raton, FL: CRC Press.

Ehle, B. L. (1973). A-stable methods and Padé approximations to the

exponential. SIAM Journal on Mathematical Analysis, 4(4), 671-680.

Enright, W. H., Hull, T. E. & Lindberg, B. (1975). Comparing numerical methods for

stiff systems of ODEs. BIT Numerical Mathematics, 15(1), 10-48.

Fan, Z., Song, M. & Liu, M. (2009). The αth moment stability for the stochastic

pantograph equation. Journal of Computational and Applied
Mathematics, 233(2), 109-120.

Faragó, I., Havasi, Á. & Zlatev, Z. (2013). The convergence of diagonally implicit

Runge-Kutta methods combined with Richardson extrapolation. Computers and
Mathematics with Applications, 65(3), 395–401.

Fatunla, S. O. (2014). Numerical Methods for Initial Value Problems in Ordinary

Differential Equations. San Diego, CA: Academic Press, Inc.

Gear, C. W. (1980). Runge-Kutta starters for multistep methods. ACM Transactions on

Mathematical Software (TOMS), 6(3), 263-279.

González-Pinto, S., González-Concepción, C. & Montijano, J. I. (1994). Iterative

schemes for Gauss methods. Computers and Mathematics with
Applications, 27(7), 67-81.

González-Pinto, S., Hernández-Abreu, D. & Montijano, J. I. (2019). Variable step-size

control based on two-steps for Radau IIA methods. Preprint:
https://www.researchgate.net/publication/331687918_Variable_step-
size_control_based_on_two-steps_for_Radau_IIA_methods

98

González-Pinto, S., Montijano, J. I. & Rández, L. (1995). Iterative schemes for three-
stage implicit Runge-Kutta methods. Applied Numerical Mathematics, 17(4),
363–382.

Gorgey, A. (2012). Extrapolation of symmetrized Runge-Kutta methods. PhD thesis,

ResearchSpace @ University of Auckland.

Gorgey, A. (2015). Extrapolation of symmetrized Runge-Kutta methods in the variable

stepsize setting. International Journal of Applied Mathematics and
Statistics, 55(2), 14-22.

Gorgey, A. & Chan, R. P. K. (2015). Choice of strategies for extrapolation with

symmetrization in the constant stepsize setting. Applied Numerical
Mathematics, 87, 31-37.

Gorgey, A. & Mat, N. A. A. (2018). Efficiency of Runge-Kutta methods in solving

simple harmonic oscillators. Matematika, 34(1), 1-12.

Gorgey, A. & Muhammad, H. (2017). Efficiency of Runge-Kutta methods in solving

Kepler problem. AIP Conference Proceedings. 1847(1), 020016.

Guo, P. & Li, C. J. (2019). Razumikhin-type technique on stability of exact and

numerical solutions for the nonlinear stochastic pantograph differential
equations. BIT Numerical Mathematics, 59(1), 77-96.

Gustafsson, K. (1994). Control-theoretic techniques for stepsize selection in implicit

Runge-Kutta methods. ACM Transactions on Mathematical Software
(TOMS), 20(4), 496-517.

Hairer, E. & Wanner, G. (1981). Algebraically stable and implementable Runge-Kutta

methods of high order. SIAM Journal on Numerical Analysis, 18(6), 1098-1108.

Hairer, E. & Wanner, G. (1996). Solving Ordinary Differential Equations II. London:

Springer-Verlag Berlin Heidelberg.

Hairer, E. & Wanner, G. (1999). Stiff differential equations solved by Radau methods.

Journal of Computational and Applied Mathematics, 111(1-2), 93-111.

Higham, N. J. (1993). The accuracy of floating point summation. SIAM Journal on

Scientific Computing, 14(4), 783-799.

Hindmarsh, A. C. (1980). LSODE and LSODI, two new initial value ordinary

differential equation solvers. ACM Signum Newsletter, 15(4), 10-11.

Hitchens, F. (2015). Propeller Aerodynamics: The History, Aerodynamics & Operation

of Aircraft Propellers. Wellington, NZ: Andrews UK Limited.

Holder, A. & Eichholz, J. (2019). Modeling with delay differential equations. In An

Introduction to Computational Science. Switzerland: Springer, Cham. 377-387.

99

Hussain, E. A. & Abdul-Abbass, Y. M. (2019). On Fuzzy differential equation. Journal
of Al-Qadisiyah for Computer Science and Mathematics, 11(2), 1-9.

Iserles, A. (2009). A first course in the numerical analysis of differential equations.

New York, US: Cambridge University Press.

Ismail, A. & Gorgey, A. (2015). Behaviour of the extrapolated implicit midpoint and

implicit trapezoidal rules with and without compensated summation.
Matematika, 31(1), 47–57.

Kennedy, C. A. & Carpenter, M. H. (2019). Diagonally implicit Runge-Kutta methods

for stiff ODEs. Applied Numerical Mathematics, 146(6), 221-244.

Kim, I. P. & Kräuter, A. R. (2018). Decompositions of a matrix by means of its dual

matrices with applications. Linear Algebra and its Applications, 537, 100-117.

Kulikov, G. Y. (2015). Embedded symmetric nested implicit Runge-Kutta methods of

Gauss and Lobatto types for solving stiff ordinary differential equations and
Hamiltonian systems. Computational Mathematics and Mathematical Physics,
55(6), 983–1003.

Kuntzmann, J. (1961). Neuere entwicklungen der methode von runge und

kutta. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für
Angewandte Mathematik und Mechanik, 41(1), 28-31.

Lambert, J. D. (1991). Numerical Methods for Ordinary Differential Systems: The

Initial Value Problem. New York, US: John Wiley & Sons, Inc.

Lapidus, L. & Schiesser, W. E. (1976). Numerical Methods for Differential Systems:

Recent Developments in Algorithms, Software, and Applications. United
Kingdom: Academic Press Inc.

Liu, Y. (1995). Stability analysis of θ-methods for neutral functional-differential

equations. Numerische Mathematik, 70(4), 473-485.

Liu, M. Y., Zhang, L. & Zhang, C. F. (2019). Study on banded implicit Runge-Kutta

methods for solving stiff differential equations. Mathematical Problems in
Engineering, 2019, 4850872.

Muhammad, M. H. (2018). An Efficient Implementation Technique for Implicit Runge-

Kutta Methods in Solving the Stiff Problems. Universiti Pendidikan Sultan Idris.

Muhammad, M. H. & Gorgey, A. (2018). Investigation on the most efficient ways to

solve the implicit equations for Gauss methods in the constant stepsize setting.
Applied Mathematical Sciences, 12(2), 93-103.

Najafi, R. & Nemati, S. B. (2017). Numerical solution of the forced Duffing equations

using Legendre multiwavelets. Computational Methods for Differential
Equations, 5(1), 43-55.

100

Nazari, F., Mohammadian, A., Charron, M. & Zadra, A. (2014). Optimal high-order
diagonally-implicit Runge-Kutta schemes for nonlinear diffusive systems on
atmospheric boundary layer. Journal of Computational Physics, 271, 118-130.

Owolabi, K. M. (2019). Mathematical modelling and analysis of love dynamics: A

fractional approach. Physica A: Statistical Mechanics and its Applications, 525,
849-865.

Peat, K. D. & Thomas, R. M. (1989). Implementation of iteration schemes for implicit

Runge-Kutta methods. University of Manchester. Department of Mathematics.

Prothero, A., & Robinson, A. (1974). On the stability and accuracy of one-step methods

for solving stiff systems of ordinary differential equations. Mathematics of
Computation, 28(125), 145-162.

Ramos, H. (2019). Development of a new Runge‐Kutta method and its economical

implementation. Computational and Mathematical Methods, 1(2), e1016.

Rang, J. (2016). The Prothero and Robinson example: Convergence studies for Runge-

Kutta and Rosenbrock-Wanner methods. Applied Numerical Mathematics, 108,
37-56.

Rasedee, A. F. N., Ishak, N., Hamzah, S. R., Ijam, H. M., Suleiman, M., Ibrahim, Z.

B., et al. (2017). Variable order variable stepsize algorithm for solving nonlinear
Duffng oscillator. Journal of Physics: Conference Series, 890, 012045.

Razali, N., Nopiah, Z. M. & Othman, H. (2018). Comparison of one-step and two-step

symmetrization in the variable stepsize setting. Sains Malaysiana, 47(11),
2927-2932.

Rechenberg, H. (2001). The Historical Development of Quantum Theory, Volume 1.

New York, US: Springer Science & Business Media.

Robertson, H. H. (1966). The solution of a set of reaction rate equations. Cambridge,

Massachusetts: Academic Press. 178-182.

Roussel, M. R. (2019). Nonlinear Dynamics: A hands-on introductory survey. Bristol,

UK: Morgan & Claypool Publishers.

Rushanan, J. J. (1989). On the Vandermonde matrix. The American Mathematical

Monthly, 96(10), 921-924.

Sanderse, B. & Koren, B. (2012). Accuracy analysis of explicit Runge-Kutta methods

applied to the incompressible Navier-Stokes equations. Journal of
Computational Physics, 231(8), 3041– 3063.

Sanz-Serna, J. (1988). Runge-Kutta schemes for Hamiltonian systems. BIT Numerical

Mathematics, 28(4), 877-883.

101

Sanz-Serna, J. M. (2016). Symplectic Runge-Kutta schemes for adjoint equations,
automatic differentiation, optimal control, and more. SIAM Review, 58(1), 3-33.

Schäfer, E. (1975). A new approach to explain the “high irradiance responses” of

photomorphogenesis on the basis of phytochrome. Journal of Mathematical
Biology, 2(1), 41-56.

Shampine, L. F. (1984). Stability of explicit Runge-Kutta methods. Computers &

Mathematics with Applications, 10(6), 419-432.

Shampine, L. F. (1985). Local error estimation by doubling. Computing, 34(2), 179-

190.

Shampine, L. F. (2018). Numerical Solution of Ordinary Differential Equations. Boca

Raton, FL: Routledge.

Skvortsov, L. M. & Kozlov, O. S. (2014). Efficient implementation of diagonally

implicit Runge-Kutta methods. Mathematical Models and Computer
Simulations, 6(4), 415-424.

Sun, G. A. (2000). Simple way constructing symplectic Runge-Kutta methods. Journal

of Computational Mathematics, 18(1), 61–68.

Swart, D., Jacques, J. B. & Lioen, W. M. (1998). Collecting real-life problems to test

solvers for implicit differential equations. CWI Quarterly, 11(1), 83-100.

Toufik, M. & Atangana, A. (2017). New numerical approximation of fractional

derivative with non-local and non-singular kernel: application to chaotic
models. The European Physical Journal Plus, 132(10), 444.

Varah, J. M. (1979). On the efficient implementation of implicit Runge-Kutta methods.

Mathematics of Computation, 33(146), 557.

Wang, P., Zhou, J., Wang, R. & Chen, J. (2017). New generalized variable stepsizes of

the CQ algorithm for solving the split feasibility problem. Journal of
Inequalities and Applications, 2017(1), 135.

Wang, Y. & Chen, Y. (2020). Shifted Legendre Polynomials algorithm used for the

dynamic analysis of viscoelastic pipes conveying fluid with variable fractional
order model. Applied Mathematical Modelling, 81, 159-176.

Wilkie, J. & Çetinbaş, M. (2005). Variable-stepsize Runge-Kutta methods for

stochastic Schrödinger equations. Physics Letters A, 337(3), 166-182.

Williams, G. (2017). Linear Algebra with Applications. United State of America: Jones

& Barlett Learning.

Willoughby, R. A. (1974). Stiff Differential Systems. International Symposium on Stiff

Differential Systems. Boston, MA: Springer. 1-19.

102

Xu, P., Yuan, Z., Jian, W. & Zhao, W. (2015). Variable step-size method based on a
reference separation system for source separation. Journal of Sensors, 2015.
964098.

Yaici, M. & Hariche, K. (2019). A particular block Vandermonde matrix. ITM Web of

Conferences, 24. 01008.

Yang, H., Yang, Z., Wang, P. & Han, D. (2019). Mean-square stability analysis for

nonlinear stochastic pantograph equations by transformation approach. Journal
of Mathematical Analysis and Applications, 479(1), 977-986.

Yang, X., Yang, Z. & Xiao, Y. (2020). Asymptotical mean-square stability of linear θ-

methods for stochastic pantograph differential equations: variable stepsize and
transformation approach. Unpublished manuscript. DOI:
10.22541/au.159023888.86381071

Ycart, B. (2012). A Case of Mathematical Eponymy: The Vandermonde

Determinant. arXiv preprint arXiv:1204.4716.

Ye, K. (2017). New classes of matrix decompositions. Linear Algebra and its

Applications, 514, 47-81.

Yu, W. & Jafari, R. (2019). Fuzzy Differential Equations. In Modeling and Control of

Uncertain Nonlinear Systems with Fuzzy Equations and Z-Number, Piscataway,
NJ: Wiley-IEEE Press. 21-37.

Zhang, D. K. (2019). Discovering New Runge-Kutta Methods using Unstructured

Numerical Search. arXiv preprint arXiv:1911.00318.

Zhang, H., Sandu, A. & Tranquilli, P. (2015). Application of approximate matrix

factorization to high order linearly implicit Runge-Kutta methods. Journal of
Computational and Applied Mathematics, 286, 196–210.

Zhu, B., Hu, Z., Tang, Y. & Zhang, R. (2016). Symmetric and symplectic methods for

gyrocenter dynamics in time-independent magnetic fields. International
Journal of Modeling, Simulation, and Scientific Computing, 7(02), 1650008.

103

APPENDIX A

The code below shows the MATLAB code for the implementation of 2-stage (G2)
Gauss method. The first part contains the main function of G2 method followed by the
nstep file which functioning as computing the updated ny and variable file which
compute the variable stepsize where the extrapolation technique is implemented. These
three parts is required to all schemes which denote as G2SNGMR (G2 with simplified
Newton for GMR), G2SNHW (G2 with simplified Newton for HW) and G2SNMHW
(G2 with simplified Newton for modified HW) schemes. The code for real life problems
is computed in different file. Lastly, the order plot file is to run the numerical
approximation.

1. MATLAB code for González-Pinto et al. (1994, 1995)

Step 1 (G2SNGMR_fix.m)

function [YY,trace,theta]=G2SNGMR_fix(f,J,tol,x,y,h,theta)
maxit = 10;

a1 = 1/4;
a2 = 1/2;
b = sqrt(3)/6;
A = [a1,a1-b; a1+b,a1];
C = [a2-b;a2+b];
m = length(y);
s = length(c);
e = ones(s,1);
z = zeros(m,1);
Z = kron(e,z);
trace = 0;
Y = kron(e,y);
kappa = 1.e-1;

Im = eye(m);

T = [sqrt(3)/6,0; sqrt(3)/3,sqrt(3)/6];

F1 = f(x+c(1)*h,y);
F2 = f(x+c(2)*h,y);

J1 = J(x+c(1)*h,y);
J2 = J(x+c(2)*h,y);

DG = [Im - T(1,1)*h*J1,-T(1,2)*h*J2 ; -T(2,1)*h*J1,Im - T(2,2)*h*J2];

G = [-A(1,1)*h*F1 - A(1,2)*h*F2 ; -A(2,1)*h*F1 - A(2,2)*h*F2];

DZ = DG\(-G);
sigma = norm(DZ,'inf');
eta = theta/(1.-theta);
if (eta*sigma <= kappa*tol)
 YY = Y + DZ;

104

 return;
end
Z = Z + DZ;

for i = 1:maxit
 Z1 = Z(1:m);
 Z2 = Z(m+1:2*m);
 F1 = f(x+c(1)*h,Z1+y);
 F2 = f(x+c(2)*h,Z2+y);
 G = [Z1 - A(1,1)*h*F1 - A(1,2)*h*F2 ; Z2 - A(2,1)*h*F1 -

 A(2,2)*h*F2];

 DZ = DG\(-G);

 beta = norm(DZ,'inf');
 theta = beta/sigma;

 if (theta >= 1)
 trace = 1;
 eta = 1.0;
 break
 end

 if ((theta^(10-i)/(1-theta))*beta > kappa*tol)
 trace = 1;
 break;
 end

 eta = theta/(1-theta);
 theta = (max(1.e-14,theta))^(0.8);
 Z = Z + DZ;
 if (eta*beta)<=(kappa*tol)
 break;
 end
 sigma = beta;
end
YY=[Z(1:m)+y ; Z(m+1:2*m)+y];

Step 2 (nstep_fixG2SNGMR.m)

function [y,trace,hout]=nstep_fixG2SNGMR(f,J,tol,x0,y0,h0,n)
theta = 0.8;
m = length(y0(:));
hout = h0;
trace = 1;

while trace
 trace = 0;
 x = x0;
 y = y0(:);

 for i=1:n
 [Y,tr,theta] = G2SNGMR_fix(f,J,tol,x,y,hout,theta);
 if tr
 trace = 1;
 hout = hout/2;
 break
 end
 y = y-sqrt(3)*Y(1:m)+sqrt(3)*Y(m+1:2*m);
 x = x+hout;

105

 end
end
if (hout < h0)
 trace= 1;
end

Step 3 (variable_fixG2SNGMR)

function[xout,yout,h,errout]=variable_fixG2SNGMR(f,J,tol,x0,xn,y0,h0)

p = 4;

if nargin<6
 tol = 1.e-6;
end

x = x0;
y = y0(:);
err = (y-y0)/(2^p-1);
xout = x;
yout = y';
errout = err;
hmax = (xn-x)/16;
hmin = (xn-x)/(2.e8);
h = max([h0,(xn-x)/1.e7]);

while (x < xn) && (h >= hmin)
 if (x + h > xn)
 h = xn - x ;
 end
 [y1,trace,hout] = nstep_fixG2SNGMR(f,J,tol,x,y,h,1);
 if trace
 h = hout;
 end
 [y2,~,~] = nstep_fixG2SNGMR(f,J,tol,x,y,h/2,2);
 err =(y2 - y1)/15;
 delta = norm(err,'inf');
 tau = tol*max(norm(y1,'inf'),1.0);
 if delta <= tau
 x = x+h;
 y = err+y2;
 xout = [xout;x];
 yout = [yout;y'];
 errout = [errout;err];
 if (delta ~= 0.0)
 h = min ([hmax,4*h,0.9*h*(tau/delta)^(1/(p+1))]);
 else
 h = min([hmax,4*h]);
 end
 else
 h = h*max([0.25,0.9*(tau/delta)^(1/(p+1))]);
 end
end
if (x < xn)
 disp('SINGULARITY LIKELY G2.')
end

106

2. Matlab code for Hairer and Wanner (1999)

Step 1 (G2SNHW_fix.m)

function [YY,trace,theta]=G2SNHW_fix(f,J,tol,x,y,h,theta)
maxit = 10;
a1 = 1/4;
a2 = 1/2;
b = sqrt(3)/6;
A = [a1,a1-b;a1+b,a1];
c = [a2-b ; a2+b];
m = length(y);
s = length(c);
e = ones(s,1);
z = zeros(m,1);

Z = kron(e,z);
trace = 0;
kappa = 1.e-1;
Im = eye(m);

T = [sqrt(3)/6,0 ; sqrt(3)/3,sqrt(3)/6];
Tinv = inv(T);
Ainv = inv(A);
S = Tinv*Ainv*T;
W = kron(Tinv,Im)*Z;

F1 = f(x+c(1)*h,y);
F2 = f(x+c(2)*h,y);
F = [F1;F2];

J1 = J(x+c(1)*h,y);
J2 = J(x+c(2)*h,y);

DG = [(1/h)*S(1,1)*Im - Tinv(1,1)*J1,(1/h)*S(1,2)*Im - Tinv(1,2)*J2;
 (1/h)*S(2,1)*Im - Tinv(2,1)*J1,(1/h)*S(2,2)*Im - Tinv(2,2)*J2];

G = (1/h)*kron(S,Im)*W - kron(Tinv,Im)*F;

DW = DG\(-G);

sigma = norm(DW,'inf');
eta = theta/(1.-theta);
if (eta*sigma <= kappa*tol)
 YY = Y + DW;
 return;
end
W = W+ DW;

for i = 1:maxit
 W1 = W(1:m);
 W2 = W(m+1:2*m);
 W = [W1;W2];

 TI = kron(T,Im)*W;

107

 F1 = f(x+c(1)*h,TI(1:m)+y);
 F2 = f(x+c(2)*h,TI(m+1:2*m)+y);
 F = [F1;F2];
 G = (1/h)*kron(S,Im)*W-kron(Tinv,Im)*F;

 DW = DG\(-G);
 beta = norm(DW,'inf');
 theta = beta/sigma;

 if (theta >= 1)
 trace = 1;
 eta = 1.0;
 break
 end
 if ((theta^(10-i)/(1-theta))*beta > kappa*tol)
 trace = 1;
 break;
 end

 eta = theta/(1-theta);
 theta = (max(1.e-16,theta))^(0.8);
 W = W + DW;
 if (eta*beta)<=(kappa*tol)
 break;
 end
 sigma = beta;
end
TI = kron(T,Im)*W;
YY = [TI(1:m)+y;TI(m+1:2*m)+y];

Step 2 (nstep_fixG2SNHW.m)

function [y,trace,hout]=nstep_fixG2SNHW(f,J,tol,x0,y0,h0,n)

theta = 0.8;
m = length(y0(:));
hout = h0;
trace = 1;

while trace
 trace = 0;
 x = x0;
 y = y0(:);

 for i=1:n
 [Y,tr,theta] = G2SNHW_fix(f,J,tol,x,y,hout,theta);
 if tr
 trace = 1;
 hout = hout/2;
 break
 end
 y = y-sqrt(3)*Y(1:m)+sqrt(3)*Y(m+1:2*m);
 x = x+hout;
 end
end
if (hout < h0)
 trace = 1;
end

108

Step 3 (variable_fixG2SNHW.m)

function [xout,yout,h,errout]=variable_fixG2SNHW(f,J,tol,x0,xn,y0,h0)

p = 4;

if nargin<6
 tol = 1.e-6;
end

x = x0;
y = y0(:);
err = (y-y0)/(2^p-1);
xout = x;
yout = y';
errout = err;
hmax = (xn-x)/16;
hmin =(xn-x)/(2.e8);
h = max([h0,(xn-x)/1.e7]);

while (x < xn) && (h >= hmin)
 if (x + h > xn)
 h = xn - x ;
 end
 [y1,trace,hout]=nstep_fixG2SNHW(f,J,tol,x,y,h,1);
 if trace
 h = hout;
 end
 [y2,~,~]=nstep_fixG2SNHW(f,J,tol,x,y,h/2,2);
 err =(y2 - y1)/15;
 delta = norm(err,'inf');
 tau = tol*max(norm(y1,'inf'),1.0);
 if delta <= tau
 x = x+h;
 y = err+y2;
 xout = [xout;x];
 yout = [yout;y'];
 errout = [errout;err];
 if (delta ~= 0.0)
 h = min ([hmax,4*h,0.9*h*(tau/delta)^(1/(p+1))]);
 else
 h = min([hmax,4*h]);
 end
 else
 h = h*max([0.25,0.9*(tau/delta)^(1/(p+1))]);
 end
end
if (x < xn)
 disp('SINGULARITY LIKELY G2.')
end

109

3. Matlab code for modified Hairer and Wanner (1999)

Step 1 (G2SNMHW_fix.m)

function [YY,trace,theta] = G2SNMHW(f,J,tol,x,y,h,theta)

a1 = 1/4;
a2 = 1/2;
b = sqrt(3)/6;
A = [a1,a1-b;a1+b,a1];
c = [a2-b;a2+b];

m = length(y);
s = length(c);
e = ones(s,1);
z = zeros(m,1);
Z = kron(e,z);
trace = 0;
Y = kron(e,y);
Im = eye(m);

F1 = f(x+c(1)*h,y);
F2 = f(x+c(2)*h,y);

J1 = J(x+c(1)*h,y);
J2 = J(x+c(2)*h,y);

Minv = inv([Im-h*A(1,1)*J1,-h*A(1,2)*J2 ; -h*A(2,1)*J1,...

 Im-h*A(2,2)*J2]);

G1 = h*A(1,1)*F1+h*A(1,2)*F2;
G2 = h*A(2,1)*F1+h*A(2,2)*F2;
G = [G1;G2];
DZ = Minv*G;

temp = norm(DZ,'inf');
eta = theta/(1-theta);
if (eta*temp <= 1.e-1*tol)
 YY = Y+DZ;
 return;
end
Z = Z+DZ;

maxit=10;
for i = 1:maxit
 z1 = Z(1:m);
 z2 = Z(m+1:2*m);

 F1 = f(x+c(1)*h,z1+y);
 F2 = f(x+c(2)*h,z2+y);

 G1 = h*A(1,1)*F1+h*A(1,2)*F2-z1;
 G2 = h*A(2,1)*F1+h*A(2,2)*F2-z2;
 G = [G1;G2];
 DZ = Minv*G;

110

 delta = norm(DZ,'inf');
 theta = delta/temp;
 if (theta >= 1)

 trace = 1;
 eta=1.0;
 break;
 end

 if ((theta^(10-i)/(1-theta))*delta > 1.e-1*tol)
 trace = 1;
 break;
 end
 eta = theta/(1-theta);
 theta = (max(1.0e-16,theta))^(0.8);
 Z = Z+DZ;
 if (eta*delta <= 1.e-1*tol)
 break;
 end
 temp = delta;
end
YY = [y+Z(1:m);y+Z(m+1:2*m)];

Step 2 (nstep_fixG2SNMHW.m)

function [y,trace,hout] = nstep_fixG2SNMHW(f,J,tol,x0,y0,h0,m)
n = length(y0(:));
hout = h0;
trace = 1;
theta = 0.8;

while trace
 trace = 0;
 x = x0;
 y = y0(:);
 for i = 1:m
 [Y,tr,theta] = G2SNMHW(f,J,tol,x,y,hout,theta);
 if tr
 trace = 1;
 hout = hout/2;
 break;
 end
 y = y+sqrt(3)*(Y(n+1:2*n)-Y(1:n));
 x = x+hout;
 end
end

if (hout < h0)
 trace = 1;
end

Step 3 (variable_fixG2SNMHW.m)

Function[xout,yout,h,errout]=variable_fixG2SNMHW(f,J,tol,x0,xf,y0,h0)

p = 4;
pow = 1/(p+1);

111

if nargin < 6
 tol = 1.e-6;
end

x = x0;
y = y0(:);
err = (y-y0)/(2^p-1);
hmax = (xf-x)/16;
hmin = (xf-x)/2.e8;
h = max([h0,(xf-x)/1.e7]);
xout =x;
yout = y';
errout = err;

while ((x < xf) && (h >= hmin))
 if x+h > xf, h = xf-x; end
 [y1,trace,hout] = nstep_fixG2SNMHW(f,J,tol,x,y,h,1);
 if trace,[h,hout]; h= hout; end
 [y2,~,~] = nstep_fixG2SNMHW(f,J,tol,x,y,h/2,2);
 err = (y2-y1)/15;
 delta = norm(err,'inf');
 tau = tol*max([norm(y,'inf'),1.0]);
 if (delta <= tau)
 x = x+h;
 y = y2+err;
 xout = [xout;x];
 yout = [yout;y'];
 errout = [errout;err];
 if (delta ~= 0.0)
 h = min([hmax,4*h,0.9*h*(tau/delta)^pow]);
 else
 h = min([hmax,4*h]);
 end
 else
 h = h*max([0.25,0.9*(tau/delta)^pow]);
 end
end

if (x < xf)
 disp('SINGULARITY LIKELY G2.')
end

4. Matlab code for real life problems (problem.m)

function [f,J,tol,x0,xn,y0,h0] = problem(problem)

tol=1.e-7;

switch (problem)

 case 'PR' %prothero robinson
 q=-10000;

 f=@(x,y)(q*y+cos(x)-q*sin(x));
 J=@(x,y)(q);
 x0=0;
 xn=5;
 h0=0.001;
 y0=0;

112

 case 'VDP' %van de pol
 eps=1.e-3;
 f=@(x,y)([y(2);((1-y(1)^2)*y(2)-y(1))/eps]);
 J=@(x,y)([0,1;(-2*y(1)*y(2)-1)/eps,(1-y(1)^2)/eps]);
 x0=0;
 xn=5;
 h0=0.01;
 y0=[2;0];

 case 'ROBER' %robertson
 f=@(x,y)([-0.04*y(1)+10^4*y(2)*y(3);...
 0.04*y(1)-10^4*y(2)*y(3)-(3.e7)*y(2)^2;...
 (3.e7)*y(2)^2]);
 J=@(x,y)([-0.04,10^4*y(3),10^4*y(2);...
 0.04,(-10^4)*y(3)-(6.e7)*y(2),-10^4*y(2);...
 0,(6.e7)*y(2),0]);
 x0=0;
 xn=10;
 h0=0.01;
 y0=[1;0;0];

 case 'HIRES'
 f=@(x,y)([-1.71*y(1)+0.43*y(2)+8.32*y(3)+0.0007;...
 1.71*y(1)-8.75*y(2);...
 -10.03*y(3)+0.43*y(4)+0.035*y(5);...
 8.32*y(2)+1.71*y(3)-1.12*y(4);...
 -1.745*y(5)+0.43*y(6)+0.43*y(7);...

-280*y(6)*y(8)+0.69*y(4)+1.71*y(5)-

0.43*y(6)+0.69*y(7);...
 280*y(6)*y(8)-1.81*y(7);...
 -280*y(6)*y(8)+1.81*y(7)]);
 J=@(x,y)([-1.71,0.43,8.32,0,0,0,0,0;...
 1.71,-8.75,0,0,0,0,0,0;...
 0,0,-10.03,0.43,0.035,0,0,0;...
 0,8.32,1.71,-1.12,0,0,0,0;...
 0,0,0,0,-1.745,0.43,0.43,0;...
 0,0,0,0.69,1.71,-280*y(8)-0.43,0.69,-280*y(6);...
 0,0,0,0,0,280*y(8),-1.81,280*y(6);...
 0,0,0,0,0,-280*y(8),1.81,-280*y(6)]);
 x0=0;
 xn=321.8122;
 h0=0.01;
 y0=[1;0;0;0;0;0;0;0.0057];

 case 'KAPS'
 q = -10000;
 f=@(x,y)([(q-2)*y(1) - q*y(2)^2; y(1) - y(2) - y(2)^2]);
 J=@(x,y)([(q-2),-2*q*y(2); 1,-1 - 2*y(2)]);
 y0 = [1;1];
 x0 = 0;

 xn = 5;
 h0 = 0.01;

 case 'BRUS' %brusselator

 f=@(x,y)([1 +(y(1)^2)*y(2) - 4*y(1);3*y(1) - (y(1)^2)*y(2)]);
 J=@(x,y)([2*y(1)*y(2)-4,y(1)^2;3 - 2*y(1)*y(2),-y(1)^2]);
 x0=0;
 xn=10;

113

 y0=[1.5;3];
 h0=0.01;
 % n=100;

 case 'OREG' %oreganator
 f=@(x,y)([77.27*(y(2)+y(1)*(1-y(1)*8.375*10^(-6) - y(2)));
 (1/77.27)*(y(3)-(1+y(1))*y(2)); 0.161*(y(1)-y(3))]);

 J=@(x,y)([77.27-2*77.27*y(1)*8.375*10^(-6) - 77.27*y(2),

77.27 - 77.27*y(1),0 ; -y(2)/77.27,-1/77.27 -
y(1)/77.27,1/77.27 ; 0.161,0,-0.161]);

 x0 = 0;
 y0 = [1;2;3];

 xn = 30;
 h0 = 0.01;

5. Order plot to run the data (order_testproblem.m)

clearvars
clc

[f,J,tol,x0,xn,y0,h0] = problem('ROBER');

n = (xn-x0)/h0;
y = y0;
nit = 8;
m = length(y);
Tol = zeros(nit,1);

Y1 = zeros(nit,m);
C1 = zeros(nit,1);
LE1 = zeros(nit,1);
err1 = zeros(nit,m);
Lerrout1 = zeros(nit,1);

Y2 = zeros(nit,m);
C2 = zeros(nit,1);
LE2 = zeros(nit,1);
err2 = zeros(nit,m);
Lerrout2 = zeros(nit,1);

Y3 = zeros(nit,m);
C3 = zeros(nit,1);
LE3 = zeros(nit,1);
err3 = zeros(nit,m);
Lerrout3 = zeros(nit,1);

H = zeros(nit,1);

rep = 30;

for i=1:nit
 tic
 for j=1:rep

[xout1,yout1,hout1,errout1]=variable_fixG2SNGMR(f,J,tol,x0,xn,y0,h0);
 end

114

 cp1=toc;

 tic
 for j=1:rep

[xout2,yout2,hout2,errout2]=variable_fixG2SNHW(f,J,tol,x0,xn,y0,h0);
 end
 cp2=toc;

 tic
 for j=1:rep

[xout3,yout3,hout3,errout3]=variable_fixG2SNMHW(f,J,tol,x0,xn,y0,h0);
 end
 cp3=toc;

 Y1(i,:)=yout1(end);
 C1(i)=cp1;

 Y2(i,:)=yout2(end);
 C2(i)=cp2;

 Y3(i,:)=yout3(end);
 C3(i)=cp3;

 err1(i,:)=errout1(end);
 err2(i,:)=errout2(end);
 err3(i,:)=errout3(end);

 Tol(i) = tol;
 tol = tol/10;

 H(i)=h0;
 h0=h0/2;
 n=2*n;

 if i==1
 disp('~Iteration 1~');
 elseif i==2
 disp('~Iteration 2~');
 elseif i==3
 disp('~Iteration 3~');
 elseif i==4
 disp('~Iteration 4~');
 elseif i==5
 disp('~Iteration 5~');
 elseif i==6
 disp('~Iteration 6~');
 elseif i==7
 disp('~Iteration 7~');
 elseif i==8
 disp('~Iteration 8~');
 end

end

yexact=Y1(nit,:);

115

yexact1=Y2(nit,:);
yexact2=Y3(nit,:);
E1=abs(Y1-kron(ones(nit,1),yexact));
E2=abs(Y2-kron(ones(nit,1),yexact1));
E3=abs(Y3-kron(ones(nit,1),yexact2));

for i=1:nit
 LE1(i)=norm(E1(i,:));
 LE2(i)=norm(E2(i,:));
 LE3(i)=norm(E3(i,:));
end

LTol=Tol;

LC1=(C1/rep);
LC2=(C2/rep);
LC3=(C3/rep);

yexact=err1(nit,:);
yexact1=err2(nit,:);
yexact2=err3(nit,:);

errout1=abs(err1-kron(ones(nit,1),yexact))/15;
errout2=abs(err2-kron(ones(nit,1),yexact))/15;
errout3=abs(err3-kron(ones(nit,1),yexact))/15;

for i=1:nit
 Lerrout1(i)=norm(errout1(i,:));
 Lerrout2(i)=norm(errout2(i,:));
 Lerrout3(i)=norm(errout3(i,:));
end

figure(1)
loglog(LTol,LE1,'bx-');
hold on
loglog(LTol,LE2,'ro-');
hold on
loglog(LTol,LE3,'mv-');
legend('GMR scheme','HW scheme','Modified HW scheme');
xlabel('\fontsize{14}Tolerance');
ylabel('\fontsize{14}||Global Error||');
title('\fontsize{14}ROBERTSON')
grid on

figure(2)
loglog(LC1,LE1,'bx-');
hold on
loglog(LC2,LE2,'ro-');
hold on
loglog(LC3,LE3,'mv-');
legend('GMR scheme','HW scheme','Modified HW scheme');
xlabel('\fontsize{14}CPU Time');
ylabel('\fontsize{14}||Global Error||');
title('\fontsize{14}ROBERTSON')
grid on
figure(3)
loglog(LTol,Lerrout1,'bx-');

116

hold on
loglog(LTol,Lerrout2,'ro-');
hold on
loglog(LTol,Lerrout3,'mv-');
legend('GMR scheme','HW scheme','Modified HW scheme');
xlabel('\fontsize{14}Tolerance');
ylabel('\fontsize{14}||Error Estimation||');
title('\fontsize{14}ROBERTSON')
grid on

117

APPENDIX B

The code below shows the MATLAB code for the implementation of 3-stage (G3)
Gauss method. The first part contains the main function of G3 method followed by the
nstep file which functioning as computing the updated ny and variable file which
compute the variable stepsize where the extrapolation technique is implemented. These
three parts is required to all schemes which denote as G3SNGMR (G3 with simplified
Newton for GMR), G3SNHW (G3 with simplified Newton for HW) and G3SNMHW
(G3 with simplified Newton for modified HW) schemes. The code for real life problems
is computed in different file. Lastly, the order plot file is to run the numerical
approximation.

1. MATLAB code for González-Pinto et al. (1994, 1995)

Step 1 (G3SNGMR_fix)

function [YY,trace,theta] = G3SNGMR_fix(f,J,tol,x,y,h,theta)

A = [5/36, 2/9-sqrt(15)/15, 5/36-sqrt(15)/30;...
 5/36+sqrt(15)/24, 2/9, 5/36-sqrt(15)/24;...
 5/36+sqrt(15)/30, 2/9+sqrt(15)/15, 5/36];

c = [0.5-sqrt(15)/10;1/2;0.5+sqrt(15)/10];
trace = 0;
m = length(y);
s = length(c);
e = ones(s,1);
z = zeros(m,1);
Z = kron(e,z);
Y = kron(e,y);

T = [0.1190762649202001,-0.01352480890549548,0.002955703944789629;...
 0.2567321613764653,0.2864264722250291,- 0.008257284502425157;...
 0.2617169889707876,0.5210947821158048,0.2027174624121108];

J1=J(x+c(1)*h,y);
J2=J(x+c(2)*h,y);
J3=J(x+c(3)*h,y);

F1=f(x+c(1)*h,y);
F2=f(x+c(2)*h,y);
F3=f(x+c(3)*h,y);

DG = [eye(m)-h*T(1,1)*J1,-h*T(1,2)*J2,-h*T(1,3)*J3;...
 -h*T(2,1)*J1,eye(m)-h*T(2,2)*J2,-h*T(2,3)*J3;...
 -h*T(3,1)*J1,-h*T(3,2)*J2,eye(m)-h*T(3,3)*J3];

G1 = - h*(A(1,1)*F1+A(1,2)*F2+A(1,3)*F3);
G2 = - h*(A(2,1)*F1+A(2,2)*F2+A(2,3)*F3);
G3 = - h*(A(3,1)*F1+A(3,2)*F2+A(3,3)*F3);

118

G = [G1;G2;G3];
DZ = DG\(-G);

temp = norm(DZ,'inf');
eta = theta/(1.-theta);
if (eta*temp <= 1.e-1*tol)

 YY = Y+DZ;

 return;

end
Z = Z+DZ;

maxit=10;

for i = 1:maxit
 z1 = Z(1:m);
 z2 = Z(m+1:2*m);
 z3 = Z(2*m+1:3*m);

 F1 = f(x+c(1)*h,z1+y);
 F2 = f(x+c(2)*h,z2+y);
 F3 = f(x+c(3)*h,z3+y);

 G1 = z1-(h*(A(1,1)*F1+A(1,2)*F2+A(1,3)*F3));
 G2 = z2-(h*(A(2,1)*F1+A(2,2)*F2+A(2,3)*F3));
 G3 = z3-(h*(A(3,1)*F1+A(3,2)*F2+A(3,3)*F3));
 G = [G1;G2;G3];
 DZ = DG\(-G);

 delta = norm(DZ,'inf');
 theta = delta/temp;
 if (theta >= 1)

 trace = 1;
 eta=1.0;
 break;
 end

 if ((theta^(10-i)/(1-theta))*delta > 1.e-1*tol)
 trace = 1;
 break;
 end
 eta = theta/(1-theta);
 theta = (max(1.0e-16,theta))^(0.8);
 Z = Z+DZ;
 if (eta*delta <= 1.e-1*tol)
 break;
 end
 temp = delta;
end
YY = [y+Z(1:m);y+Z(m+1:2*m);y+Z(2*m+1:3*m)];

Step 2 (nstep_fixG3SNGMR.m)

function [y,trace,hout]=nstep_fixG3SNGMR(f,J,tol,x0,y0,h0,n)

m = length(y0(:));
hout = h0;
trace = 1;
theta = 0.8;

119

while trace
 trace = 0;
 x = x0;
 y = y0(:);

 for i=1:n
 [Y,tr,theta] = G3SNGMR_fix(f,J,tol,x,y,hout,theta);
 if tr
 trace = 1;
 hout = hout/2;
 break
 end
 y = -y+(1/3)*(5*Y(1:m)-4*Y(m+1:2*m)+5*Y(2*m+1:3*m));
 x = x+hout;
 end
end
if (hout < h0)
 trace = 1;
end

Step 3 (variable_fixG3SNGMR.m)

function

[xout,yout,h,errout]=variable_fixG3SNGMR(f,J,tol,x0,xn,y0,h0)

p = 6;
pow = 1/(p+1);

if nargin < 6
 tol = 1.e-6;
end

x = x0;
y = y0(:);
err = (y-y0)/(2^p-1);
hmax = (xn-x)/16;
hmin = (xn-x)/2.e8;
h = max([h0,(xn-x)/1.e7]);
xout = x;
yout = y';
errout = err;

while ((x < xn) && (h >= hmin))
 if x+h > xn, h = xn-x; end
 [y1,trace,hout] = nstep_fixG3SNGMR(f,J,tol,x,y,h,1);
 if trace,[h,hout]; h= hout; end
 [y2,~,~] =nstep_fixG3SNGMR(f,J,tol,x,y,h/2,2);
 err = (y2-y1)/63;
 delta = norm(err,'inf');
 tau = tol*max([norm(y,'inf'),1.0]);
 if (delta <= tau)
 x = x+h;
 y = y2+err;
 xout = [xout;x];
 yout = [yout;y'];
 errout = [errout;err];
 if (delta ~= 0.0)
 h = min([hmax,4*h,0.9*h*(tau/delta)^pow]);

120

 else
 h = min([hmax,4*h]);
 end
 else
 h = h*max([0.25,0.9*(tau/delta)^pow]);
 end
end

if (x < xn)
 disp('SINGULARITY LIKELY G3.')
end

2. Matlab code for Hairer and Wanner (1999)

Step 1 (G3SNHW_fix.m)

function [YY,trace,theta]=G3SNHW_fix(f,J,tol,x,y,h,theta)

maxit = 10;
a1 = sqrt(15)/15;
a2 = sqrt(15)/30;
a3 = sqrt(15)/24;
b = sqrt(15)/10;
A = [5/36 , 2/9 - a1 , 5/36 - a2 ; 5/36 + a3 , 2/9 , 5/36 - a3 ;...
 5/36 + a2 , 2/9 + a1 , 5/36];
C = [1/2 - b ; 1/2 ; 1/2 + b];
m = length(y);
s=length(c);

e = ones(s,1);
z = zeros(m,1);

Z = kron(e,z);

Y = kron(e,y);
trace = 0;
kappa = 1.e-1;
Im = eye(m);

T = [0.1190762649202001,-0.01352480890549548,0.002955703944789629;...
 0.2567321613764653,0.2864264722250291,-0.008257284502425157;...
 0.2617169889707876,0.5210947821158048,0.2027174624121108];

Tinv = inv(T);
Ainv = inv(A);
S = Tinv*Ainv*T;
W = kron(Tinv,Im)*Z;

F1 = f(x+c(1)*h,y);
F2 = f(x+c(2)*h,y);
F3 = f(x+c(3)*h,y);
F = [F1;F2;F3];

J1 = J(x+c(1)*h,y);
J2 = J(x+c(2)*h,y);
J3 = J(x+c(3)*h,y);

121

DG = [(1/h)*S(1,1)*Im-Tinv(1,1)*J1,(1/h)*S(1,2)*Im-

Tinv(1,2)*J2,(1/h)*S(1,3)*Im-Tinv(1,3)*J3;...
 (1/h)*S(2,1)*Im-Tinv(2,1)*J1,(1/h)*S(2,2)*Im-

Tinv(2,2)*J2,(1/h)*S(2,3)*Im-Tinv(2,3)*J3;...
 (1/h)*S(3,1)*Im-Tinv(3,1)*J1,(1/h)*S(3,2)*Im-

Tinv(3,2)*J2,(1/h)*S(3,3)*Im-Tinv(3,3)*J3];

G = (1/h)*kron(S,Im)*W-kron(Tinv,Im)*F;

DW = DG\(-G);

sigma = norm(DW,'inf');
eta = theta/(1.-theta);
if (eta*sigma <= kappa*tol)
 YY = Y + DW;
 return;
end
W = W+ DW;

for i = 1:maxit
 W1 = W(1:m);
 W2 = W(m+1:2*m);
 W3 = W(2*m+1:3*m);
 W = [W1;W2;W3];

 TI = kron(T,Im)*W;

 F1 = f(x+c(1)*h,TI(1:m)+y);
 F2 = f(x+c(2)*h,TI(m+1:2*m)+y);
 F3 = f(x+c(3)*h,TI(2*m+1:3*m)+y);
 F = [F1;F2;F3];

 G = (1/h)*kron(S,Im)*W-kron(Tinv,Im)*F;

 DW = DG\(-G);
 beta = norm(DW,'inf');
 theta = beta/sigma;

 if (theta >= 1)
 trace = 1;
 eta = 1.0;
 break
 end
 if ((theta^(10-i)/(1-theta))*beta > kappa*tol)
 trace = 1;
 break;
 end

 eta = theta/(1-theta);
 theta = (max(1.e-16,theta))^(0.8);
 W = W + DW;
 if (eta*beta)<=(kappa*tol)
 break;
 end
 sigma = beta;
end
TI=kron(T,Im)*W;
YY=[TI(1:m)+y;TI(m+1:2*m)+y;TI(2*m+1:3*m)+y];

122

Step 2 (nstep_fixG3SNHW.m)

function [y,trace,hout]=nstep_fixG3SNHW(f,J,tol,x0,y0,h0,n)

theta = 0.8;
m = length(y0(:));
hout = h0;
trace = 1;

while trace
 trace = 0;
 x = x0;
 y = y0(:);

 for i = 1:n
 [Y,tr,theta] = G3SNHW_fix(f,J,tol,x,y,hout,theta);
 if tr
 trace = 1;
 hout = hout/2;
 break
 end
 y = -y+(5/3)*Y(1:m)-(4/3)*Y(m+1:2*m)+(5/3)*Y(2*m+1:3*m);
 x = x+hout;
 end
end
if (hout < h0)
 trace = 1;
end

Step 3 (variable_fixG3SNHW.m)

function [xout,yout,h,errout]=variable_fixG3SNHW(f,J,tol,x0,xn,y0,h0)

p = 6;

if nargin<6

 tol = 1.e-6;
end

x = x0;
y = y0(:);
err = (y-y0)/(2^p-1);
hmax = (xn-x)/16;
hmin = (xn-x)/2.e8;
h = max([h0,(xn-x)/1.e7]);
xout =x;
yout = y';
errout = err;

while (x < xn) && (h >= hmin)
 if (x + h > xn)
 h = xn - x ;
 end
 [y1,trace,hout] = nstep_fixG3SNHW(f,J,tol,x,y,h,1);
 if trace
 h = hout;
 end

123

 [y2,~,~] = nstep_fixG3SNHW(f,J,tol,x,y,h/2,2);
 err =(y2 - y1)/63;
 delta = norm(err,'inf');
 tau = tol*max(norm(y1,'inf'),1.0);
 if delta <= tau
 x = x+h;
 y = err+y2;
 xout = [xout;x];
 yout = [yout;y'];
 errout = [errout;err];
 if (delta ~= 0.0)
 h = min ([hmax,4*h,0.9*h*(tau/delta)^(1/(p+1))]);
 else
 h = min([hmax,4*h]);
 end
 else
 h = h*max([0.25,0.9*(tau/delta)^(1/(p+1))]);
 end
end
if (x < xn)
 disp('SINGULARITY LIKELY G3.')
end

3. Matlab code for modified Hairer and Wanner (1999)

Step 1 (G3SNMHW_fix.m)

function [YY,trace,theta] = G3SNMHW_fix(f,J,tol,x,y,h,theta)

a1 = sqrt(15)/15;
a2 = sqrt(15)/30;
a3 = sqrt(15)/24;
b = sqrt(15)/10;
A = [5/36 , 2/9 - a1 , 5/36 - a2 ; 5/36 + a3 , 2/9 , 5/36 - a3 ;...
 5/36 + a2 , 2/9 + a1 , 5/36];
c = [1/2 - b ; 1/2 ; 1/2 + b];

m = length(y);
s = length(c);
e = ones(s,1);
z = zeros(m,1);
Z = kron(e,z);
trace = 0;
Y = kron(e,y);
Im = eye(m);
F1 = f(x+c(1)*h,y);
F2 = f(x+c(2)*h,y);
F3 = f(x+c(3)*h,y);

J1 = J(x+c(1)*h,y);
J2 = J(x+c(2)*h,y);
J3 = J(x+c(3)*h,y);

Minv = inv([Im-h*A(1,1)*J1 , -h*A(1,2)*J2 , -h*A(1,3)*J3 ;...
 -h*A(2,1)*J1 , Im-h*A(2,2)*J2 , -h*A(2,3)*J3 ;...
 -h*A(3,1)*J1 , -h*A(3,2)*J2 , Im-h*A(3,3)*J3]);

124

G1 = h*A(1,1)*F1+h*A(1,2)*F2+h*A(1,3)*F3;
G2 = h*A(2,1)*F1+h*A(2,2)*F2+h*A(2,3)*F3;
G3 = h*A(3,1)*F1+h*A(3,2)*F2+h*A(3,3)*F3;
G = [G1;G2;G3];

DZ = Minv*G;

temp = norm(DZ,'inf');
eta = theta/(1-theta);
if (eta*temp <= 1.e-1*tol)
 YY = Y+DZ;

 return;

end
Z = Z+DZ;

maxit = 10;
for i = 1:maxit
 z1 = Z(1:m);
 z2 = Z(m+1:2*m);
 z3 = Z(2*m+1:3*m);

 F1 = f(x+c(1)*h,z1+y);
 F2 = f(x+c(2)*h,z2+y);
 F3 = f(x+c(3)*h,z3+y);

 G1 = h*A(1,1)*F1+h*A(1,2)*F2+h*A(1,3)*F3-z1;
 G2 = h*A(2,1)*F1+h*A(2,2)*F2+h*A(2,3)*F3-z2;
 G3 = h*A(3,1)*F1+h*A(3,2)*F2+h*A(3,3)*F3-z3;
 G = [G1;G2;G3];

 DZ = Minv*G;

 delta = norm(DZ,'inf');
 theta = delta/temp;
 if (theta >= 1)
 trace = 1;
 eta=1.0;
 break;
 end
 if ((theta^(10-i)/(1-theta))*delta > 1.e-1*tol)
 trace = 1;
 break;
 end
 eta = theta/(1-theta);
 theta = (max(1.0e-16,theta))^(0.8);
 Z = Z+DZ;
 if (eta*delta <= 1.e-1*tol)
 break;
 end
 temp = delta;
end
YY = [Z(1:m)+y;Z(m+1:2*m)+y;Z(2*m+1:3*m)+y];

125

Step 2 (nstep_fixG3SNMHW.m)

function [y,trace,hout] = nstep_fixG3SNMHW(f,J,tol,x0,y0,h0,m)

n = length(y0(:));
hout = h0;
trace = 1;
theta=0.8;

while trace
 trace = 0;
 x = x0;
 y = y0(:);
 for i = 1:m
 [Y,tr,theta] = G3SNMHW_fix(f,J,tol,x,y,hout,theta);
 if tr
 trace = 1;
 hout = hout/2;
 break;
 end
 y = -y+(5/3)*Y(1:n)-(4/3)*Y(n+1:2*n)+(5/3)*Y(2*n+1:3*n);
 x = x+hout;
 end
end

if (hout < h0)
 trace = 1;
end

Step 3 (variable_fixG3SNMHW.m)

function

[xout,yout,h,errout] = variable_fixG3SNMHW(f,J,tol,x0,xn,y0,h0)

p=6;
pow = 1/(p+1);
if nargin < 6
 tol = 1.e-6;
end

x = x0;
y = y0(:);
err = (y-y0)/(2^p-1);
hmax = (xn-x)/16;
hmin = (xn-x)/2.e8;
h = max([h0,(xn-x)/1.e7]);
xout = x;
yout = y';
errout = err;
while (x < xn) && (h >= hmin)
 if (x+h > xn)
 h = xn-x;
 end
 [y1,trace,hout] = nstep_fixG3SNMHW(f,J,tol,x,y,h,1);
 if trace
 h = hout;
 end
 [y2,~,~] = nstep_fixG3SNMHW(f,J,tol,x,y,h/2,2);

126

 err = (y2-y1)/63;
 delta = norm(err,'inf');
 tau = tol*max(norm(y,'inf'),1.0);
 if (delta <= tau)
 x = x+h;
 y = y2+err;
 xout = [xout;x];
 yout = [yout;y'];
 errout = [errout;err];
 if (delta ~= 0.0)
 h = min([hmax,4*h,0.9*h*(tau/delta)^pow]);
 else
 h = min([hmax,4*h]);
 end
 else
 h = h*max([0.25,0.9*(tau/delta)^pow]);
 end
end

if (x < xn)
 disp('SINGULARITY LIKELY G3.')
end

4. Matlab code for real life problems (problem.m) is just similar to the one used for
G2 method.

5. Order plot to run the data (order_testproblem.m)

clearvars
clc

[f,J,tol,x0,xn,y0,h0] = problem('ROBER');

n = (xn-x0)/h0;
y = y0;
nit = 8;
m = length(y);
Tol = zeros(nit,1);

Y1=zeros(nit,m);
C1=zeros(nit,1);
LE1=zeros(nit,1);
err1=zeros(nit,m);
Lerrout1=zeros(nit,1);

Y2=zeros(nit,m);
C2=zeros(nit,1);
LE2=zeros(nit,1);
err2=zeros(nit,m);
Lerrout2=zeros(nit,1);

Y3=zeros(nit,m);
C3=zeros(nit,1);
LE3=zeros(nit,1);
err3=zeros(nit,m);
Lerrout3=zeros(nit,1);

127

H=zeros(nit,1);

rep=1;

for i=1:nit
 tic
 for j=1:rep

[xout1,yout1,hout1,errout1]=variable_fixG3SNGMR(f,J,tol,x0,xn,y0,h0);
 end
 cp1=toc;

 tic
 for j=1:rep

[xout2,yout2,hout2,errout2]=variable_fixG3SNHW(f,J,tol,x0,xn,y0,h0);
 end
 cp2=toc;

 tic
 for j=1:rep

[xout3,yout3,hout3,errout3]=variable_fixG3SNMHW(f,J,tol,x0,xn,y0,h0);
 end
 cp3=toc;

 Y1(i,:)=yout1(end);
 C1(i)=cp1;

 Y2(i,:)=yout2(end);
 C2(i)=cp2;

 Y3(i,:)=yout3(end);
 C3(i)=cp3;

 err1(i,:)=errout1(end);
 err2(i,:)=errout2(end);
 err3(i,:)=errout3(end);

 Tol(i) = tol;
 tol = tol/10;

 H(i)=h0;
 h0=h0/2;
 n=2*n;

if i==1
 disp('~Iteration 1~');
 elseif i==2
 disp('~Iteration 2~');
 elseif i==3
 disp('~Iteration 3~');
 elseif i==4
 disp('~Iteration 4~');
 elseif i==5
 disp('~Iteration 5~');
 elseif i==6

128

 disp('~Iteration 6~');
 elseif i==7
 disp('~Iteration 7~');
 elseif i==8
 disp('~Iteration 8~');
 end

end

yexact=Y1(nit,:);
yexact1=Y2(nit,:);
yexact2=Y3(nit,:);

E1=abs(Y1-kron(ones(nit,1),yexact));
E2=abs(Y2-kron(ones(nit,1),yexact1));
E3=abs(Y3-kron(ones(nit,1),yexact2));

for i=1:nit
 LE1(i)=norm(E1(i,:));
 LE2(i)=norm(E2(i,:));
 LE3(i)=norm(E3(i,:));
end

LTol=Tol;

LC1=(C1/rep);
LC2=(C2/rep);
LC3=(C3/rep);

yexact=err1(nit,:);
yexact1=err2(nit,:);
yexact2=err3(nit,:);

errout1=abs(err1-kron(ones(nit,1),yexact))/63;
errout2=abs(err2-kron(ones(nit,1),yexact))/63;
errout3=abs(err3-kron(ones(nit,1),yexact))/63;

for i=1:nit
 Lerrout1(i)=norm(errout1(i,:));
 Lerrout2(i)=norm(errout2(i,:));
 Lerrout3(i)=norm(errout3(i,:));
end

figure(1)
loglog(LTol,LE1,'bx-');
hold on
loglog(LTol,LE2,'ro-');
hold on
loglog(LTol,LE3,'mv-');
legend('GMR scheme','HW scheme','Modified HW scheme');
xlabel('\fontsize{14}Tolerance');
ylabel('\fontsize{14}||Global Error||');
title('\fontsize{14}ROBERTSON')
grid on

figure(2)
loglog(LC1,LE1,'bx-');
hold on

129

loglog(LC2,LE2,'ro-');
hold on
loglog(LC3,LE3,'mv-');
legend('GMR scheme','HW scheme','Modified HW scheme');
xlabel('\fontsize{14}CPU Time');
ylabel('\fontsize{14}||Global Error||');
title('\fontsize{14}ROBERTSON')
grid on

figure(3)
loglog(LTol,Lerrout1,'bx-');
hold on
loglog(LTol,Lerrout2,'ro-');
hold on
loglog(LTol,Lerrout3,'mv-');
legend('GMR scheme','HW scheme','Modified HW scheme');
xlabel('\fontsize{14}Tolerance');
ylabel('\fontsize{14}||Error Estimation||');
title('\fontsize{14}ROBERTSON')
grid on

