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ABSTRACT 

 

 

The research is aimed to find the most efficient implementation strategies by Gauss 
numerical methods for solving stiff problems and the best error estimation in the 
variable stepsize setting. The numerical methods considered as a research methodology 
are the 2-stage (G2) and 3-stage (G3) implicit Runge-Kutta Gauss methods. Two 
strategies by Hairer and Wanner (HW) and Gonzalez-Pinto, Montijano and Randez 
(GMR) schemes were implemented. The variable stepsize setting employed the 
simplified Newton is modified to fit according to HW and GMR schemes in solving the 
nonlinear algebraic systems of the equations. The error estimation for the variable 
stepsize setting is computed using extrapolation technique with stepsizes h  and 2h . 
HW and GMR schemes used the transformation matrix T to improve the efficiency of 
the methods and also compared with the modified Hairer and Wanner (MHW) scheme 
without using any transformation matrix .T  Findings showed that G2 method using 
MHW scheme gave an efficient implementation in solving Kaps, Oreganator and 
HIRES problems while for G3 method, it was efficient in solving Kaps, Brusselator, 
Oreganator, Van der Pol and HIRES problems. In terms of error estimation, the G2 
method gave the best error estimation for Brusselator, Oreganator, Van der Pol and 
HIRES problems, while for the G3 method it was efficient in solving Kaps, Brusselator, 
Oreganator, Van der Pol and HIRES problems, both by using HW scheme. In 
conclusion, the MHW scheme without any transformation matrix T can be as efficient 
as the HW and GMR schemes by using the variable stepsize setting and the MHW 
scheme is recommended in solving stiff problems. As for the implications, this research 
could be extended to other different types of problems such as delay and fuzzy 
differential equations. 
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KECEKAPAN PELAKSANAAN BAGI KAEDAH RUNGE-KUTTA GAUSS 

MENGGUNAKAN TETAPAN SAIZ LANGKAH BERUBAH-UBAH 

 

 

ABSTRAK 

 

 

Kajian ini bertujuan untuk mencari strategi pelaksanaan yang paling cekap dengan 
kaedah numerik Gauss untuk menyelesaikan masalah kaku dan anggaran ralat terbaik 
dalam tetapan saiz langkah berubah-ubah. Kaedah berangka yang dianggap sebagai 
metodologi kajian adalah kaedah Runge-Kutta Gauss tahap-2 (G2) dan tahap-3 (G3) 
tersirat. Dua strategi oleh Hairer dan Wanner (HW) dan Gonzalez-Pinto, Montijano dan 
Randez (GMR) dilaksanakan. Pengaturan saiz langkah berubah-ubah menggunakan 
Newton yang dipermudah diubah suai agar sesuai dengan skim HW dan GMR dalam 
menyelesaikan sistem persamaan algebra tidak linear. Anggaran ralat untuk tetapan saiz 
langkah berubah-ubah dikira menggunakan teknik ekstrapolasi dengan saiz langkah h  
dan 2h . Skim HW dan GMR menggunakan matriks transformasi T untuk 
meningkatkan kecekapan kaedah dan juga dibandingkan dengan skim Hairer dan 
Wanner yang diubah (MHW) tanpa menggunakan matriks transformasi T . Penemuan 
menunjukkan bahawa kaedah G2 menggunakan skim MHW memberikan pelaksanaan 
yang cekap dalam menyelesaikan masalah Kaps, Oreganator dan HIRES sedangkan 
untuk kaedah G3, ia berkesan dalam menyelesaikan masalah Kaps, Brusselator, 
Oreganator, Van der Pol dan HIRES. Dari segi anggaran ralat, kaedah G2 memberikan 
anggaran ralat terbaik untuk masalah Brusselator, Oreganator, Van der Pol dan HIRES, 
sementara untuk kaedah G3 ia berkesan dalam menyelesaikan masalah Kaps, 
Brusselator, Oreganator, Van der Pol dan HIRES, kedua-duanya dengan menggunakan 
skim HW. Kesimpulannya, skim MHW tanpa matriks transformasi T dapat menjadi 
secekap skim HW dan GMR dengan menggunakan pengaturan saiz langkah berubah-
ubah dan skim MHW disarankan dalam menyelesaikan masalah kaku. Sebagai 
implikasi, kajian ini dapat diperluas ke berbagai jenis masalah lain seperti persamaan 
tunda jenis lewat dan persamaan pembezaan kabur. 
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CHAPTER 1 

 
 
 
 

INTRODUCTION 

 
 
 
 

1.1 Introduction to Numerical ODEs 

 

Ordinary differential equations (ODEs) represent a mathematical model for many 

systems in various discipline of knowledge. Fatunla (2014) described that the numerical 

approximations are obtained at some specified points in the integration interval. The 

numerical method is said to be convergent if the method acquiring the properties of zero 

stability and consistency as mentioned by Lambert (1991). In numerical approximation, 

there exist a fact regarding conservation law. Shampine (2018) did mentioned that all 

linear conservation law are satisfying the numerical approximations of the standard 

methods. For nonlinear conservation law, the numerical methods basically do not 

produce a solution. Furthermore, the most well-known Adam-Bashforth is recognized 

to be a very efficient numerical method for the solution of linear and nonlinear 

differential equations including for the non-integer orders (Atangana & Araz, 2020). 

This is based on the Lagrange interpolation polynomial, however their accuracy is less 

than Newton interpolation’s polynomial. Since many years before, numerical methods 
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for ODEs has been used in many discipline of research areas such as engineering, 

chemical, physics, biology, medical, astronomy and others due to its ability that provide 

the approximate solutions of nonlinear ODEs arising in those fields.  

 

Nowadays, highly accurate solution for many kinds of complicated ODEs can 

be obtained by numerical approximation with the help of sophisticated software for 

computational mathematics. Development of computing power has revolutionized the 

utility of realistic mechanical and mathematical models in almost all fields as mentioned 

previously. Thus, a subtle numerical analysis is needed to implement these 

mathematical model that represents the real life problems such as given by Toufik and 

Atangana (2017), Owolabi (2019) and Araz (2020). Numerical method is said to be 

more advantages than analytical method because of the time consuming by the 

analytical method is much longer than numerical method when it comes to complex 

problems. The numerical methods are used when there is no solution for analytical 

methods. Even though the solution of analytical method is exact, however the analytical 

solution is sometimes unknown and in this case the numerical approach is required. 

 

 

1.1.1 Ordinary Differential Equations 

 

An equations that contained a derivative of one or more unknown functions (or 

dependent variable) with respect to one or more independent variable is called 

differential equations (DEs). DEs can be used to solve many system in real life problems 

including chemical, physical and biological processes. ODEs are parts of DEs that 
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consists only ordinary derivatives of one or more unknown functions with respect to 

only one independent variable.  

  

First order ODEs can be written in the following form 

   0 0 0, , , :[ , ] .n n
ny f x y y x y f x x                 (1.1) 

 

f  is autonomous if it is a function of only y . But it is called non autonomous if f  is 

explicitly depends on x . In equation (1.1), x  is time variable or known as the 

independent variable and y  is called the dependent variable, 0x  is the initial time and 

0y  is the initial value. Function f  is used to identify the unknown function y satisfying 

the ODEs.  

 

For some equations that arising in physical modelling, Butcher (2016) 

mentioned that some of it are naturally expressed in one form or the other, but the 

emphasizing is always appropriate to write a non-autonomous equation in an 

corresponding autonomous form. There exists the coefficients n
 where it is referring 

to a set of real number while the coefficient N  represents a set of positive integers. 

Equation (1.1) is known as the initial value problems (IVPs) if the value of 0x  and 0y

are given.  

 

ODEs also can be solved analytically. However, analytical approach are difficult 

to solve stiff ODEs problem. This is causing by the most rational stiff systems that do 

not have analytical solutions, so the numerical methods is required to solve this kind of 

ODEs problem. A stiff ODEs is one of the fundamental of the solution that decays much 
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faster than the others (Lapidus & Schiesser, 1976). This behavior is sometimes 

troublesome even though it can be solved by numerical methods, because these systems 

are characterized by very high stability, which might turn into very high instability 

when approximated by standard numerical methods (Butcher, 2016). To overcome the 

instability problem, a few researcher in the past decade come out with an idea in 

developing many new sophisticated methods. Bjurel, Dahlquist, Lindberg, Linde, and 

Oden (1970) and Willoughby (1974) are the main literature survey that contributed to 

the finding of this methods. These methods consist of a wide variety of both explicit 

and implicit methods. Therefore, it is possible to perform the approximation of a 

solution when the exact solution of the ODEs problem is unknown.  

 

There are three types of numerical methods that are popular among 

mathematicians in the solution of ODEs. These are Runge-Kutta (RK) methods, Linear 

Multistep methods and General Linear methods. Butcher (2016), mentioned the fact 

that Runge-Kutta methods only involve one step method. Fatunla (2014) give a brief 

explanations regarding one-step method where the consistency of this method ensures 

that the scheme is at least of order one. One of a simple RK method is the explicit Euler 

method. The explicit and implicit RK methods are able to produce a good approximate 

solution for certain problems depends on the nature of equations. The explicit and 

implicit RK methods are differ in term of the equations, coefficient and steps. Although 

explicit methods are easy to implement if compared to the implicit methods, the 

methods need more time to obtain the approximate solution (Cash, 1975). The 

implementation is not significant when the time taken by explicit methods are more 

than double the time consumed by the implicit methods. The difference of processing 

time occurs because of the internal stage equations of the explicit methods depends on 
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each other. The second stage equation need the value of the first stage equation and so 

on. On the other hand, for implicit methods every internal stage equations are 

independent which contribute to the shorter processing time. Besides, the explicit RK 

(ERK) is less stability compare to implicit RK (IRK) (Shampine, 1984). For these 

reason, this research is focusing on only IRK methods. A detailed introduction 

regarding RK methods is given in Subsection 1.1.2.  

 

In application of mathematical modelling, there exists a special parameter that 

is called stiffness ratio and can be found in the ODEs system. A stiff equation is defined 

as a differential equation when the solution for solving the equations is numerically 

unstable for certain numerical methods, unless the appropriate stepsize selection is 

chosen to be extremely small (Liu, Zhang, & Zhang, 2019). Hairer and Wanner (1996) 

give few examples of stiff equations where it consists of a differential equations in 

chemical reactions, automatic control, electronic networks and biology. In obtaining a 

satisfactory results, it is not recommended to use a very small stepsize because this will 

lead to longer computational complication and is unfavorable to numerical 

approximation which can increase the round-off error. In the meantime, this will affect 

the accuracy of the simulation and the numerical results for stiff problems is not 

efficient, thus it is required to use a method with better stability to solve it (Liu et al., 

2019). A problem is also called stiff by the fact that when the numerical solution of 

slow smooth movements is considerably perturbed by nearby rapid solutions (Hairer & 

Wanner, 1999). Simply said, a system is stiff when it involves different components 

that changing rapidly and slowly together.  
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To understand stiffness, consider the Prothero Robinson (PR) problem which is given 

in equation (1.2). 

        , 0 0 ,y y g x g x y g                  (1.2) 

where    sing x x  with exact solution    y x g x  and   is stiffness parameter. 

When   become large negative number such -10000, PR problem is considered as a 

stiff problem resulting in using a much smaller stepsize to achieve convergence solution 

and in order to achieve stability as described by Gorgey (2012) and Butcher (2016). 

This implies high computational cost and so the search for methods with extended 

regions of stability is motivated (Dormand, 2018). A detailed explanation on stiff 

problems is given in Section 1.2. 

 

When the numerical methods is applied throughout the investigation, there must 

be some errors that might spoil the solution, in other word it might cause less efficient 

and less accurate solution. Generally, common error is divided into two type namely 

local and global errors. Local error is a type of error that is produced by numerical 

method in an individual step where the value at the beginning of that step is assumed to 

be exact. When the local errors after n steps is accumulated, then this is where the global 

error will produced. In other words, the global error is another type of error that 

accumulated from the local error after n steps. Butcher (2016) had mentioned the fact 

that the accumulation is not necessarily causing by the summation of local errors at each 

n steps, on the other hand it is causing by the sum of the bounds on the local errors. 

Dormand (2018) described that the best process for global error computation is based 

on a parallel solution of a related system of differential equations. These are constructed 
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to have a solution satisfied by the actual global error of the main system of equations. 

Local errors, nl  can be defined by 

  ,n n n nl u x y                (1.3) 

where, nu   is the solution curve and ny  is called exact solution curve. The global error, 

n   is written in the following form 

  ,n n ny x y                 (1.4) 

where  ny x  is the solution curve at n  steps. Equation (1.4) then can be written as 

    ,n n n n ny x u x l                 (1.5) 

where n  is the actual error after n  steps. Thus, there are two types of global error, one 

is related to the local errors at the present step and the other is related to the local errors 

at the previous steps. 

 

Other than these errors, there is another error known as round-off error as 

mentioned before. These errors can destroy the numerical solutions if it is significant in 

numerical approximation. Detailed about round-off errors will be discussed on the next 

chapter. In the next section, a detail explanations regarding RK methods is discussed. 

 

 

1.1.2 Introduction to Runge-Kutta Methods 

 

Runge-Kutta (RK) methods have been popular among mathematicians for many year 

and are developed specialize in finding an approximate solution for ODEs. This 

methods are originally developed by Runge towards the end of the nineteenth century 
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and generalized by Kutta in the early twentieth century. These methods are easy to 

implement compared to Taylor polynomial scheme which requires the formation and 

evaluation of higher derivatives as described by Dormand (2018). Basically, an s-stage 

RK methods for the step    1 1, ,n n n nx y x y     with stepsize h  can be defined as 

 1 1
1

,
s

i n ij n j j
j

Y y h a f x c h Y 



   ,             (1.6) 

 1 1
1

,
s

n n j n j j
j

y y h b f x c h Y 



   ,             (1.7) 

where , 1,2,..., ,i j s  s  is the number of stage. iY  represents the internal stage values 

for the thi  stage and ny   represents the update of y  at the thn step. The coefficient a  is 

used to find the internal stages by using the linear combinations of the stage derivatives. 

The vector b  represents the quadrature weights which indicates how the approximation 

to the solution depends on the derivatives of the internal stages. The coefficient c  is the 

vector of abscissas which indicates the positions within the step of the stage values. A 

detailed explanation can be found in Butcher (2016). 

 

It is called a one-step method and can be demonstrated schematically in the following 

diagram: 

 
Figure 1.1. Diagram of One-Step Runge-Kutta Methods. 

 

            1ny              1Y                              iY                             sY             ny  
               •         •          •       •                • 
             1nx         1 1nx c h                       1n ix c h                1n sx c h          nx  
                       h   
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The coefficient a  and c  must hold the row-sum condition as given in the Table 1.1. 

The coefficients in the general equation (1.6) and (1.7) shall be represented by a 

partitioned tableau known as the Butcher tableau (Butcher, 2016) of the form 

      ,
T

c A

b
 

where A  is a matrix that consist of the a values of RK methods and Tb is referring to 

vector b  which is the quadrature weights.  

 

RK methods are divided into two components, namely the implicit Runge-Kutta 

(IRK) and the explicit Runge-Kutta (ERK) methods. The ERK methods form a 

triangular matrix A  of the coefficient a . One example of famous ERK methods is the 

classical RK method of order-4 (RK4). In IRK methods, the coefficient matrix A  is not 

triangular that make a big difference with ERK methods. There are several types of 

implicit methods and it can be divided into few categories, the first one is known as 

fully-implicit if matrix A  is not lower triangular and it is called semi-implicit if A  is 

lower triangular with at least one non-zero diagonal element. Besides, the IRK methods 

is also known as diagonally-implicit if A  is lower triangular with all the diagonal 

elements are equal and non-zero or simply called as diagonally implicit Runge-Kutta 

(DIRK) and singly implicit if A  is matrix with a single non-zero eigenvalue singly 

implicit Runge-Kutta (SIRK). Table 1.1 describe these properties. 
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Table 1.1 

Butcher Tableau of Explicit RK and Implicit RK Methods 

Explicit RK              Implicit RK 

 

2 21

3 31 32

1 2 , 1

1 2 1

0

s s s s s

s s

c a

c a a

c a a a

b b b b





,   

1 11 12 1

2 21 22 2

1 2 ,

1 2

s

s

s s s s s

s

c a a a

c a a a

c a a a

b b b

.  

 

Explicit methods are easy to implement as the internal stages can be calculated 

directly without depending on later stages as described on Subsection 1.1.1. However, 

explicit methods cannot be used to solve stiff problems since they have poor stability 

behavior (refer to Section 1.2). In other word, implicit methods are suitable for solving 

stiff problems however they are more costly to implement. The implementation of 

implicit methods is discussed in Chapter 3 on Section 3.4. 

 

Some examples of ERK methods are the Euler method, explicit trapezoidal rule, 

explicit midpoint rule and other higher order explicit methods. The simplest ERK 

methods is the Euler method which of order-1. For the IRK methods, it consists of some 

methods such as the implicit Euler method, implicit midpoint rule, implicit trapezoidal 

rule, Gauss methods, Radau methods, Lobatto methods and other higher order implicit 

methods (Hairer & Wanner, 1996). For this research, it is only involving 2-stage (G2) 

and 3-stage (G3) Gauss methods. The Butcher tableau (Butcher, 2016) for the 2-stage 

and 3-stage Gauss methods are given in Table 1.2. 
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Table 1.2 

Butcher Tableau of G2 and G3 Methods 

   2-stage Gauss method (G2)         3-stage Gauss method (G3) 

 

1 3 1 1 3
2 6 4 4 6

1 3 1 3 1
2 6 4 6 4

1 1
2 2

 

   , 

1 15 5 2 15 5 15
2 10 36 9 15 36 30

1 5 15 2 5 15
2 36 24 9 36 24

1 15 5 15 2 15 5
2 10 36 30 9 15 36

5 4 5
18 9 18

  

 

  

.  

 

G2 method is of order 4 whereas G3 method is of order 6. The defining equations as 

referring to equation (1.6) and (1.7) for the 2-stage Gauss method are given in equation 

(1.8), (1.9) and (1.10) while in equation (1.11), (1.12) and (1.13), it is referring to the 

defining equation for the 3-stage Gauss method. 

 

The stage equations of 2-stage Gauss method are defined by 

1 1 1 2

2 1 1 2

1 1 3 ,
4 4 6

1 3 1 .
4 6 4

n

n

Y y h F h F

Y y h F h F





  
          

   
          

               (1.8) 

The internal stage derivative equations of the 2-stage Gauss method are defined by  

1 1 1

2 1 2

1 3 , ,
2 6

1 3 , .
2 6

n

n

F f x h Y

F f x h Y





  
      

  

  
      

  

             (1.9) 
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The update equation of the 2-stage Gauss method is defined by 

   1 1 2
1 1 .
2 2n ny y h F h F

   
     

   
           (1.10) 

The equations (1.11) are the stage equations of the 3-stage Gauss method. 

1 1 1 2 3

2 1 1 2 3

3 1 1 2 3

5 2 15 5 15 ,
36 9 15 36 30

5 15 2 5 15 ,
36 24 9 36 24

5 15 2 15 5 .
36 30 9 15 36

n

n

n

Y y h F h F h F

Y y h F h F h F

Y y h F h F h F







    
                  

    
                

     
                  

         (1.11) 

The internal stage derivative equations of 3-stage Gauss method are defined by 

1 1 1

2 1 2

3 1 3

1 5 , ,
2 10

1 , ,
2

1 5 , .
2 10

n

n

n

F f x h Y

F f x h Y

F f x h Y







  
      

  

  
    

  

  
      

  

                      (1.12) 

The update equation of 3-stage Gauss is defined by 

1 1 2 3
5 4 5 .

18 9 18n ny y h F h F h F

     
        

     
           (1.13) 

 

Since this research only focuses on IRK methods, thus several IRK methods will 

be used in solving ODEs problems. Some ODEs problems have an equation of exact 

solution. There exists an error of approximation where it is referring to the difference 

between the approximate solution and the exact solution. Normally, the efficiency of 

the methods can be represented by the graph of the error versus the tolerance and 

computational (CPU) time. In addition, the efficiency can be improved by proper 
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method of implementation by various researchers. Thus, several implementations were 

tested in solving several ODEs problems including chemistry and physics problems. 

 

In numerical methods, ODEs plays an important rule in solving a simple linear 

equation. Several analytical methods can be used to solve the equations such as 

separable variable, factorization, substitution and other methods. However, analytical 

solution for nonlinear equations are always hard to solve. On the other hand, several 

type of numerical methods mentioned earlier is also quite important since it can solve 

approximate solution of the nonlinear equations whenever the exact solution is 

unknown. In obtaining a good result of numerical solutions, the combination of a good 

implementation and very small error will lead to the closest exact solution. The IRK 

and ERK methods are able to produce a good approximate solution for certain problems 

depends on the nature of equations. 

 

 

1.2 Problem Statement 

 

As ERK method is very easy to implement, so the internal stages can be calculated 

directly without depending on the later stages as mentioned on the previous section. 

Besides, this method also incurs cheap implementation cost. Even though ERK methods 

having this advantages, however the stability of the ERK methods is classified as not 

A-stable (Iserles, 2009). Thus, the ERK methods cannot be used to solve stiff problems 

compared to the IRK methods as they have poor stability (Sanderse & Koren, 2012). 

IRK methods not only possess strongest stability properties, thus it also satisfy the 

properties of A-contractivity (algebraic stability) even though it is difficult to implement 
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(Hairer & Wanner, 1981). Therefore they are suitable in solving stiff problems. The 

IRK methods not only important in solving stiff problems, furthermore it is beneficial 

to differential algebraic equations. Nevertheless, the IRK methods are expensive and 

difficult to implement due to the nonlinear equations involved when finding the internal 

stage derivatives iY  and need to be replaced by an iterative computation which is known 

as Newton-Raphson iteration. Even though it is difficult to implement, the IRK methods 

gives a fewer stages for the same order and better stability if compared to the ERK 

methods. Due to this better stability, the implicit methods are widely used in the 

applications of physics, engineering, chemistry and medical problems. 

 

There are two ways to implement Newton-Raphson iterations, which are full 

Newton and simplified Newton. Full Newton iteration is preferred for nonstiff problems 

as investigated by Muhammad and Gorgey (2018). However, to solve certain real-life 

stiff problems such as Van der Pol, Brusselator and Oregonator problems, small 

stepsize such as 0.001 is required if using constant stepsize setting. This not only takes 

longer computational time, round-off errors also can accumulate and destroy the 

solution. Therefore using constant stepsize is no longer appropriate. For this research, 

variable stepsize setting will be used to investigate the performances of three different 

implementation strategies. 

 

At the beginning of the code, a technique known as compensated summation is 

introduced to make sure the round-off errors will not destroy the numerical solutions. 

The purpose of compensated summation is to minimize the effect of round-off errors 

and it is applied together with simplified Newton iteration. However, based on the 

numerical results for Prothero-Robinson test problem with 10000q   , there is no 
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effect in terms of accuracy on G2 method with simplified Newton and compensated 

summation (G2SNCS) (Refer Figure 2). The numerical results showed that G2 using 

simplified Newton without compensated summation (G2SNWCS) has similar results 

with G2SNCS. Therefore, no compensated summation is required to investigate the 

performance of G2 and G3 methods using implementation schemes by Hairer and 

Wanner (1999), González-Pinto, González-Concepción, and Montijano (1994) and 

González-Pinto, Montijano, and Randez (1995).  

 

  
(a) 

 
(b) 

Figure 1.2. The effect of round-off error on (a) Tolerance and (b) CPU Time between 
G2SNCS and G2SNWCS for Prothero Robinson problem using variable stepsize 
setting. 
 

Although in Muhammad (2018) thesis, he studied of the implementation 

strategies by Hairer and Wanner (1999), Cooper and Butcher (1983) and González-

Pinto et al. (1994, 1995) schemes, however he studied only for constant stepsize setting. 

In difficult nonlinear ODEs problems, constant stepsize setting will require more 

computational time to solve depends on the stiffness ratio. For example, consider the 

Robertson problem (Robertson, 1966) or it was known as ROBER problem. Hairer and 

Wanner (1996) are the one who gave the name ROBER. A detailed explanation 

regarding ROBER problem is given in Subsection 5.1.1.  
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Variable stepsize setting is very important to be implemented for the numerical 

approximations of RK Gauss methods. When the variable stepsize setting is used, the 

stepsize changing policy will automatically adjusted especially when the difficult 

nonlinear problems involved. Hence, in this research, a variable stepsize setting is 

investigated in detailed using the implementation schemes from Hairer and Wanner 

(1999) and González-Pinto et al. (1994, 1995). 

 

 

1.3 Research Objectives 

 

This thesis investigated two numerical methods for solving the ordinary differential 

equations (ODEs) such as 2-stage Gauss (G2) and 3-stage Gauss (G3) methods. The 

main objectives of this research are: 

1. To study the implementation ideas for implicit Runge-Kutta methods 

recommended by Hairer and Wanner (1999) and González-Pinto et al. (1994, 

1995) using variable stepsize setting. 

2. To study the best error estimation for the variable stepsize setting in solving stiff 

problems. 

3. To investigate the most efficient implementation strategy for Gauss methods in 

solving stiff problems using variable stepsize setting. 
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1.4 Research Questions 

 

In this research, several questions of interest are wished to attempt. Some of these are: 

1. How does the implementation schemes by Hairer and Wanner (1999) and 

González-Pinto et al. (1994, 1995) are implemented for implicit Runge-Kutta 

methods using variable stepsize setting? 

2. Which scheme is giving the best error estimation for the variable stepsize setting 

in solving stiff problems? 

3. Which implementation strategy is the most efficient for the Gauss methods in 

solving stiff problems by using variable stepsize setting? 

 

 

1.5 Significant of Research 

 

By the end of the research, the researchers are wish to obtain: 

1. The computational cost for the implicit methods can be reduced by using the 

most efficient implementation strategy suggested. 

2. The most efficient implementation strategy can be identified for the Gauss 

methods in solving stiff problems. 

3. Researchers have broad knowledge regarding the idea of the implementation 

techniques for implicit Runge-Kutta methods. 

4. Researchers can start using implicit Runge-Kutta methods which is proven to 

satisfy the efficiency properties and capable in solving real life problems 

especially for Robertson and Van der Pol problems. 
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5. The round-off errors can be reduced even without using compensated 

summation technique for the variable stepsize setting. 

 

 

1.6 Scope of Study 

 

This research focuses on the IRK methods. Only 2-stage (G2) and 3-stage (G3) Gauss 

methods that emphasized in this research. Preliminary study of this research is about 

understanding the ideas of implementation for IRK methods recommended by various 

researchers including the standard/common implementation methods. The first stage in 

this research is to perform test problems using Prothero Robinson (1974) problem to 

investigate the importance of using simplified Newton with compensated summation 

for variable stepsize setting. The implementation strategies by Hairer and Wanner 

(1999) and González-Pinto et al. (1994, 1995) are selected to solve real life problems 

such as Robertson, Van der Pol, Kaps and Oreganator problems using variable stepsize 

setting. All of these problems are given by Hairer and Wanner (1996). A detailed 

explanation regarding all of these problems can be found in Section 5.1. The 

construction of the G2 and G3 methods as well as the numerical experiments for all the 

problems involved are performed using MATLAB R2019a numerical software. 
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1.7 Thesis Outlines 

 

There are 6 chapters in this thesis. 

 

Chapter 1 is about the Introduction. This chapter divided into five main parts. 

The first part discussed about the background of this study which is the introduction to 

numerical ODEs including some basic knowledge regarding RK methods, problem 

statement, objectives, significant of research and scope of this research. 

 

Chapter 2 discussed about the literature review. A brief explanation about 

history of implementation of RK methods, efficiency of Gauss methods and the 

implementation ideas by other researchers is discussed in this chapter. 

 

In Chapter 3, the discussion regarding research methodology that consists of 

research design, the construction of 2-stage (G2) and 3-stage (G3) Gauss methods and 

the implementation of implicit Runge-Kutta methods based on the simplified Newton 

iteration.  

 

Chapter 4 gives the construction of implementation strategies by Hairer and 

Wanner (1999) and González-Pinto et al. (1994, 1995) in solving some real life 

problems such as Robertson and Brusselator problems as given by Hairer and Wanner 

(1996). The implementation strategies will be used in solving real life problems in 

Chapter 5.  
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Chapter 5 gives the numerical experiments of this research. This chapter gives 

all the numerical results for real-life problems. The numerical results are given by the 

tolerance and computational (CPU) time diagrams. The tolerance diagram indicates the 

accuracy of the methods while the CPU time diagram is to measure the efficiency for 

certain stepsize. A detailed description of variable stepsize setting and explanation of 

error estimation also will be discussed in this chapter. 

 

Lastly, Chapter 6 summarizes the numerical results and presents some 

conclusions and also the suggestions for future work.



 

 
 

CHAPTER 2 

 
 
 
 

LITERATURE REVIEW 

 

 

 

 

2.1 History of Runge-Kutta Methods 

 

In numerical analysis, there exists a method that is called the Runge-Kutta (RK) 

methods. RK methods consists of implicit and explicit iterative methods, which 

includes the popular method which is known as Euler method. The Euler method is 

being used in temporal discretization for the approximate solutions of ordinary 

differential equations (ODEs) (DeVries & Hasbun, 2011). Carl Runge and Martin 

Wilhelm Kutta are the well-known German mathematicians that developed this 

methods around 1900 (Butcher, 1996). 

 

Carl Runge was completing his famous paper one hundred years ago and this 

work was published in 1895. He extended the approximation of Euler method to a more 

elaborate scheme which useful in producing greater accuracy. A detailed explanations 

was mentioned by Butcher (1996). The basic idea of Euler method was to generate the 

solution of an initial value problems (IVPs) in more precise steps. At the beginning of 
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the step, the rate of change of the solution that evaluated from the derivative formula is 

treated as constant in each step. Rechenberg (2001) described the differential equations 

that occur in the atomic spectra research had led Carl Runge developed the numerical 

method to solve the equations. Hitchens (2015) mentioned the fact that Martin Kutta is 

the one who contributed to the numerical method for differential equation in the 

aerodynamics. 

 

Development of RK methods are done since past decades by many researchers. 

The first published article is in 1895. They searched for greater order of explicit Runge-

Kutta (ERK) throughout the years. Modern development of RK processes has occurred 

since 1960, mainly as a direct result of the advances due to Butcher in the development 

and simplification of RK error coefficients (Dormand, 2018). Butcher (1996) gave the 

chronology of the developed methods by the corresponding author based on the order 

hierarchy as given in the Table 2.1. 

 

Before 1970, Kuntzmann (1961) and Butcher (1964) suggested that the IRK 

methods are based on Gauss quadrature formulae. To construct a good method in 

solving stiff problems, the criteria that need to be considered are high accuracy, good 

stability and low implementation cost. The Gauss methods are chosen because they are 

highly stable as well as high accuracy and possess higher order than explicit and other 

implicit methods where the order p  is equal to 2 ,s s  is referring to the number of 

stages of the IRK methods. The higher the order of Legendre Polynomials, the more 

accurate the numerical approximation is (Cerrolaza, Shefelbine, & Garzón-Alvarado, 

2018). Even though the Gauss methods possess a good stability and high accuracy 

properties, therefore they are expensive to implement because the methods have 
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different and complex eigenvalues which makes the implementation difficult. 

Nevertheless, the Gauss methods are categorized as a symmetric method. Gorgey and 

Muhammad (2017) mentioned further regarding this behaviour. It is an advantages for 

Gauss methods since it provide capability to give more accurate solution. This kind of 

property is an extra advantage that cannot be found in ERK methods.  

 

Table 2.1 

List of the Explicit Methods Based on the Order and Author (Butcher, 1996) 

Order (p) Stages (s) Author Year Reference 

2 2 Runge 1985 (Runge, 1895) 

3 3 Heun 1900 (Huen, 1900) 

4 4 Kutta 1901 (Kutta, 1901) 

5 6 Kutta 1901 (Kutta, 1901) 

5 6 Nystrom 1925 (Butcher, 1996) 

6 8 Huta 1956 (Huta, 1965) 

6 7 Butcher 1964 (Butcher, 1964b) 

7 9 Butcher 1987 (Butcher, 1987) 

8 11 Curtis 1970 (Curtis, 1970) 

8 11 Cooper and Verner 1972 (Cooper and Verner, 1972) 

10 18 Curtis 1975 (Curtis, 1975) 

10 17 Hairer 1978 (Hairer, 1978) 

 

The IRK methods consist of several types of components named with semi-

implicit RK (SIRK) methods, semi-explicit RK (SERK) methods, diagonally-implicit 

RK (DIRK) methods and singly-diagonally-implicit RK (SDIRK) methods (Butcher, 
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1996). The IRK methods for which 0ija  , for j i , are called semi-implicit formulae, 

the class of which the one-stage RK2 are members. These can be made it as A-stable. 

For practical purposes they are simpler to implement than the fully implicit formulae, 

since each stage consists of the determination of only a single f . When solving stiff 

problems, it was found out that the Gauss and Lobatto IIIA methods suffer from the 

order reduction phenomenon. This is one of the disadvantage of one step methods that 

can be found when solving stiff problems. For example, the numerical order of 

convergences for fully IRK methods such as Gauss-Legendre methods suffers from 

order reduction where their order decreases from 2s  to s , coefficient s  denoted the 

number of internal stages (Rang, 2016). To make sure the order reduction is reduced, a 

researcher came out with the study of stability and convergence and a new technique 

known as symmetrization has been introduced by Gorgey (2012). 

 

The RK methods is called A-stable if the stability function 

   
11 TR z zb I zA e

     where    11, ,1 , ,T Ts
se b b b   and  

, 1i j

s

ijA a


  

satisfy the properties   1R z   for all z  . Otherwise, if   1R   , the RK methods 

is called strongly A-stable and L-stable if   0R    (Ehle, 1973). Rang (2016) did 

mentioned about A-stability property implies that RK method is dissipative for 

Dahlquist’s problem. It is guarantee in getting stable numerical solution if the method 

satisfy the A-stability. RK method is called B-stable if they are algebraically stable and 

able to solve the nonlinear problems. Some of it are Gauss-Legendre, Radau IA, Radau 

IIA and Lobatto IIIC methods. Furthermore, other advantages of Gauss-Legendre 
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methods is also the behaviour that satisfy the simplifying conditions    1 , , 2B B p   

and    1 , ,C C s . 

 

Since many decades, many researchers studied this method for solving ODEs 

problems such as Chan (1990), Cong (1994), Calvo, Franco, Montijano and Randez 

(2009). Zhu, Hu, Tang, and Zang (2016) showed in their article that second order 

symmetric RK methods perform better than non-symmetric RK method in long-term 

integration and almost energy conservation. Several years before, Chan and Gorgey 

(2013) reported that symmetric RK methods with symmetrization techniques give more 

accuracy and efficiency for solving stiff linear problem. 

 

 

2.2 Efficiency of Gauss methods 

 

In numerical analysis, it is very important to choose a method that satisfy the 

good stability properties and having higher order of convergence rate. Since RK 

methods complies with these properties, thus a method such as Gauss methods are 

particularly being chosen because of their advantages that suitable in solving stiff 

systems. This is also due to sufficiently high stage and classical orders. The 

computational cost of these methods is relatively high because they are fully implicit 

and require at each step the evaluation of ms ms  system of equation (1.6). The 

coefficient m  is refers to the dimension of the system and coefficient s  is refers to the 

stage of derivatives. Even though the computational cost is relatively high, however the 

methods provide better solution of same accuracy as the order of the IRK methods. The 
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study showed that the methods numerically integrate various sorts of ODEs such as 

non-stiff and stiff problems, Hamiltonian systems and invertible equations. González-

Pinto et al. (1994) investigated an experiment regarding linear stability of IRK methods. 

In their research, they proposed a method by Cooper and Butcher (1983) in determining 

the most efficient method in solving IRK methods. They concluded that the 

implementation by using Gauss method performs much better than DIRK method even 

though both of the methods are categorized as A-stable and have the same order 4. This 

is such a big difference that can be found during the investigation due mainly to the fact 

that the both methods having the same cost per step required on one side. Even though 

the Gauss methods having the handicap of solving the implicit system 

   nY e y h A I F Y     (similarly, refer to equation 1.6) during the experiments, 

however their relatively high stages and good stability properties make them not only 

competitive but highly recommended to other methods like DIRK methods for the 

solution of nonlinear stiff problems when implemented using special iterative schemes. 

 

Varah (1979) described the comparison of methods used in producing an 

efficient implementation of IRK methods. Since we concerned that Butcher methods 

have order s  or 1s  , while the Gauss methods have order 2s  or 2 1s , it can be seen 

that for the method that has the properties of same order method, Gauss methods require 

less work per step compared to Butcher methods. Moreover, it also turn out that the 

Butcher methods having an error constants larger than Gauss methods especially for the 

A-stable methods. This leads the methods to produce more steps for the same accuracy. 

In addition, this inefficient behaviour make it difficult to compare these methods with 

stiff multistep methods like those of Gear (1980). In Gauss-Legendre method, the 

operations involved are complex because of the complexities in eigenvalues. If it were 
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programmed directly in a language with complex type declarations, it may be requires 

much less work compared to complex multiplication that involving four real ones. For 

example, it is more practical to use a factor of two in Fortran on IBM 370 machines. 

González-Pinto et al. (1994) also mentioned that Gauss methods having of advantages 

of high order of convergence in comparison with the number of stages and good 

stability properties that make it suitable for solving stiff systems. Due to this, Gauss 

methods requires relatively high computational cost since they are fully implicit.  

 

A research by Agam and Yahaya (2014), they have developed a more efficient 

and stable method of new 3-stage IRK methods using collocation method at pertubed 

Gaussian points. Basically, the method is different from the existing 3-stage Gauss in 

term of the equation of the internal stage value iY  and the coefficient of b  in the 

equation of the update solution 
1
.

n
y


 The internal stage derivative  iF Y  in the equation 

iY  of the existing 3-stage Gauss method was replaced with a new one that was 

formulated using collocation method. Besides, the coefficient of  b  in the equation (1.6) 

from the general form of RK was replaced with new coefficient b  that was computed 

using new coefficient c . It is proved that this new method produced an efficient results 

than the existing 3-stage Gauss method in solving one dimensional of a linear and a 

nonlinear problems of first order ODEs. 

 

Kulikov (2015) constructed nested Gauss and Lobatto methods for solving stiff 

differential problems using variable stepsize. The methods preserved the properties of 

IRK methods, such as A-stability, symmetry and symplecticity. Symplectic RK 

methods was systematically developed by Sanz-Serna (1988). Their idea is based on 
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algorithm of algebraic stability introduced that involving stiff systems studied by 

Burrage and Butcher (1979). Sanz-Serna (2016) did mentioned that these methods also 

has a wide range of applications not only in Hamiltonian problems but also beneficial 

in other applications that required the use of adjoint systems and optimal control 

problems. Gorgey and Mat (2018) have mentioned about the combination of two 

methods that can be shown to be symmetric and symplectic which is known as 

partitioned RK methods (PRK) that also advantageous in solving Hamiltonian system 

that is separable. A further explanations about PRK can be found in Abia and Sanz-

Serna (1993) and Sun (2000).  

 

  Generally, Gauss method is also known as a collocation method that based on 

the Gaussian quadrature formulas. Since the algebraic accuracy of Gaussian quadrature 

formulas for point s  is 2 1s  while its truncation error is    2 1
1 1 ,s

n n nl y x y O h 

     

hence it is satisfies the order conditions which is 2s . The order of numerical methods 

is the crucial indicator in measuring the accuracy of the method. Basically, the higher 

accuracy is affected by the relatively higher order of the numerical method. For SDIRK 

and SIRK methods, the maximum attainable order for both methods are 1s  . Here, it 

is clear that the Gauss method has higher order and higher accuracy, which is the main 

objective why this method is chosen as numerical approximation. However, it is 

doubtful when this method is applied to a large system simulation because it is fully 

implicit with a larger computational cost. This caused the computational cost to grow 

increasingly expensive for higher stages methods and higher dimensional system. 

Because of this reasons, it is necessarily to reduce its computational cost by using new 

method proposed by Liu et al. (2019). This method is known as banded IRK (BIRK) 

method and will be discussed further on the Section 2.3.  
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2.3 Implementation Ideas by Other Researchers 

 

Butcher (1997) introduced a classic transformed method which is known as singly 

implicit Runge-Kutta (SIRK) method where the method has only one real s  fold 

eigenvalue. Nevertheless, not all SIRK methods are categorized as A-stable that makes 

the maximum attainable order reduced. Thus, Liu et al. (2019) proposed a new method 

which is known as banded implicit Runge-Kutta (BIRK) method. The aim of this 

method is to reduce the computational cost by making a changes to the Jacobian matrix 

from a full coefficient matrix to a banded matrix while maintaining the high accuracy 

and good stability properties. The purpose of reducing the computational cost for IRK 

methods produced a singly diagonally implicit Runge-Kutta (SDIRK) method, where 

the coefficient matrix A  is lower triangular with same diagonal elements   rather than 

using a full coefficient matrix (Ababneh & Ahmad, 2009). Even though the SDIRK 

method has a straightforward computational advantages over the fully IRK method, 

however the method has some inconvenience components that makes their stability and 

accuracy affected by the simplification of the coefficient matrix A . The main 

advantages of BIRK methods is that the method reduced the computational complexity 

of the LU factorization and back substitution to the Newton update iteration which this 

behaviour did not obtained by Gauss-IRK method. In addition to that, the BIRK method 

maintained a good accuracy compared to the Gauss-IRK method. Hence, it can 

concluded that the BIRK method is easier to implement programmatically compared to 

the SDIRK and SIRK methods. This method of order 2s  is also categorized as A-stable. 

 

Berghe and Daele (2011) presented the development of symmetric and 

symplectic modified exponentially-fitted Runge-Kutta (EFRK) method. They derived 
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the EFRK methods as a 4-stage Gauss of eighth-order. The suitable frequency is needed 

for determining the order and accuracy. The numerical results shows that the solutions 

from classical and the 4-stage EFRK method are not largely different compared with 

the solutions of 2-stage and 3-stage methods. The construction procedure for the 

development of other EFRK method of different order also being recommended. In 

addition, the EFRK method preserved the symplectic properties. They also mentioned 

that the method gives same result as other exponentially fitted methods such as 

multistep methods. Furthermore, the method provide more accuracy than the classical 

method, hence their studies considered as a great achievement. 

 

In Skvortsov and Kozlov (2014), an efficient implementation has been 

developed for three types of diagonally implicit Runge-Kutta (DIRK) methods. Four 

types of implementation scheme involved namely, trivial, modified trivial, standard and 

economical schemes. The trivial is about the use of trivial prediction which is the 

computed values at the initial point of approximation step that being used as initial 

values for iterations. For modified trivial, it is being used to modify stage equation of 

the corresponding methods. Different approach is applied to the standard 

implementation where the initial values for the iteration are provided as a linear 

combination of the previous stage values. For the economical scheme, it is about a 

prediction for estimating the initial values of internal stage derivative. Based on the 

numerical test problem, it is showing a result that economical scheme secures an 

acceptable convergence by a single calculation, but the standard scheme requires two 

computations. By right, the economical scheme saves one calculation at each implicit 

stage compared to the standard scheme. The schemes also has been tested to solve real 

life problems such as Van der Pol, Oregonator and HIRES by using three different 
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values of tolerance. The tested is to capture the size of error, number of internal stages 

derivative function and Jacobian.  

 

Nazari, Mohammadian, Charron, and Zadra (2014) performed optimization on 

3-stage DIRK methods in finding a scheme that can retains a good order accuracy. The 

numerical results shows that the new scheme giving highly accurate solution than their 

previous scheme for the problem that involving larger stepsize. Other than that, the new 

scheme gives better accuracy for low spatial resolutions with the same stepsize. The 

scheme that was developed is also categorized as A-stable which makes it suitable 

option for solving stiff problems. Even though the scheme gives better efficiency, the 

computation for diffusion coefficient is not really cheap. However the proposed scheme 

performs well with large stepsize for the problem involved.  

 

An updated technique known as generalized summation-by-part (GSBP) was 

constructed by Boom and Zingg (2015) in solving IRK methods. The methods that was 

constructed are based on Lobatto IIIC and Radau IA/IIA discontinuos collocation, 

Gauss quadrature points and some algebraically stable and DIRK method. The 

numerical simulation shows that the GSBP methods are more competent compared to 

the classical summation-by-parts (SBP) methods. The comparison has been 

investigated between the Gauss and Radau IA methods when applying the GSBP 

methods. The numerical results obtained are both of the methods retains the same 

properties, however the Gauss method is more efficient in terms of stage error. For the 

non-SBP method with the same number of stages, it gives more efficient result however 

it is categorized as not L-stable. The study is extended to fifth-order explicit singly 
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DIRK (ESDIRK) method that beneficial in constructing higher order GSBP methods 

which are diagonally implicit (Boom & Zingg, 2015).  

 

Zhang, Sandu, and Tranquilli (2015) discovered a new technique specialize to 

recover the order of corresponding IRK methods for their research. They introduced a 

refinement procedure to correct stage values that was motivated from the simplified 

Newton method. The procedure successfully recover the order of the methods in solving 

non-stiff, midly stiff and stiff problems. In some cases, the order is recovered by only 

small number of refinement iterations for non-stiff and midly stiff problems, however 

for stiff problems large number of refinement iterations is needed since the increasing 

stiffness deteriorates the convergence. Before refinement procedure been introduced, 

the approximate matric factorization to high order linearly IRK methods is unstable for 

stiff problems. After several test problems has been done, they concluded that the 

refinement procedure improves the efficiency and it validates the accuracy and stability 

based on theoretical findings. 

 

Development of a new Runge-Kutta method has been developed by Ramos 

(2019). This development was known as a two-step hybrid block method that was 

specialized for numerically solving first-order IVPs. This method largely using the 

well-known schemes of RK and multistep methods. A new formula of this method is 

obtained by choosing two intermediate points of the interpolation derivation and 

collocation at different points through the optimization of the local truncation errors 

with continuous approximation. This method are practicing self-starting method where 

it does not provide any starting values when using other approaches. Even though this 

method might requires more computational cost, however the number of occurrences 
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of the source term f  is reduced that resulting in the most competent formulation. For 

linear problems, it might be seen the both formulation are essentially the same, but when 

the problem where f  is difficult, this reformulation will result in an outstanding saving 

on computational cost. The existing block methods are using this strategy in getting the 

best behaviour of the block formulation. Moreover, this method consists of a good 

characteristics which satisfy the convergence order and A-stability property that make 

it appropriate for solving stiff problems.  

 

In Kennedy and Carpenter (2019), a general purpose of DIRK methods has been 

performed to first order ODEs that involving five types of explicit singly diagonally 

implicit Runge-Kutta (ESDIRK) and their implicit-explicit (IMEX) methods. The 

purpose of the methods is focusing on achieving a 2-stage order, stiff-accuracy, L-

stability, internal L-stability, an embedded method with good quality, algebraic stability 

of matrix eigenvalues with a small magnitudes and a small values of iia . All of the 

mentioned characteristics are persistently important in maximizing the scheme 

efficiency. An embedded method is being used to facilitate the stepsize control through 

error estimation. As the stage order affected the order reduction, focusing on 2-stage 

order helps in determining the accuracy. The order reduction is depends on the problem 

that being tested. It is observed that the methods produced moderate order reduction for 

the Kaps problem while the Van de Pol problem is having a severe order reduction. For 

the problems that categorized as excessively stiff behaviour, the utility of the fifth and 

sixth order of ESDIRK methods that being used in this research is lower compared to 

those lower order methods. 
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In the same year of 2019, a researcher that was known as Zhang had discovered 

a new RK methods using unstructured numerical search. The emphasizing of the new 

methods is to exhibit a minimum number of stages in constructing RK methods in order 

to maximize their order. Nevertheless, higher order RK methods are challenging to be 

implemented since their parameter must comply with an exponentially large system of 

polynomial equations. In his research, he studied about the strategy in decreasing the 

number of stages for higher order method. The research that has been investigated 

proved that the 10th-order RK method only required 16 stages. He was the first one that 

managed to break a 40 years standing record that proved giving a less number of stages 

in achieving the accuracy. The mechanism of techniques and theorems that empowering 

the discovery of this method is discussed further in his research (Zhang, 2019).  

 

 

2.4 Variable Stepsize Setting 

 

Variable stepsize setting is crucial for the solution of nonlinear equations such as 

stochastic wave equations of Schrödinger because they are typically nonlinear which 

the error might propagate very rapidly and deteriorate the solutions. This was given by 

Wilkie and Çetinbaş (2005). In their research, they showed that by implementing the 

variable stepsize, the explicit 9th order RK method (with an embedded 8th order 

method) of ODEs yields an order 4.5 method for stochastic differential equations 

(SDEs) which is part of the stochastic differential systems. When the lower order 

methods is implemented with constant stepsize, the solutions produced is highly 

inaccurate that might destroy the solutions, hence they become relatively inefficient 
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because of their lower order. This clearly proved that the variable stepsize setting is 

suitable in solving higher order methods. 

 

In difficult mathematical applications, it is unrealistic to use a constant stepsize 

setting. This is due to the research that was investigated by Chan and Razali (2014) 

regarding the two-step symmetrization in a constant stepsize setting. In order to achieve 

the convergence, a very small stepsize is required so that the approximate solution is 

closed to the exact solution. Razali, Nopiah and Othman (2018) did mentioned about 

the ways of computing the approximate solution so that it is close to exact solution. A 

specific tolerance and a right method selections is necessary so that the estimated error 

lies within the given tolerance at each step and the stepsize for the next step can be 

predicted which generate an error within the tolerance.  

 

In 2015, an investigation regarding variable stepsize setting based on reference 

separation system for online blind source separation (BSS) was done by Xu, Yuan, Jian, 

and Zhao (2015). BSS is about extracting the latent unknown source signals from their 

observed mixtures by an array of sensors without highlighting the original source 

signals and the mixing coefficients. In order to improve the learning rate and stability 

performance, they proposed a new variable stepsize algorithms. During the iteration, 

there is increasingly in terms of the correlation between the estimated and original 

source signals. To overcome this, the reference separation system was introduced to 

approximately estimate the correlation in terms of mean square error (MSE). The MSE 

is important in updating the stepsize. In their simulations, they demonstrated that the 

proposed method exhibits good convergence rate and gives excellent performance than 

the constant stepsize setting for the noise-free case. Aside from that, their proposed 
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method is also converging faster than the classical variable stepsize setting in both 

stationary and nonstationary environments.   

 

A research regarding the variable stepsize algorithm for solving the nonlinear 

Duffing oscillator (second order nonlinear initial-value ODEs) was investigated by 

Rasedee et al. (2017). A variable order stepsize (VOS) together with the backward 

difference formulation (BDF) was introduced to solve the numerical approximation of 

Duffing oscillator. BDF is functioning in overcome an uninteresting calculations of 

integration coefficients everytime the stepsize make a changes as required by the 

divided difference formulation that based on the Direct Integration (DI) method. A 

further work regarding the Duffing oscillator can be found in Branch and Manshahr 

(2016) and Najafi and Nemati (2017). The VOS with backward difference (VOSBD) 

method was tested on several nonlinear Duffing oscillators of different parameters. 

Their numerical approximations shows that the DI method gives an excellent behaviour 

for larger tolerances whereas the VOSBD is better with a stringent tolerance. It can be 

concluded that the VOS algorithm provides an efficient computational code without 

affecting its accuracy.  

 

As we concern, the variable stepsize setting is very important to be implemented 

as many researchers are still finding the best way that suitable to solve certain problems 

either in mathematical, biological, chemical, physical, engineering or in any related 

fields. In 2017, a new generalized variable stepsize was investigated by Wang, Zhou, 

Wang, and Chen (2017) that involving the CQ algorithm for solving the split feasibility 

problem (SFP).  The proposed technique consists of two algorithms, namely CQ 

algorithm with two simpler variable stepsizes and two general KM-CQ algorithms with 



37 
 

generalized variable stepsizes. Both of the general algorithms with the generalized 

variable stepsizes able to solve the SFP and solve some special variational inequality 

even better. The models that being used in this investigation are the compressed sensing 

and deconvolution models. The proposed stepsizes with the former ones are then 

compared with those models and the numerical results appear to give an excellent 

behaviour.  

 

Apart of SDEs, there also exists a stochastic delay differential equations 

(SDDEs) and an equation known as stochastic pantograph differential equations 

(SPDEs) are parts of it. This was studied by Yang, Yang and Xiao (2020). The exact 

solution of nonlinear SPDEs was introduced by Guo and Li (2019) and established the 

Razumikhin-type theorems on the αth moment polynomial stability. Yang, Yang, 

Wang, and Han (2019) are the one that investigated the mean-square stability of 

nonlinear SPDEs. The numerical solutions of SPDEs by using constant stepsize are 

investigated by many researchers previously (Fan, Song & Liu, 2009). When the 

difficult problems is applied throughout the investigation, it leads to the limited 

computer memory that encourages the researchers to implement the variable stepsize 

setting and transformation approach for the deterministic pantograph equations to solve 

the storage problem. Yang et al. (2020) were originally investigated the asymptotical 

mean-square stability under variable stepsize for linear SPDEs by using linear θ-

methods. Linear θ-methods is also categorized as A-stable as proved by Liu (1995). 

From the investigation by Yang et al. (2020), they proved that the stability region of 

linear θ-methods by using variable stepsize is the same as the deterministic problems 

where  1
2 ,1  . 

 



 

 

 

CHAPTER 3 

 

 

 

 

RESEARCH METHODOLOGY 

 

 
 
 

3.1 Introduction 

 

In this research, only 2-stage and 3-stage Gauss methods will be focused. It will covers 

the construction of the 2-stage and 3-stage Gauss methods using MATLAB R2019a 

software. The construction are based on the implementation schemes by Hairer & 

Wanner (1999) and González-Pinto et al. (1994, 1995). Besides, this chapter also 

include the MATLAB code for the implementation methods. The implementation are 

done based on Newton-Raphson iteration. The Newton-Raphson iteration for  ( 0)f x   

where :( ) n nf x   is given by 

 

 
 1 , ' 0.

'
n

n n n
n

f x
x x f x

f x                  (3.1) 

The simplified Newton method evaluates Jacobian once while the full Newton method 

evaluate Jacobian many times throughout the iterations (Hairer & Wanner, 1996). Only 

simplified Newton was used in solving test and real life problems. To complete this 

research, the efficiency of 2-stage and 3-stage Gauss methods has been compared based 
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on different schemes proposed by other researchers using different problems taken from 

Enright, Hull, and Lindberg (1975) and Gorgey (2012).  

 

 

3.2 Research Design 

Figure 3.1: Research Design  
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Figure 3.1 represents a research design for the thesis. The thesis starts by 

choosing the proper type of differential equations. Since the most important purpose of 

this research is to find an efficient implementation technique in solving stiff problem, 

thus only ordinary differential equations (ODEs) are considered and it can be clarify by 

using Runge-Kutta (RK) methods. 2-stage (G2) and 3-stage (G3) Gauss methods are a 

family of implicit Runge-Kutta (IRK) methods and are chosen since they are efficient 

in solving stiff problems (Chan & Gorgey, 2013). In 1964, Butcher presented RK 

methods based on the Radau and Lobatto quadrature formulas. Since Hairer and 

Wanner (1999) implementation scheme was originally implemented to Radau IIA 

method, therefore this method of order-3 was also being tested in this research to clarify 

either we implemented the right implementation scheme for the G2 and G3 methods. 

 

Although IRK methods are advantages in solving stiff problems, however they 

are difficult to implement if compared to explicit RK (ERK) methods as stated in section 

1.2 under problem statement. The stage equation (1.8) need to be solved using Newton-

Raphson iteration. Some computationally cheaper variants are often being used when 

at each Newton iteration, the methods required the s  evaluations of the Jacobian matrix 

f y   and a LU decomposition of a sd sd  matrix (Antoñana, Makazaga, & Murua,  

2018). Since the problems that being investigated in this research is considered as a stiff 

problems, thus the fixed point iteration is no longer appropriate to be used and hence 

the Newton iteration is implemented to compute the stage vectors iY  from equation 

(1.6). Even though the Newton iteration is suitable in solving stiff problems, it does not 

means that the non-stiff problems cannot implemented this iteration. The Newton 

iteration may be still be an attractive choice where in some cases, the quadruple 

precision or in arbitrary precision arithmetic calculations with high precision 



41 
 

computations is implemented with mixed-precision strategies in order to reduce the cost 

of the linear algebra and also the evaluation of the Jacobians that was performed in 

lower-precision arithmetic than the evaluations of the right-hand side of the system of 

ODEs (Baboulin et al., 2009).  

 

Newton-Raphson iteration can be divided into two parts which are full Newton 

and simplified Newton. Full Newton iteration is preferred for non-stiff problems 

(Muhammad & Gorgey, 2018). Since the problems that are chosen for this research are 

categorized as stiff problems, therefore only simplified Newton was considered 

throughout the research. In difficult nonlinear ODEs problems, constant stepsize setting 

will require more computational time to solve depends on the stiffness ratio as 

mentioned previously in Section 1.2. In order to overcome this, a variable stepsize 

setting was investigated in detailed using implementation schemes from Hairer and 

Wanner (1999) and González-Pinto et al. (1994, 1995) to investigate their effectiveness 

and efficiencies in solving stiff real life problems. 

 

In solving linear and nonlinear problems, it is preferable to choose a higher order 

methods such as Radau IIA method of order-5 and G3 method of order-6. This is 

because the higher order methods are having the tendency to give a greater accuracy 

than lower order methods (Ismail & Gorgey, 2015). Lower order methods require 

smaller stepsize than higher order methods. If the stepsize is chosen to be very small, 

then this can lead to round-off error where eventually will destroy the solution. Thus, a 

compensated summation technique is applied at the beginning of the code to minimize 

the effect of round-off errors. A smaller quantities 0i iZ Y e y    as suggested by 

Hairer and Wanner (1996) and Butcher (2016) being used together with the code in 
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order to reduce the influence of round-off errors. Chan and Gorgey (2013) and Gorgey 

and Chan (2015) had mentioned that compensated summation is very useful when 

solving a stiff problem that requires a very small stepsize and also when the accuracy 

of the numerical solutions need to be increased by extrapolation technique. A 

comparison between simplified Newton with compensated summation (SNCS) and 

without compensated summation (SNWCS) using variable stepsize setting by Hairer 

and Wanner (1999) and González-Pinto et al. (1994, 1995) implementation schemes 

has been investigated. However, the numerical results shows that there is no effect in 

terms of accuracy on G2 method with simplified Newton and compensated summation 

(G2SNCS), therefore no compensated summation is needed for this research as explain 

in Section 1.2 under problem statement. Since there is no effect on compensated 

summation using variable stepsize setting, the Matlab code are proceed without 

compensated summation. The numerical results will be discussed in Chapter 5.    

 

 

3.3 Construction of G2 and G3 Methods 

 

Implicit Runge-Kutta (IRK) methods are called A-stable if there are no stability 

constraints for , Re 0y y     and 0h  . Dahlquist (1963) introduced this concept 

for linear multistep methods, but this concept is also practiced to RK method processes. 

A further explanations can be found in Hairer and Wanner (1996). Since their stability 

properties has been proven, hence IRK methods are the main methods used in this 

research. G2 and G3 methods are chosen since these two methods are convenient for 

the solution of stiff differential equations.  
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An s-stage Gauss method satisfies    2 ,B s C s  and is of classical order 2s . 

The abscissas are the zeros of the shifted Legendre polynomial )1(2sP s  , where ( )sP x  

denoted the Legendre polynomial of degree s  defined on the interval [1,1]  (Williams, 

2017). Few shifted Legendre polynomials are shown in Table 3.1.  

 

Matrix A can be constructed using the equation 1A CSDS . The C is the root 

obtained from the Legendre equation, S  is the Vandermonde matrix for C, and D is the 

diagonal matrix diag 1 11, ,...,
2 s

 
 
 

. The definition for the Vandermonde matrix is given 

in Definition 3.3.1 on page 44. 

 

Table 3.1 

The first few shifted Legendre polynomials 

s   sP x  
0  1   
1  2 1x    
2   26 6 1x x    
3  3 220 30 12 1x x x     

 

Other investigation regarding shifted Legendre polynomials was experimented by 

Wang and Chen (2020). They mentioned that the shifted Legendre polynomials 

algorithm will increase the reliability on predicting the viscoelastic behaviors and 

dynamic properties regarding the pipes conveying fluid problem. 
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Definition 3.3.1 Vandermonde matrix (V) can be defined as follows (Butcher, 2016) 

2 1
1 1 1

2 1
2 2 2

2 1
3 3 3

2 1

1
1
1

1

n

n

n

n
m m m

c c c
c c c

V c c c

c c c









 
 
 
 
 
 
 
 

, 

where the c’s is taken from the C roots. In linear algebra, Vandermonde matrix is a 

matrix with the terms of a geometric progression in each row which is written as m n  

matrix that was named after Alexandre-Théophile Vandermonde (1735-1796). A 

thorough discussion on this can be found in Ycart (2012). Yaici and Hariche (2019) did 

mentioned that both the Vandermonde matrix and its inverse are often appointed in the 

control theory, derivation of numerical formulas and in the systems theory. It is also 

very important for the solution of polynomial interpolation. The discovery of the 

Vandermonde matrix was found around 1965 and even before, where many researchers 

deals with the study and its properties, inverse and its determinant (Rushanan, 1989). 

In Ye (2017), he proved that every generic m n  matrix is a product of Vandermonde 

matrix and its transpose.  Kim and Kräuter (2018) also mentioned that Vandermonde 

matrix is decomposed in order to obtain the variants of the Lagrange interpolation 

polynomial. 

 

The Legendre equation 2
2  6( 6 1)P x x x    (refer to Table 3.1) was used for 2-

stage Gauss (G2) method and having the roots for the equation 1 3-
2 6

 
  
 

and 

1 3 .
2 6

 
  

 
 These roots are the c’s as in the Butcher tableau (refer to Table 1.2). The 

construction of the G2 method is given next.  
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1,

1 3 1 3 1 0 3 1 3 10 1
2 6 2 6 2 2101 3 1 3 3 320 1

2 6 2 6

A CSDS 

   
                    
        

   

  

1 1 3
4 4 6

1 3 1
4 6 4

 
 

 
 

 
 

 .                (3.2) 

 

Similarly, the c value for the 3-stage Gauss method is obtained by solving the Legendre 

polynomial for 3P . The roots are given as 1 15 1 1 15, and
2 10 2 2 10

    
            

. The shifted 

Legendre polynomial for G3 is 3 2
3  2( ) 0 30 12 1P x x x x    .  
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1,

5 15 2 5 151 15 1 15 2 150 0 1 6 3 62 10 2 10 5 10
1 1 1 10 15 10 15 100 0 1 ,
2 2 4 6 3 6

10 20 101 15 1 15 2 150 0 1 9 9 92 10 2 10 5 10

5 2 15 5 15
36 9 15 36 30

5 15 2 5 15
36 24 9 36 24
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     
      

    
      

     
    
            

      

 

   . (3.3)

5 15 2 15 5
36 30 9 15 36

 
 
 
 
 
 
 

  
  

  

Matrices (3.2) and (3.3) are obtained by using Maple 2019 mathematical software. A 

detailed explanations regarding Legendre polynomials can be found in Butcher (2016). 

 

  

3.4 Implementation of Implicit Runge-Kutta Methods 

 

The 2-stage (G2) and 3-stage (G3) Gauss method has been implemented by using 

simplified Newton of Newton-Raphson iteration. The implementation idea is taken 

from Hairer and Wanner (1999) and González-Pinto et al. (1994, 1995) which had been 

modified according to the Gaussian method. Previously, Hairer’s code was done for the 

Radau IIA method of order-3 where the eigenvalues are real (Hairer & Wanner, 1999). 

However for this research, the Hairer’s code was tested on G2 and G3 methods to 

investigate their accuracy and efficiency.  
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Consider applying IRK method for solving the initial value problem (IVP) of an ODEs 

with dimension N which is given by  

     0 0, ,x y y x yy x f   .                      (3.4) 

Generally, the approximate solution obtained by an s-stage RK methods with stepsize 

h  for the interval  0 , nx x  can be defined by the following equations (Butcher, 2016): 

   

      

    

1 1

1 1

0

, ,

, ,

,

n n
n N n

nT
n n N n

n

Y e y h A I F x ch Y

y y h b I F x ch Y

x x h

 

 

    

   

 

             (3.5) 

where   denotes the Kronecker product,  1,... )1( , Te   and NI  is the N N  identity 

matrix and ny  is the update of the RK method. ny  will be updated until the approximate 

solution is obtained for each problem that being tested. Normally the numerical solution 

is approximated until the desired solution is obtained or until the approximate solution 

reached the target interval nx .  

 

In equation (3.5), it can be seen that the function hF  is computed to find the interval 

stages as well as to find the update ny . This can be a waste of computational time. 

Therefore, it is recommended by Hairer and Wanner (1996) to write the update of 

equation (3.5) as given by: 

  1
1 1

nT
n n ny y b A Y e y

     .              (3.6) 

In addition to that, to make sure that the influence of round-off errors is reduced, it is 

also suggested by Hairer and Wanner (1996) to use a smaller quantity such that  

   
1

n n
nZ Y e y     .               (3.7) 
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Equation (3.5) then can be written in the form 

      1 1,n n
N n nZ h A I F x ch Z e y       ,            (3.8) 

where  nZ  consist of 1sN  vector which is given by 

 
1

n

s

Z
Z

Z

 
 


 
  

. 

The RK method such as given in equation (3.8) is nonlinear because of the difficulties 

that occurs in solving for  nZ . However, this complexities can be figure out by 

implemented the Newton-Raphson iterative method for N  dimensional system of 

equation such as 

   

  
  

1
n

n n
n

F Z
Z Z

J Z

   ,              (3.9) 

where   nF Z   is given by 1sN   system of equation  

  
 

 

1 1 1 1

1 1

,

,

n n
n

n s s n

f x c h z e y
F Z

f x c h z e y

 

 

   
 

  
    

, 

 

and the Jacobian matrix,   n fJ Z
z





 is computed such that 

  

1 1 1

1 2

2 2 2

1 2

1 2

N

n
N

N N N

N

f f f
z z z
f f f
z z zJ Z

f f f
z z z

   
   
 
   

   
 
 
 
   
    

 .            (3.10) 
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For simplicity, consider writing equation (3.8) as 

         1 1,n n n
N n nG Z Z h A I F x ch Z e y       .         (3.11) 

To solve for  nZ , we need to find the Jacobian matrix as given in equation (3.10). This 

can be obtained by taking the derivatives of equation (3.11) with respect to Z  such that 

       1 1,n n
G N N n nD Z I h A I J x ch Z e y       .         (3.12) 

The values of  nZ  can be obtained by solving equations (3.11) and (3.12) using 

Newton-Raphson iteration method introduced in equation (3.9) such that 

        
1

n n n
GZ G Z D Z



   ,           (3.13) 

where, 

     1n n nZ Z Z
   . 

The update ny  as given in equation (3.6) is therefore given by  

 1
1

nT
n ny y b A Z

  .             (3.14) 

All of this transformation was introduced in Hairer and Wanner (1996). For cheaper 

implementation cost, the coefficient matrix   n
GD Z  is only evaluated at the starting 

of the iteration. The rest of the computations used the same value of   n
GD Z  and this 

implementation is known as simplified Newton-Raphson method.



 

 
 

CHAPTER 4 

 
 
 
 

IMPLEMENTATION OF G2 AND G3 METHODS 

 
 
 
 

4.1 Implementation Issues 

 

In solving ordinary differential equations (ODEs) problems, the main issues in the 

implementation method that need to be considered is the strategy to achieve high 

accuracy, high efficiency and low implementation cost. These criteria are the main 

objectives in getting a good numerical approximation because it is related to 

computational cost. There are several aspects that need to be considered in achieving 

the objectives. Some of them are the convergence, tolerance, initial values and round-

off errors that will be discussed in the next subsection. 

 

 

4.1.1 Convergence 

 

In getting a good numerical approximation, the problems must satisfy the convergence 

test which the convergence rate is given by 1k kZ Z      where 1    and 1k   
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(Hairer & Wanner, 1996). It is considered satisfies the convergence test when the 

approximate solution from step to step are approaching towards the exact solution. 

Meaning to say, the convergence test is a relevant identification method in the iteration 

of the numerical approximation. Convergence is a type of numerical method related to 

truncation errors that provides the numerical solution to converge onto the exact 

solution and when the truncation error approach zero at all stepsize indices in the limit

0h  . As the stepsize become smaller, the maximum absolute global truncation error 

between the analytical and numerical solutions is giving a smaller error. Atkinson, Han 

and Steward (2009) gave a brief explanation regarding this matter. The mechanism to 

measure the convergence test is referring to how stepsize, computational (CPU) time 

and tolerance behaves with the global error in the numerical approximations. The 

tolerance and stepsize are the identical criteria in deciding the converging test when 

approaching the exact solution. It is said approaching the convergence if the tolerance 

and stepsize are decreasing proportionally with global error. For the CPU time, it is 

approaching convergence if the global error decreases as the CPU time increases. The 

accuracy is determined by the tolerance and stepsize while the efficiency is shown by 

the CPU time graphs that obtained from the numerical approximation. In this scenario, 

the access of the accuracy is important before the efficiency because the accuracy can 

determine whether the implementation is correct or wrong based on the order of the 

IRK method. In other words, we can say that the accuracy is affected by the order of 

the method which of order-4 for G2 method and order-6 for G3 method.  

 

In deciding the most efficient implementation among researchers, it is important 

to make a comparison which scheme is having the least error and the least CPU time 

taken in solving the ODEs problems. The values selection for   and the number of 



52 
 

iteration are also plays an important role in improving the convergence test. It is 

suggested in Hairer and Wanner (1996) that the most efficient values of   is around 

110  or 210  and this values was tested for the code RADAU5. They also mentioned 

that the code becomes efficient with the use of relatively high number of iteration of 7 

or 10.  During this iteration processes, it helps the computations to restart the iteration 

with a smaller stepsize  2h  in condition where 1  . If this case happened, the 

computations is interrupted that lead the iteration to become diverge. We can conclude 

that the convergence test is a crucial issue to help the researchers to do the 

troubleshooting and avoid unnecessary computations in case the approximate solution 

goes wrong and not converging, furthermore gives beneficial to them in saving time. 

 

  

4.1.2 Tolerance 

 

Investigation regarding tolerance value selection was done by Hairer and Wanner 

(1996). From the investigation, it shows that the code RODAS which is referring to 

Rosenbrock’s codes of order 4 with an embedded order 3 error estimator is considered 

giving best behaviour for low tolerances whereas the code RADAU5 which refers to 

Radau IIA method with 3s   of order 5 is recommended for high precision. As the 

tolerances become smaller, the more precise the numerical approximation is for the 

longer CPU time. The code was tested using Van der Pol, Robertson and Oreganator 

problems together with different methods such as RODAS, LSODE, SEULEX and 

RADAU5. SEULEX is an extrapolation code which implement the stiff linearly 

implicit Euler extrapolation method. For LSODE, Hindmarsh (1980) was the first to 
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implement this code that refers to backward difference formula (BDF) which is the 

model for a class of multistep methods. 

 

From the numerical approximation, the Rosenbrock’s code RODAS is giving 

the best behaviour for low tolerances between 210  to 510 , while the extrapolation 

code SEULEX is superior for stringent tolerances. The more stringent the value of 

tolerances, the easier the method to solve the problems. However, it is preferred to use 

not a very stringent tolerance as suggested by Muhammad (2018). Due to the cheapness 

of the function evaluations by multistep code LSODE, more computing time is required 

in general  compared to one-step codes does. The code RADAU5 gives the most definite 

result for the code where the tolerance value is 5Tol 10  followed by RODAS, 

SEULEX and LSODE. Furthermore, it has been proven that using smaller tolerances 

gives the precise solution. Since RADAU5 gives the precisest result among the others 

and are part of a family of IRK methods, thus we are interested in investigating the 

numerical approximation using different IRK methods such as G2 and G3 methods with 

the use of the same tolerance value, 5Tol 10  or using tolerance value which is smaller 

than that. 

 

 

4.1.3 Initial Value 

 

An initial value problems (IVPs) is an ordinary differential equations (ODEs) together 

with an initial condition or best known as initial value which specifies the value of the 

unknown function at a given point in the domain. Initial value are frequently needed 

values in solving the IVPs that involving a modelling system in mathematics, physics 

https://en.wikipedia.org/wiki/Initial_condition
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and other sciences. In other words, the differential initial value is referring to an 

equation which specifies how the system evolves with time given the initial conditions. 

A proper selection of the initial value for ODEs is very important because it can be an 

alternative approach to achieve converging solution. By selecting the proper initial 

value, it can avoid the codes fail if the initial value inappropriate. Basically, most of the 

ODEs have the initial value. It is belongs to the variables in the ODEs. The initial value 

is generally assigned as 0x  and 0y  in the ODEs problem. The number of initial value is 

the same as the dimension of the ODEs. Practically, the initial value can be changed 

accordingly in the implementation in order to achieve converging solution. To get the 

best initial value, basically the researchers will carry out a task for try and error until 

the solution converge and achieving their accuracy and efficiency.  

 

 

4.1.4 Round-off Errors 

 

Round-off errors is an error created due to approximate representation of number 

(Butcher, 2016). This happened when the stepsize chosen is very small that can destroy 

the solution. Thus, it is suggested to use not a slightly small stepsize to avoid the round-

off error from accumulate at the numerical approximation. When this is happened, it 

will affect the accuracy of the iteration and thus cannot represent the order of the IRK 

methods. However, some stiff ODEs problems are demanding of using relatively 

smaller stepsize in order to achieve convergence. To reduce the effect of round-off error 

when smaller stepsize is applied, it is suggested to apply a technique known as 

compensated summation. Compensated summation is a technique used to minimize the 

effect of round-off error and therefore beneficial in improving the accuracy and 
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efficiency. Higham (1993) explained further about compensated summation in their 

research. He did mentioned about the instability sometimes is not caused by the 

accumulation of millions of rounding errors, but by the dangerous growth of just a few 

rounding errors. The compensated summation works as capturing the round-off error at 

each individual step where the round-off error is gathered for y-values. Thus, the 

compensated summation is very important to be implemented in getting better 

numerical approximation especially when extrapolation is applied together. Detailed 

investigation on a numerical results regarding the use of other compensated summation 

is also given in Antoñana et al., (2018). 

 

Even though compensated summation technique gives a lot of advantages, 

however this technique is not applied to this research. This is regarding the numerical 

approximation that has been tested on the Prothero-Robinson problem. The numerical 

analysis shows no requirement in using compensated summation with simplified 

Newton for variable stepsize setting. This behaviour was explained in details in Chapter 

1 under problem statement section. Hence, the Gauss methods of order 2 (G2) and of 

order 3 (G3) were implemented only with simplified Newton to study the behaviour in 

achieving the convergence. 

 

 

4.2 Variable Stepsize Setting 

 

In achieving the convergence faster, one of the strategy that can be followed for the 

implementations of IRK methods is by employing the variable stepsize instead of 

constant stepsize. Variable stepsize are very useful in getting excellent performance for 
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IRK methods. A stepsize control formula that was originally proposed by Gustafsson, 

(1994) based on the two-step estimator, which in combination with the standard one-

step estimator, proved that the code RADAU5 fails less steps in the integration of some 

stiff problems (Hairer & Wanner, 1996).  

 

A research regarding the variable stepsize control for Radau IIA methods has 

been done by González-Pinto, Hernandez-Abreau, and Montijano (2019). In their 

research, they proposed a new strategy in pursuing a variable stepsize setting 

nevertheless not an extension of Gustafsson (1994). They mentioned that the two-step 

estimator does not needed any additional evaluation of the derivative function unlike 

the one-step estimator does. This gives a briefly explanation that when the variable 

stepsize setting is used, no filtering is needed for that estimator and thus gives beneficial 

to the codes which save some extra solutions of real linear systems that are required by 

the one-step estimator. From the numerical results obtained, it shows that the code takes 

slightly smaller number of steps which is 4897 steps for the two-step estimator, while 

one-step estimator gives a value of 4923 steps for the same tolerance 12(Tol 10 )  and 

this results has been tested for Van der Pol problem. Furthermore, stepsize control for 

tolerance proportionality has also been considered giving nice global errors with the 

supplied tolerances. However, one-step estimator gives fewer Jacobian evaluations than 

two-step estimator but the error produced much bigger than two-step estimator. We can 

summarized here that two-step estimator or variable stepsize setting gives an efficient 

results in solving stiff problems.  
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4.2.1 Error Estimation 

 

In solving stiff ODEs problems of IRK methods, extrapolation technique has been 

introduced as an alternative for local error estimation and is applied together with G2 

and G3 methods. Bader and Deuflhard (1983) introduced a METANI code, where this 

code was known as a first successful extrapolation code for stiff differential equations 

which implements the linearly implicit midpoint rule. Extrapolation is a technique to 

enhance the stability and efficiency of a method. The general equation of extrapolation 

is given by 

 2 12
,

2 1

p

p

y y
y





               (4.1) 

where p  is the order of the RK methods and 2y  and 1y  are the solutions attained by 

using stepsizes, h  and 2h  respectively. The difference between 1y  and 2y  gives the 

local error estimation. This step halving or best known as step doubling in obtaining the 

local error estimation was introduced by Shampine (1985). This technique is also 

known as Richardson extrapolation. Extrapolation can be found in two difference 

modes such as active and passive modes. Active extrapolation happened when the value 

of extrapolation is used to capture the next computation while passive extrapolation 

occurs when there is no need in using the extrapolated value for any subsequent 

computations (Ismail & Gorgey, 2015).  

 

Since extrapolation can increase accuracy and efficiency, many researchers are 

still finding the best ways to apply extrapolation. Gorgey (2012) showed that passive 

extrapolation of the G2 method is more competent than the active extrapolation for 

linear problems that using constant stepsize setting. In addition to that, Faragó, Havasi, 
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and Zlatev (2013) found out that computational time by using Richardson extrapolation 

for both active and passive modes are more than ten times smaller than the 

corresponding computing time by the backward Euler formula. Thus, they concluded 

that extrapolation is an impressive technique for increasing the accuracy and efficiency 

with taking into account the computational cost especially when the accuracy condition 

is not too low. Another approaches was investigated in Gorgey and Mat (2018) 

regarding the efficiency of IRK methods in solving simple harmonic oscillators. After 

a very short period of time, they concluded that passive extrapolation is observed to 

produce quadratic error growth while for active extrapolation, a linear error growth is 

obtained for a much longer period of time. It can be summarized here that the numerical 

results for active extrapolation is observed to give the lowest error if compared with 

passive extrapolation. Therefore, there is only one mode that can be applied in the 

variable stepsize setting which is the active mode. 

 

Another approach to estimate the local error was given by Gorgey (2012). In 

her thesis, symmetrizer is used to estimate the local error for G2 method. Although the 

error estimation by using symmetrizer is efficient, the computational time between this 

approaches with the traditional error estimation by the extrapolation is not much 

different. Therefore, local error for the variable stepsize in this article is estimated using 

extrapolation technique.  

 

The variable code that estimate the local error started by setting the coefficient

0x x , 4p   which is the order of G2 method and 6p   which is the order of G3 

method. We then set up the minimum and maximum h  values that is required for the 

problem by setting  
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8
max min( ) 16 , ( ) 2 10n nh x x h x x     .             (4.2) 

To make sure that we are choosing the correct value of h  for each problem, set 

 7
0max ,( ) /10nh h x x    .                                 (4.3) 

If nx h x  , then the first value of the update for stepsize h  which is 1y  is computed. 

Then, another two steps of the update is computed for 2h  which is denoted by 2y . 

Upon obtaining the values of 1y  and 2y , the local error is estimated such that  

2 1y y   ,               (4.4) 

where  


  and  1Tol.max ,1.0y


 .  

If   , thus the new value of x  and the improved result, 2y y    is computed. A 

sophisticated stepsize strategy has been used in deciding the stepsize selection. It leads 

to the formula  

 
1

1
maxmin ,4 ,0.9 ph h h h   

  
   

  
,             (4.5)  

If condition (4.5) is satisfied, then the h  value is accepted. Otherwise we reject it and 

the h  formula is recomputed by using the following condition 

 
1

1.max 0.25,0.9 ph h   
  

   
  

.             (4.6) 

This variable code implementation is introduced in Hairer and Wanner (1996). 

 

 

4.3 Implementation Strategies 

 

The strategies that being used for the implementation of the RK methods in this research 

is simplified Newton of Newton-Raphson iteration. As mentioned in the previous 
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chapter, no compensated summation is needed for the iteration of variable stepsize 

setting. Newton-Raphson is chosen because of the capability in solving the IRK 

methods and gives better solution compared to fixed-point iteration. Thus, it gives 

efficient implementation for the numerical approximation. Hairer and Wanner (1996) 

were the first to implement the simplified Newton technique and Radau IIA method of 

order 5 is chosen as a method that being tested. Since then, it became popular for the 

solution of stiff problems. Since the Jacobian is only evaluated once before Newton 

iteration, therefore this strategy provide less computational cost that gives beneficial in 

solving stiff ODEs problems.  

 

In Antoñana et al. (2018), they also implemented the simplified Newton 

iterations in getting efficient implementation for the symplectic IRK schemes. Based 

on their investigation, when the value of the stiffness constant is increasing the 

simplified Newton iteration that being implemented requires more iterations per step. 

This observation motivated them to make a modification to the original simplified 

Newton iteration to produce new algorithm which is known as Kahan’s compensated 

summation. This algorithm requires an evaluations of the Jacobian matrix which at each 

step s  additional evaluations is required. In their numerical experiments using stiff 

pendulum problem, the use of that algorithm does improve efficiency which is reduce 

the number of iterations also shows a robustness. However, there is no interest of using 

this algorithm for this research, thus only standard simplified Newton is implemented 

throughout the research. 

 

In our MATLAB implementation of variable stepsize, there are three script files 

of pseudo code for simplified Newton method respectively. The first script file solves 
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the nonlinear part of the method (see Algorithm 4.3.1), the second script file computes 

the n  steps of the base method (see Algorithm 4.3.2) and the third script file is the 

variable code that estimates the local error (see Algorithm 4.3.3).  

 

Algorithm 4.3.1: Newton Iteration  0Z    
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else if  / 1 . .Tol

trace 1

Evaluate / 1 .

Evaluate max 10 , .

if .Tol

return (trace)
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Algorithm 4.3.2: Constant Stepsize  y   





 

 

0

0

1

Set TRACE 1and hout=h.
whileTRACE
TRACE 0

0.5
for 1 to

if TRACE 1
do hout hout / 2

Store the value of  at the 1-th step

if hout h
TRACE 1

return

return TRACE

x x
y y

i n

Y n

y








 

 
 

 
 


 





  

 

In the computational processes, there exists a numerical error where the error is 

measured by the difference between two components, which are the numerical solution 

and the exact solution. The efficiency graph that was obtained from the numerical 

approximation could resolve whether the significant of round-off errors could affected 

the implementation of the IRK method. For the case when the round-off errors is 

increasing, the efficiency graph will generate a slope where it will change from negative 

to positive slope. For some cases, the slope is zero which means the numerical errors is 

at the same value and it should decreasing along numerical approximation. However, 

round-off errors is not the only components that could significantly affected the 

computations. The significant round-off error could be affected if the stepsize used is 

very small that might destruct the computation (Butcher, 2016). 
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Algorithm 4.3.3: Variable Stepsize  h  

   

 



 

 

 

  

  

min

1

1

1
max

max

while  and 

if

if TRACE

Estimate the error, 

.max ,1.0

if 

if 0

min ,4. ,0.9. /

Accept .
else

min ,4.

e

n

n

n

out

out out

out

p

x x h h

x h x

h x x
h h

y y

y

x x h
y y

h h h h

h

h h h



 

















 

 

 



  






 

  


 
 

     




 

  1

lse

.max 0.25,0.9. / ph h 





























   
  

. 

 

 

4.4 Implementation Scheme by González-Pinto et al. (1994, 1995) 

 

The methods introduced in this research retains the coefficients ,i ib c  and ija  of the 2-

stage (G2) and 3-stage (G3) Gauss methods. Implementation schemes by González-

Pinto et al. (1994, 1995) is a modification from Cooper and Butcher (1983) where the 

scheme consists of modified variables such as 1,S I L T P   and B I L  . B  and 

S  are s s  nonsingular real matrices while L  is a strictly lower triangular s s  matrix. 

Originally, the variable , ,B S L  and   (real positive number) in Cooper and Butcher 
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(1983) were chosen so that the spectral radius of ( )M z  which is denoted by [ ( )]M z   

is minimum for Re( ) 0z  . Their scheme were selected because it was classified as the 

most efficient implementation for the integration of stiff problems (Peat & Thomas, 

1989). Even though the numerical results satisfies the convergence and efficiency 

behaviour, however the numerical analysis that has been done before is specialize for 

linear and constant coefficient problems only. Since the convergence for nonlinear stiff 

problems has not been explored in details, therefore González-Pinto et al. (1994, 1995) 

iterative schemes were introduced in solving nonlinear stiff problems for G2 and G3 

methods.  

 

The general equation of the iterative scheme given by González-Pinto et al. (1994, 

1995) are modified based on equation 3.5 in previous chapter with some modification 

from Cooper and Butcher (1983). The derivation of the iterative scheme can be found 

in González-Pinto et al. (1994) and the general equation are given as follows: 

          
     

1

1

,

,

n n n
N n N

n n n

I h T J E Y e y h A I F Y

Y Y E





        

 

           (4.7) 

where 1,2, ,n s . In González-Pinto et al. (1994, 1995), the coefficient k  is used 

instead of n . In this thesis, we changed into coefficient n  because we want to use the 

same coefficient as the general equations of Runge-Kutta methods introduced by 

Butcher (2016). Smaller quantities    
1

n n
nZ Y e y     is applied to equation (4.7) and 

the new equation of the iteration are given by 

          
     

1

1

,

.

n n n
N N n

n n n

I h T J E Z h A I F Z e y

Z Z E





        

 

            (4.8) 
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There exists matrix T such that T  is a real nonsingular constant matrix of dimension 

s  and it contained a unique eigenvalue 0  . This matrix T could advantages in 

reducing the additional cost that was involved in the implementation.  

 

The matrix T of G2 method is given by  

3 0
6
3 3

3 6

T

 
 
 
 
 
 

, 

while the value of matrix T for G3 method is given by 

 
1 1 3

1, 1 0.0371745516 and ,
120

T S I L S  
        

0 0 0 0.0455241821 0.0441943589 0.0721518521
2 0 0 , 0.140048242 0.139620426 0.118832579 ,
0 0 0 1 0.244595668 1

0.1190762649202001 0.01352480890549548 0.002955703944789629
0.2567321613764653 0

L S

T



   
   

  
   
      



 .2864264722250291 0.008257284502425157 .
0.2617169889707876 0.5210947821158048 0.2027174624121108

 
 


 
  

  

The matrix T for G2 method is given by González-Pinto et al. (1994) whereas the 

matrix T for G3 method is given by González-Pinto et al. (1995).  

 

 

4.5 Implementation Scheme by Hairer and Wanner (1999) 

 

For implementation scheme by Hairer and Wanner (1999), a new transformation has 

been introduced and this changes are done to equations (3.11) – (3.13). Firstly, pre-

multiply (3.11) by  
1

NhA I
 . This gives 
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            1
1 1,n n n

N n nG Z hA I Z F x ch Z e y

       .            (4.9) 

Similarly, equation (3.12) becomes 

        1
1 1,n n

G N n nD Z hA I J x ch Z e y

       .          (4.10) 

The reason for multiplying the stage derivatives by  
1

NhA I
  is to transform matrix 

T  so that 1 1S T A T   and      1n n
NW T I Z   can be introduced where S  is the 

Jordan canonical form of A  that has the same diagonal elements. 

 

Since      n n
NZ T I W  , the stage equation (4.9) becomes 

             1 1
1 1,n n n

N N n N nG W h S I W T I F x ch T I W e y 

         .    (4.11) 

To solve for  nW , we need to find the Jacobian so that Newton-Raphson can be applied.  

Equation (4.10) becomes 

           1 1
1 1,n n

G N N n N nD W h S I T I J x ch T I W e y 

         .         (4.12) 

Finally, solving for  nW  by using Newton-Raphson iteration yields 

         
1

n n n
GW G W D W



   ,           (4.13) 

where,  

     1n n nW W W
   . 

The update ny  as given in (3.6) is therefore given by 

   1
1

nT
n n Ny y b A T I W

   .                      (4.14)

 



 

 

 

CHAPTER 5 

 

 

 

 

NUMERICAL EXPERIMENTS 

 
 
 
 

In this chapter, the numerical results on the efficiency of 2-stage (G2) and 3-stage (G3) 

Gauss methods using implementation strategies by Hairer and Wanner (1999) and 

González-Pinto et al. (1994, 1995) were discussed for solving real life stiff problems. 

The schemes were implemented by using variable stepsize setting with simplified 

Newton iteration. All of these numerical results are very important in determining the 

convergence test and to identify which implementation scheme gives efficient 

behaviour.  

 

  The numerical experiments has been done by using MATLAB R2019a 

mathematical software on HP with 2.3GHz Intel ® Core i3-7020U with RAM 8GB. All 

of the problems that have been tested are categorized as nonlinear problems. For each 

problem, the results are tested in terms of tolerance and computational (CPU) time plots. 

The tolerance graph is referring to how the tolerance behaves on a certain given value 

Tol and how does it affect the error. It also determined the accuracy of the methods for 

the given problems based on the researcher’s implementation schemes. The tolerance 
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used in this numerical experiments is 7Tol 10 . The efficiency of G2 and G3 methods 

is measured in terms of CPU time (seconds) using tic and toc build-in function in 

MATLAB. Implementation scheme by Hairer and Wanner (1999) is denoted by HW 

scheme while González-Pinto et al. (1994, 1995) is denoted by GMR scheme.  

 

 

5.1 Real Life Problems 

 

There are six problems that has been investigated such as Robertson, Kaps, Brusselator, 

Oreganator, Van der Pol and HIRES problems. All of the problems are classified as 

stiff nonlinear problems, thus all of these problems consumed more time for the 

computations. The schemes is compared based on three different implementations, 

which denoted by GMR scheme for González-Pinto et al.(1994,1995), HW scheme for 

Hairer and Wanner (1999) and the last one denoted by MHW scheme which refer to 

modified HW scheme. The difference between HW and MHW scheme is that no 

transformation such that  
1 1 1,NhA I S T A T     and      1n n

NW T I Z   is applied 

to MHW scheme. The HW scheme is specially designed for the 3-stage RADAU 

method and this scheme has been proven to give a robust implementation. As mentioned 

in the previous chapter, the GMR scheme is a modification from Cooper and Butcher 

(1983) implementation scheme. Their scheme is proven to give a convergent behaviour 

for linear and constant coefficient problems and also very efficient for general 

problems. Since the nonlinear stiff problems has been not investigated in details, thus 

the GMR scheme is implemented in solving the nonlinear stiff problems for G2 and G3 

methods.  
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For MHW scheme, it is quite similar with HW scheme, however the scheme is not 

involving the coefficient matrix T for the implementation.  

 

 

5.1.1 Robertson Problem 

 

The Robertson problem is a chemical reaction problem proposed by Robertson (1966) 

that describes the kinetics of an autocatalytic reaction. It was known as ROBER 

problem and consists of a stiff system of three nonlinear ODEs (Hairer & Wanner, 

1996). The problem can be written in the following form 

    0, 0 ,dy f y y y
dt

    

with  

 3, 0, .y t T    

The function f  can also be written in a system as given by 

' 4
1 1 2 3
' 4 7 2
2 1 2 3 2
' 7 2
3 2

0.04 10

0.04 10 3 10

3 10

y y y y
y y y y y
y y

  

   

 

   
 

 

 

1

2

3

0 1,

0 0,

0 0.

y

y

y







            (5.1) 

Table 5.1 shows the structure of the reactions, where 1 2 3, ,k k k  are the rate constants and 

,A B  and C  are referring to the chemical species involved.  
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Table 5.1 

Reaction scheme for problem ROBER 

1

2

3

1.
2.
3.

k

k

k

A B
B B C B
B C A C



  

  

  

 
Aiken (1985) describes some idealized conditions and the expectation that it is 

involving rate functions and the mass action law is applied to it. The mathematical odel 

of ROBER problem consists of a set of three ODEs and can be shown by 

'
1 1 1 3 2 3
' 2
2 1 1 2 2 3 2 3
' 2
3 2 2

,
y k y k y y
y k y k y k y y
y k y

    
   

     
  
  

            (5.2) 

with         1 2 3 01 02 030 , 0 , 0 , ,
T Ty y y y y y   where the coefficients 1 2 3, ,y y y  are the 

concentrations of ,A B  and C  respectively, while 01 02 03, ,y y y  are the concentrations for 

which the time 0.t    Since past decade, the ROBER problem became very popular 

among mathematicians for the numerical studies and is favorable to be used as a test 

problem for the solution of stiff systems. Originally, the problem was posed on the time 

interval 0 40t  , but it is reasonable to integrate on much longer intervals in 

determining their stability and efficiency. However, Hindmarsh (1980) discovered that 

many codes fail if the problem is integrated at a longer computational time t .  

 

For this numerical experiments, the problem is integrated to 10nx   with stepsize

0.01h  . The numerical result for G2 and G3 methods using Robertson problem is 

given in Figures 5.1 – 5.3. 
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a) G2 method b) G3 method 

Figure 5.1. Global error versus tolerance of (a) G2 and (b) G3 methods for Robertson 
problem. 
 
 

  
a) G2 method b) G3 method 

Figure 5.2. Global error versus CPU time of (a) G2 and (b) G3 methods for Robertson 
problem. 
 
 

  
a) G2 method b) G3 method 

Figure 5.3. Error estimation by using extrapolation versus tolerance of (a) G2 and (b) 
G3 methods for Robertson problem. 
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Figure 5.1 and Figure 5.2 showed two plots which are the loglog absolute global error 

versus loglog tolerance plot and loglog global error versus CPU time plot. In Figure 5.1 

(a), as the tolerance gets stringent, we can see that the global error for HW scheme of 

G2 method decreases and thus gives the smallest errors. However, the HW scheme 

requires more computational time than GMR and the MHW schemes. Furthermore, the 

GMR scheme as shown in Figure 5.2 (a) is being chosen as the most efficient scheme 

in solving Robertson problem for G2 method. For the G3 method, it has been proven 

that GMR scheme gives the smallest error among the others as the tolerances get 

stringent (refer Figure 5.1(b)). The scheme also very efficient and takes shorter 

computational time compared to HW and MHW schemes as shown in Figure 5.2 (b).  

 

 Figure 5.3 shows the error estimation by using extrapolation versus tolerance 

for G2 and G3 methods. For G2 method, it shows that the MHW and HW schemes 

collide to each other at the last iteration and hence give the smallest error value. 

However we intended to choose the MHW scheme as the scheme that gives the best 

error estimation. Same goes to G3 method as shown Figure 5.3 (b), the MHW scheme 

is proven to give the best error estimation as the tolerance become stringent. For both 

G2 and G3 methods, the error estimation obtained is not that significant. This behaviour 

shows than the local extrapolation does not effected the implementation scheme.  

 

 

5.1.2 Kaps Problem 

 

The Kaps problem is used to investigate the decreased order phenomenon (Dekker & 

Verwer, 1984). The exact solution of this problem is   2
1

xy x e  and  2
xy x e  . In 
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an article written by Kennedy and Carpenter (2019), the exact solution of 1y  has been 

modified which is 2
1 2y y  where it is referring to emergent (algebraic variable). This 

problem consist of stiffness parameter q  and this is a two-dimensional nonlinear test 

problem which given by 

 ' 2
1 1 2

' 2
2 1 2 2

2 ,

,

y q y qy

y y y y

  

  
    

 

 

1

2

0 1,

0 1.

y

y




            (5.2) 

The problem is integrated to 5nx  , stepsize 0.01h   and constant stiff value 

10000q   . The numerical result for Kaps problem is given in Figures 5.4 – 5.6. 

 

  
a) G2 method b) G3 method 

Figure 5.4. Global error versus tolerance of (a) G2 and (b) G3 methods for Kaps 
problem. 
 

  
a) G2 method b) G3 method 

Figure 5.5. Global error versus CPU time of (a) G2 and (b) G3 methods for Kaps 
problem. 
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a) G2 method b) G3 method 

Figure 5.6. Error estimation by using extrapolation versus tolerance of (a) G2 and (b) 
G3 methods for Kaps problem. 
 

For the Kaps problem as given in Figure 5.4, the error for the MHW scheme for G2 and 

G3 methods gives the smallest error as the tolerance gets stringent. The MHW scheme 

also giving the most efficiency behaviour in solving this two dimensional nonlinear test 

problem as shown in Figure 5.5 (a) and (b) and it takes shorter computational time 

compared to GMR and HW schemes. For the approximate tolerance value of 

10Tol 10 as shown in Figure 5.4 (b), the GMR scheme giving the least global error 

than MHW scheme. However, the solution of GMR scheme is fluctuated significantly 

as the tolerances become stringent meanwhile the global error of MHW scheme is 

decreasing as the tolerance get stringent. Thus it can be concluded that the MHW 

scheme is the most efficient implementation strategies in solving the Kaps problem for 

G2 and G3 methods. 

 

 In Figure 5.6 (a), the MHW scheme also gives an efficient results for G2 method 

where the error estimation by using extrapolation is smaller than the others. However, 

for G3 method as shown in Figure 5.6 (b), it can be seen that all of the schemes is giving 

almost similar solutions as the tolerance get stringent. Furthermore, it can be concluded 



75 
 

that the error estimation by using extrapolation does not effected the implementation 

strategies. 

 

 

5.1.3 Brusselator Problem 

 

The Brusselator is a theoretical model of a single chemical reaction or it is known as 

autocatalytic reaction that was proposed by physical chemist, Ilya Prigogine and his 

collaborators at the Free University of Brussels (Hairer & Wanner, 1996). The problem 

is defined by the following equations: 

' 2
1 1 2 1
' 2
2 1 1 2

1 4 ,
3 ,

y y y y
y y y y
  

 
    

 

 

1

2

0 1.5,

0 3.

y

y




             (5.3) 

The problem is integrated to 10nx   and stepsize 0.01h  . The numerical result for 

Brusselator problem is given in Figures 5.7 – 5.9. 

 

  
a) G2 method b) G3 method 

Figure 5.7. Global error versus tolerance of (a) G2 and (b) G3 methods for Brusselator 
problem. 
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a) G2 method b) G3 method 

Figure 5.8. Global error versus CPU time of (a) G2 and (b) G3 methods for Brusselator 
problem. 
 
 

  
a) G2 method b) G3 method 

Figure 5.9. Error estimation by using extrapolation versus tolerance of (a) G2 and (b) 
G3 methods for Brusselator problem. 
 

Referring to Figure 5.7 (a), it can be shown that the scheme that gives the least error in 

solving Brusselator problem for G2 method is the GMR scheme followed by HW and 

MHW schemes. GMR scheme is said to give efficient numerical results among the 

others as given in Figure 5.8 (a), therefore suitable in solving stiff problem. For the 3-

stage Gauss method as shown in Figure 5.7 (b), the HW scheme is giving the least 

global error as the tolerance get stringent, however the scheme need more 

computational time to solve the Brusselator problem as shown in Figure 5.8 (b). Hence, 

the most efficient implementation scheme is proved by the MHW scheme as shown in 
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Figure 5.8 (b) where it takes shorter computational time since there is a need in 

numerical analysis to choose the implementation strategies that gives shorter 

computational time in obtaining good numerical results.  

 

 Figure 5.9 shows the numerical results for G2 and G3 methods regarding the 

error estimation that implemented using extrapolation technique. For G2 and G3 

methods, it turns out that all schemes giving almost similar error at the last iteration. 

Thus, it is difficult to choose which implementation schemes is giving the best error 

estimation. However, it can be observed that the MHW scheme in Figure 5.9 (a) is 

destroyed by the round-off error and hence, it is not recommended to be used in solving 

Brusselator problem for G2 method.  

 

 

5.1.4 Oreganator Problem 

 

The Oreganator is one of the famous model with a periodic solution that was proposed 

for the Belusov-Zhabotinskii reaction. It is one of the example of non-equilibrium 

thermodynamics that categorized as nonlinear chemical oscillator of stiff problem with 

three dimensions (Hairer & Wanner, 1996). The equations of the problem is given by 
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             (5.4) 

The problem is integrated to 30nx   and stepsize 0.01h  . The numerical result for 

Oreganator problem are given in Figures 5.10 – 5.12. 
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a) G2 method b) G3 method 

Figure 5.10. Global error versus tolerance of (a) G2 and (b) G3 methods for Oreganator 
problem. 
 
 

  
a) G2 method b) G3 method 

Figure 5.11. Global error versus CPU time of (a) G2 and (b) G3 methods for 
Oreganator problem. 
 
 

  
a) G2 method b) G3 method 

Figure 5.12. Error estimation by using extrapolation versus tolerance of (a) G2 and (b) 
G3 methods for Oreganator problem. 
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Figures 5.10 – 5.12 shows the numerical results obtained for Oreganator problem. From 

the numerical results obtained, the G2 and G3 methods as shown in Figure 5.10 is 

giving the least global error as the tolerance get stringent which implemented by GMR 

scheme followed by MHW and HW schemes. However, the MHW scheme as shown 

in Figure 5.11 gives the most efficient implementation strategies by G2 and G3 methods 

and thus suitable in solving Oreganator problem.  

 

 In Figure 5.12, the error estimation that being investigated are not giving an 

excellent behaviour. This is because the results obtained shows that the schemes is 

fluctuated significantly and destroyed by the round-off errors for both G2 and G3 

methods especially for GMR and MHW schemes. However, it can be seen that the HW 

scheme is giving the best error estimation for both G2 and G3 methods as the tolerance 

get stringent.  

 

 

5.1.5 Van der Pol Problem 

 

The Van der Pol oscillator was originally proposed by the well-known physicist, 

Balthasar Van der Pol while he was working at Philips, Amsterdam which is one of the 

largest electronics companies in the world. He found a stable oscillations or it is called 

as relaxation-oscillations which are now known as a type of limit cycle in electrical 

circuits employing vacuum tubes. The Van der Pol equation has being used in both the 

physical and biological sciences. The equation consists of stiffness parameter  . The 

problem is defined by 
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              (5.5) 

The problem is integrated to 5nx  , stepsize 0.01h   and 310  . The numerical 

results for Van der Pol problem are given in Figures 5.13 – 5.15. 

 

  
a) G2 method b) G3 method 

Figure 5.13. Global error versus tolerance of (a) G2 and (b) G3 methods for Van der 
Pol problem. 
 
 

  
a) G2 method b) G3 method 

Figure 5.14. Global error versus CPU time of (a) G2 and (b) G3 methods for Van der 
Pol problem. 
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a) G2 method b) G3 method 

Figure 5.15. Error estimation by using extrapolation versus tolerance of (a) G2 and (b) 
G3 methods for Van der Pol problem. 
 
 

Figures 5.13 – 5.15 shows the numerical results of G2 and G3 methods for Van der Pol 

problem in terms of tolerance, CPU time and error estimation by extrapolation. In 

Figure 5.13, it can be observed that GMR scheme for G2 method gives the least global 

error followed by MHW and HW schemes, therefore it can be concluded that the 

scheme gives better accuracy for the solution of nonlinear stiff problem. The GMR 

scheme also giving the most efficient implementation strategies in solving Van der Pol 

problem for the solutions of G2 method since it takes shorter computational time 

compared to the others as shown in Figure 5.14 (a). For G3 method as shown in Figure 

5.13 (b), as the tolerances become stringent the MHW and GMR schemes are observed 

to give almost similar error where both of it are satisfying the efficiency behaviour. 

Nevertheless, among these two schemes we intended to conclude that the MHW 

scheme is the most efficient implementation strategies in solving Van der Pol problem 

by the G3 method as it gives shorter computation time (refer Figure 5.14 (b)). 

 

 In Figure 5.15, both figures (a) and (b) shows the error estimation that estimated 

using extrapolation technique. It can be observed that the error estimation obtained by 
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G2 method is giving the best error estimation for GMR and HW schemes and both of 

it are suitable for the solution of stiff problems using variable stepsize setting where the 

schemes satisfy the convergence property. The MHW scheme as shown in Figure 5.15 

(a) is fluctuated significantly and got destroyed by the round-off errors along the 

iteration. However, the HW scheme is shown to give the best error estimation for G3 

method where it generated the least error estimation as the tolerance become stringent. 

 

 

5.1.6 HIRES Problem 

 

Schäfer (1975) proposed a HIRES problem and defined it as a reaction of 8 reactants. 

The studied is about the photomorphogenesis of a plant that used a high-frequency-

controlled light source to grow a plant. The word HIRES was originally stand for ‘High 

Irradiance RESponse’ where the mathematical model of ODEs was given by Hairer and 

Wanner (1996). A further explanation of HIRES can be found in Swart, Jacques and 

Lioen (1998). HIRES is a nonlinear system of 8 dimensions and categorized as a 

moderately stiff problem. The problem is of the following form 
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83 
 

The problem is integrated to 321.8122nx   and stepsize 0.01h  . The numerical 

results for HIRES problem are given in Figures 5.16 – 5.18. 

 

  
a) G2 method b) G3 method 

Figure 5.16. Global error versus tolerance of (a) G2 and (b) G3 methods for HIRES 
problem. 
 
 

  
a) G2 method b) G3 method 

Figure 5.17. Global error versus CPU time of (a) G2 and (b) G3 methods for HIRES 
problem. 
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a) G2 method b) G3 method 

Figure 5.18. Error estimation by using extrapolation versus tolerance of (a) G2 and (b) 
G3 methods for HIRES problem. 
 

Figure 5.16 shows the numerical results for HIRES problem by G2 and G3 methods. It 

can be observed that the GMR scheme gives the lowest global error as the tolerance 

become stringent for G2 method, whereas the HW scheme is giving the lowest global 

error for G3 method. In terms of CPU time as shown in Figure 5.17, the MHW scheme 

is the most efficient implementation strategies for both G2 and G3 methods where the 

scheme is giving less computational time among the others.  

 

  Lastly, the numerical results for G2 and G3 methods are presented in terms of 

error estimation that computed by using extrapolation technique (refer Figure 5.18). 

The HW and MHW schemes are observed to give almost similar error estimation for 

G2 and G3 methods towards the end of the iteration. However, we intended to choose 

the HW scheme as the scheme that gives the best error estimation for both G2 and G3 

methods in solving HIRES problem using variable stepsize setting. 
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5.2 Summary on Numerical Results 

 

Based on all the numerical results, it can be summarized that different problems gives 

different numerical approximations depends on their stiffness ratio using different 

implementation strategies. Apparently, the scheme proposed by Hairer and Wanner 

(1999) or denoted as HW scheme gives the weaker yet less efficiency among the others 

for the solution of stiff problems using variable stepsize setting. It can be concluded 

that HW scheme is not recommended to be used with variable stepsize setting for Gauss 

methods. This is due to the implementation that was investigated using 2-stage and 3-

stage Gauss methods. As it is concerned that even though the HW scheme is very 

efficient in solving Radau IIA method, thus their efficiency is now proven to give an 

efficient implementation limited to this method only, and thus not efficient when 

implemented with other IRK methods such as 2-stage and 3-stage Gauss methods. It 

might be a reason of the differences in eigenvalues where Radau IIA method only have 

a single eigenvalue whereas the Gauss methods have a complex eigenvalue. Other than 

that, Radau IIA method also satisfy the properties of A-stable and L-stable whereas 

Gauss method only satisfied the A-stable property.  The L-stable property only can be 

found in Radau IIA method which contributes to the extra advantages. Furthermore, it 

can be summarized that the MHW scheme is as efficient as GMR and HW schemes 

when implemented with extrapolation technique even though the scheme is without any 

transformation matrix T. Table 5.2 shows the summary of the numerical results that was 

obtained for the solution of G2 and G3 methods. 
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Table 5.2 

The most efficient implementation of real life stiff problems 

Problems 
Global error versus 

tolerance 
Global error versus 

CPU time 

Error estimation 
(extrapolation) 
versus tolerance 

G2 G3 G2 G3 G2 G3 
Robertson HW GMR GMR GMR MHW MHW 

Kaps MHW MHW MHW MHW MHW 
GMR 
HW 

MHW 

Brusselator GMR HW GMR MHW GMR 
HW 

GMR 
HW 

MHW 
Oreganator GMR GMR MHW MHW HW HW 

Van der Pol GMR MHW GMR MHW GMR 
HW HW 

HIRES GMR HW MHW MHW HW HW 
 

The summary on numerical results that was presented in Table 5.2 can also be illustrated 

in terms of the error values for each scheme as shown in Table 5.3 and Table 5.4. 

 

Table 5.3 

Error values for each scheme in terms of global error versus tolerance  13Tol  10  

Problems Error values for each scheme (G2 method) 
GMR HW MHW 

Robertson 1.29314433252579e-12 3.74256612837401e-13 1.7390072683974e-11 
Kaps 6.15770636140043e-16 3.2662438383076e-11 2.30607329869179e-16 

Brusselator 2.63775533058874e-14 2.17300796281834e-13 1.10792004254562e-11 
Oreganator 7.75043188081224e-10 1.6635073305158e-08 2.03212543216419e-09 
Van der Pol 3.33713731538484e-11 1.18690109433547e-08 6.97397387928324e-11 

HIRES 2.05399986098905e-14 3.12527885208792e-12 1.10873918922055e-12 
 

Problems Error values for each scheme (G3 method) 
GMR HW MHW 

Robertson 1.39703239165766e-13 4.19109717497298e-13 4.44148181970094e-10 
Kaps 3.63261375116538e-12 2.90037660036354e-12 1.61425130908426e-15 

Brusselator 2.0222790867847e-13 1.25607396694702e-15 4.01943669423046e-14 
Oreganator 3.14428090124009e-09 1.60922280152946e-07 6.04281640138125e-09 
Van der Pol 2.25200245459964e-10 2.58545366667904e-09 1.62577421763854e-10 

HIRES 6.42259813206665e-13 4.07593549004841e-13 2.29913913254419e-12 
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Table 5.4 

Error values for each scheme in terms of error estimation by using extrapolation versus 
tolerance  13Tol  10  
 

Problems Error estimation values for each scheme (G2 method) 
GMR HW MHW 

Robertson 1.75203266981614e-15 1.14736773620886e-15 3.4656060859046e-16 
Kaps 2.61682076447296e-19 1.74454717631531e-19 2.18068397039413e-20 

Brusselator 3.2937050688833e-16 2.1771948760415e-16 3.20996680442016e-16 
Oreganator 2.40844495663904e-12 2.40844495663904e-12 7.00129347860186e-14 
Van der Pol 6.97818870526122e-15 1.74957147218309e-14 1.13716563140937e-14 

HIRES 4.64167305834273e-15 2.7952007132512e-16 6.92498001638361e-16 
 

Problems Error estimation values for each scheme (G3 method) 
GMR HW MHW 

Robertson 1.53367054264227e-16 1.97431921063568e-18 4.10416148056316e-16 
Kaps 2.34880926516375e-20 6.55194163440414e-20 3.70864620815329e-21 

Brusselator 4.43059600334046e-18 9.81060543596816e-18 1.58235571547874e-18 
Oreganator 2.54015182897119e-14 2.54015182897119e-14 2.54015182897119e-14 
Van der Pol 1.89882685857448e-18 1.89882685857448e-18 4.61984574691171e-15 

HIRES 5.63961466719843e-18 2.14606993911804e-18 2.38595753801542e-17 
 

The error values that highlighted in red colour as shown in Table 5.3 and Table 5.4 

indicates the lowest error obtained among the schemes for certain given tolerance, 

13Tol  10 .  For the problem that highlighted more than one red colour indicates the 

same error values obtained by the schemes.  

 

   

 



 

 
 

CHAPTER 6 

 

 

 

 

CONCLUSIONS AND FUTURE WORK 

 

 

 

 

6.1 Conclusions 

 

The main objectives of this thesis is to study the  implementation schemes by González-

Pinto et al. (1994, 1995) and Hairer and Wanner (1999) by using variable stepsize 

setting that involving 2-stage (G2) and 3-stage (G3) Gauss methods. To know either the 

implementation is correct or wrong, the first stage is to implement the schemes to Radau 

IIA method of order 3. This method is chosen because it is proven to give a robust 

implementation when implemented with Hairer and Wanner (1999) implementation 

scheme using variable stepsize setting as mentioned previously. It is considered giving 

a correct implementation if the numerical approximations satisfies the convergence test 

and efficiency behaviour. Thus, the Matlab code is then being implemented using G2 

and G3 Gauss methods.  

 

Literature review suggested GMR scheme is constructed for the families of 

Gauss methods while HW scheme is constructed for Radau IIA method. However, 
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based on this research, it is shown that the standard implementation scheme with some 

tuning using HW scheme known as modified HW (MHW) scheme that does not involve 

any transformation matrix T can be as efficient as the HW and GMR schemes. 

Therefore, this thesis proved that the transformation matrix T  is not necessary and 

although they can cause cheaper implementation, however the computational time is 

marginally adjustable. Hence, the conclusions of the research are done by answering 

the three objectives of this research.  

 

 

6.1.1 Implementation Ideas 

 

As mentioned previously, Hairer and Wanner (1999) implementation scheme is 

specially designed for the 3-stage Radau method and it has been proven to give 

robustness and satisfy the efficiency properties. For this research, an investigation 

regarding researcher’s scheme has been investigated by using different implicit Runge-

Kutta (IRK) methods which are 2-stage (G2) and 3-stage (G3) Gauss methods. In the 

research that was investigated by González-Pinto et al. (1994, 1995), it has been proven 

that the Gauss methods gives the least error than the diagonally-implicit Runge-Kutta 

(DIRK) methods. In addition to that, they also found out that the performance of 3-stage 

Radau method is poorer than the Gauss methods probably due to the one order less. In 

other words, Gauss methods are particularly suitable for solving stiff systems because 

they have higher order of convergence and good stability properties. This properties has 

also been proven in the numerical results that was obtained for this research. The real 

life problems that were investigated are the Robertson, Kaps, Brusselator, Oreganator, 

Van der Pol and HIRES problems as explained in detailed in previous chapter. Based 
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on the numerical results obtained, it can be summarized that all the scheme involved 

which denote by GMR scheme for González-Pinto et al. (1994, 1995), HW scheme for 

Hairer and Wanner (1999) and the last one denote by modified HW (MHW) scheme 

are suitable in solving certain real life problems by the G2 and G3 methods.  

 

 

6.1.2 Best Error Estimation 

 

The extrapolation technique has been implemented throughout the research to estimate 

the best error estimation among the researcher’s schemes using six real life stiff 

problems as described previously. From the numerical approximations obtained, it is 

proven that the GMR scheme by using G2 method is giving the best error estimation 

for Brusselator and Van der Pol problems, whereas for G3 method it is giving the best 

error estimation for Kaps and Brusselator problems. For HW scheme, the G2 method is 

giving the best error estimation for Brusselator, Oreganator, Van der Pol and HIRES 

problems. The HW scheme by using G3 method is also giving the best error estimation 

for all the problems except for the Robertson problem. The comparison also being 

compared with the so-called MHW scheme without using any transformation matrix T 

and it has been proven that the scheme is giving the best error estimation in solving 

Robertson and Kaps problems by using G2 method meanwhile for the G3 method, the 

Robertson, Kaps and Brusselator problems also giving the best error estimation. From 

the numerical results obtained, it can be summarized that among these three schemes, 

the HW scheme is giving the best error estimation because the scheme can solve almost 

all real life stiff problems involved in this research.  
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6.1.3 Most Efficient Implementation Strategies for Gauss Methods 

 

In deciding the most efficient implementation strategy for Gauss methods, a comparison 

has been made between the schemes by González-Pinto et al. (1994, 1995) which is 

denoted by GMR scheme, and the two types of Hairer and Wanner (1999) 

implementation schemes which are denoted by HW and MHW schemes. The difference 

between HW and MHW schemes are mentioned in previous chapter.  

 

Based on all the numerical results obtained, it can be summarized that the GMR 

scheme gives efficient implementation in solving Robertson, Brusselator and Van der 

Pol problems using variable stepsize setting by the G2 method whereas for G3 method, 

only Robertson problem gives the most efficiency behaviour. GMR scheme not only 

satisfies the requirement of high accuracy and high efficiency in solving stiff problems 

but also has lower computational cost. This clearly proved that the Robertson problem 

is the most efficient stiff problem which implemented with GMR scheme because the 

problem is satisfy the efficiency properties for both of G2 and G3 methods. 

 

As mentioned previously, the HW scheme is specially designed for 3-stage 

Radau IIA method and it has been proven to give a robust implementation. However, 

for this research which implemented by using G2 and G3 methods, the scheme is not 

giving good efficiency behaviour among the problems involved. None of the problems 

involved are showing good efficiency behaviour. The reason might be because of the 

differences in the eigenvalue involved since the 3-stage Radau IIA method is having a 

single eigenvalue while the family of Gauss methods is consisting of complex 

eigenvalue. Besides, the difference in stability behaviour might affected the numerical 



92 
 

analysis. Generally, the Radau IIA method is satisfy the property of A-stable and L-

stable while for the family of Gauss methods, it is only satisfy the property of A-stable. 

L-stable is an extra advantages that only can be found in the family of Radau methods.  

 

The scheme is also being compared with the so called MHW scheme. Even 

though the MHW scheme is without using any transformation matrix T, however the 

scheme is proven to give efficient implementation for the solution of G2 and G3 

methods and thus suitable in solving stiff problems using variable stepsize setting. For 

the solution of G2 method, the scheme is efficient in solving Kaps, Oreganator and 

HIRES problems while for the G3 method, it is efficient in solving all real life problems 

except for the Robertson. This behaviour obviously shows that even though the MHW 

scheme is without using any transformation matrix T, the scheme is as efficient as GMR 

and HW schemes. This research therefore recommended the use of MHW scheme in 

solving stiff problems by the implicit Gauss methods as it is shown from all the 

numerical experiments that MHW although requires a little computational time, the 

scheme is considered to give the most stable behaviour and works as efficient as the 

other two schemes. 

 

 

6.2 Future Work 

 

In this thesis, we have shown that the standard compensated summation is not a crucial 

components that need to be implemented when the variable stepsize setting is used even 

though it plays an important role in reducing the round-off errors. However, it will be 
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an interest to investigate in detailed the use of other compensated summation such as 

Kahan’s compensated summation with implementation using other IRK methods. 

Besides, the researchers also interested to conduct the implementation schemes using 

higher order stages which implemented with different approach of Runge-Kutta 

methods as introduced by various researchers in Section 2.3. This kind of approach is 

then can be tested on more real life problems such as linear and nonlinear problems 

with real and complex eigenvalues and also a few problems with nonlinear coupling 

which implemented using variable stepsize setting.  

 

Furthermore, the researcher also could extend the research based on other error 

estimation such as symmetrization instead of extrapolation as described by Gorgey 

(2015) in order to determine the error estimation by using variable stepsize setting. 

Symmetrization is a technique that is use to dampens the oscillator behaviour caused 

by the 2-stage (G2) and 3-stage (G3) Gauss methods. Symmetrizers can be used to 

determine the error estimations for the Gauss method instead of extrapolation as it is 

proven in Gorgey (2015) that, symmetrizers give less error estimation than by the local 

extrapolation. Other than symmetrization and extrapolation, the error estimation also 

can be determined by using any embedded method such as splitting and composition 

methods as described by Blanes, Casas and Thalhammer (2019). This is the new error 

estimator that proposed by them. In addition to these, this research can also explore 

different types of problems such as delay differential equations as described by Roussel 

(2019) as well as in Holder and Eichholz (2019). Lastly, the research also could be 

extended to fuzzy differential equations as mentioned by Yu and Jafari (2019) and 

Hussain and Abdul-Abbas (2019). 
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APPENDIX A 

 
 
 
The code below shows the MATLAB code for the implementation of 2-stage (G2) 
Gauss method. The first part contains the main function of G2 method followed by the 
nstep file which functioning as computing the updated ny  and variable file which 
compute the variable stepsize where the extrapolation technique is implemented. These 
three parts is required to all schemes which denote as G2SNGMR (G2 with simplified 
Newton for GMR), G2SNHW (G2 with simplified Newton for HW) and G2SNMHW 
(G2 with simplified Newton for modified HW) schemes. The code for real life problems 
is computed in different file. Lastly, the order plot file is to run the numerical 
approximation.  
 
 
1. MATLAB code for González-Pinto et al. (1994, 1995) 

 
 

Step 1 (G2SNGMR_fix.m) 

 
function [YY,trace,theta]=G2SNGMR_fix(f,J,tol,x,y,h,theta) 
maxit = 10;     

a1 = 1/4; 
a2 = 1/2; 
b = sqrt(3)/6; 
A = [a1,a1-b; a1+b,a1]; 
C = [a2-b;a2+b]; 
m = length(y); 
s = length(c); 
e = ones(s,1); 
z = zeros(m,1);  
Z = kron(e,z); 
trace = 0; 
Y = kron(e,y); 
kappa = 1.e-1;      

Im = eye(m); 

  
T = [sqrt(3)/6,0; sqrt(3)/3,sqrt(3)/6]; 

  
F1 = f(x+c(1)*h,y); 
F2 = f(x+c(2)*h,y); 

  
J1 = J(x+c(1)*h,y); 
J2 = J(x+c(2)*h,y); 

  
DG = [Im - T(1,1)*h*J1,-T(1,2)*h*J2 ; -T(2,1)*h*J1,Im - T(2,2)*h*J2]; 

  
G = [-A(1,1)*h*F1 - A(1,2)*h*F2 ; -A(2,1)*h*F1 - A(2,2)*h*F2]; 

  
DZ = DG\(-G); 
sigma = norm(DZ,'inf'); 
eta = theta/(1.-theta); 
if (eta*sigma <= kappa*tol) 
    YY = Y + DZ;  
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    return; 
end 
Z = Z + DZ; 

  
for i = 1:maxit 
    Z1 = Z(1:m); 
    Z2 = Z(m+1:2*m); 
    F1 = f(x+c(1)*h,Z1+y);   
    F2 = f(x+c(2)*h,Z2+y); 
    G = [Z1 - A(1,1)*h*F1 - A(1,2)*h*F2 ; Z2 - A(2,1)*h*F1 -   

   A(2,2)*h*F2]; 

    DZ = DG\(-G);  

    beta = norm(DZ,'inf'); 
    theta = beta/sigma; 

     
    if (theta >= 1)     
        trace = 1; 
        eta = 1.0; 
        break 
    end 

 
    if ((theta^(10-i)/(1-theta))*beta > kappa*tol) 
        trace = 1; 
        break; 
    end 

     
    eta = theta/(1-theta); 
    theta = (max(1.e-14,theta))^(0.8); 
    Z = Z + DZ; 
    if (eta*beta)<=(kappa*tol) 
        break; 
    end 
    sigma = beta; 
end 
YY=[Z(1:m)+y ; Z(m+1:2*m)+y]; 

  

 
Step 2 (nstep_fixG2SNGMR.m) 

 

function [y,trace,hout]=nstep_fixG2SNGMR(f,J,tol,x0,y0,h0,n) 
theta = 0.8; 
m = length(y0(:)); 
hout = h0; 
trace = 1; 

  
while trace 
    trace = 0; 
    x = x0; 
    y = y0(:); 

     
    for i=1:n 
        [Y,tr,theta] = G2SNGMR_fix(f,J,tol,x,y,hout,theta); 
        if tr 
            trace = 1; 
            hout = hout/2; 
            break 
        end 
        y = y-sqrt(3)*Y(1:m)+sqrt(3)*Y(m+1:2*m); 
        x = x+hout; 
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    end 
end 
if (hout < h0) 
    trace= 1; 
end 

 

 
Step 3 (variable_fixG2SNGMR) 

 
function[xout,yout,h,errout]=variable_fixG2SNGMR(f,J,tol,x0,xn,y0,h0) 

  
p = 4; 

  
if nargin<6 
    tol = 1.e-6; 
end 

  
x = x0;  
y = y0(:); 
err = (y-y0)/(2^p-1); 
xout = x; 
yout = y'; 
errout = err; 
hmax = (xn-x)/16; 
hmin = (xn-x)/(2.e8); 
h = max([h0,(xn-x)/1.e7]); 

  
while (x < xn) && (h >= hmin) 
    if (x + h > xn) 
        h = xn - x ; 
    end 
    [y1,trace,hout] = nstep_fixG2SNGMR(f,J,tol,x,y,h,1);   
    if trace 
        h = hout; 
    end 
    [y2,~,~] = nstep_fixG2SNGMR(f,J,tol,x,y,h/2,2); 
    err =(y2 - y1)/15; 
    delta = norm(err,'inf'); 
    tau = tol*max(norm(y1,'inf'),1.0); 
    if delta <= tau 
        x = x+h; 
        y = err+y2; 
        xout = [xout;x]; 
        yout = [yout;y']; 
        errout = [errout;err]; 
        if (delta ~= 0.0) 
            h = min ([hmax,4*h,0.9*h*(tau/delta)^(1/(p+1))]); 
        else 
            h = min([hmax,4*h]); 
        end 
    else 
       h = h*max([0.25,0.9*(tau/delta)^(1/(p+1))]); 
    end 
end 
if (x < xn) 
    disp('SINGULARITY LIKELY G2.') 
end 
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2. Matlab code for Hairer and Wanner (1999) 
 
 
Step 1 (G2SNHW_fix.m) 

 
function [YY,trace,theta]=G2SNHW_fix(f,J,tol,x,y,h,theta) 
maxit = 10; 
a1 = 1/4; 
a2 = 1/2; 
b = sqrt(3)/6; 
A = [a1,a1-b;a1+b,a1]; 
c = [a2-b ; a2+b]; 
m = length(y);     
s = length(c);      
e = ones(s,1);     
z = zeros(m,1);  

Z = kron(e,z);   
trace = 0; 
kappa = 1.e-1; 
Im = eye(m);  

 
T = [sqrt(3)/6,0 ; sqrt(3)/3,sqrt(3)/6]; 
Tinv = inv(T); 
Ainv = inv(A); 
S = Tinv*Ainv*T; 
W = kron(Tinv,Im)*Z; 

 
F1 = f(x+c(1)*h,y); 
F2 = f(x+c(2)*h,y); 
F = [F1;F2]; 

  
J1 = J(x+c(1)*h,y); 
J2 = J(x+c(2)*h,y); 

  
DG = [(1/h)*S(1,1)*Im - Tinv(1,1)*J1,(1/h)*S(1,2)*Im - Tinv(1,2)*J2; 
      (1/h)*S(2,1)*Im - Tinv(2,1)*J1,(1/h)*S(2,2)*Im - Tinv(2,2)*J2];  

 
G = (1/h)*kron(S,Im)*W - kron(Tinv,Im)*F; 

  
DW = DG\(-G); 

  
sigma = norm(DW,'inf'); 
eta = theta/(1.-theta); 
if (eta*sigma <= kappa*tol) 
   YY =  Y + DW;    
    return; 
end 
W = W+ DW; 

  

  
for i = 1:maxit 
    W1 = W(1:m);     
    W2 = W(m+1:2*m); 
    W = [W1;W2];  

     
    TI = kron(T,Im)*W; 
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    F1 = f(x+c(1)*h,TI(1:m)+y); 
    F2 = f(x+c(2)*h,TI(m+1:2*m)+y); 
    F = [F1;F2]; 
    G = (1/h)*kron(S,Im)*W-kron(Tinv,Im)*F; 

  
    DW = DG\(-G); 
    beta = norm(DW,'inf'); 
    theta = beta/sigma; 

  
    if (theta >= 1) 
        trace = 1; 
        eta = 1.0; 
        break 
    end 
    if ((theta^(10-i)/(1-theta))*beta > kappa*tol) 
        trace = 1; 
        break; 
    end 

     
    eta = theta/(1-theta); 
    theta = (max(1.e-16,theta))^(0.8); 
    W = W + DW; 
    if (eta*beta)<=(kappa*tol) 
        break; 
    end 
    sigma = beta; 
end 
TI = kron(T,Im)*W;  
YY = [TI(1:m)+y;TI(m+1:2*m)+y]; 

 

 

Step 2 (nstep_fixG2SNHW.m) 

 

function [y,trace,hout]=nstep_fixG2SNHW(f,J,tol,x0,y0,h0,n) 

  
theta = 0.8; 
m = length(y0(:)); 
hout = h0; 
trace = 1; 

  
while trace 
    trace = 0; 
    x = x0; 
    y = y0(:); 

     
    for i=1:n 
        [Y,tr,theta] = G2SNHW_fix(f,J,tol,x,y,hout,theta); 
        if tr 
            trace = 1; 
            hout = hout/2; 
            break 
        end 
        y = y-sqrt(3)*Y(1:m)+sqrt(3)*Y(m+1:2*m); 
        x = x+hout; 
    end 
end 
if (hout < h0) 
    trace = 1; 
end 
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Step 3 (variable_fixG2SNHW.m) 

 
function [xout,yout,h,errout]=variable_fixG2SNHW(f,J,tol,x0,xn,y0,h0) 

  
p = 4; 

  
if nargin<6  
   tol = 1.e-6; 
end 

  
x = x0;  
y = y0(:); 
err = (y-y0)/(2^p-1); 
xout = x; 
yout = y'; 
errout = err; 
hmax = (xn-x)/16; 
hmin =(xn-x)/(2.e8); 
h = max([h0,(xn-x)/1.e7]); 

  
while (x < xn) && (h >= hmin) 
    if (x + h > xn) 
        h = xn - x ; 
    end 
    [y1,trace,hout]=nstep_fixG2SNHW(f,J,tol,x,y,h,1);   
    if trace 
        h = hout; 
    end 
    [y2,~,~]=nstep_fixG2SNHW(f,J,tol,x,y,h/2,2); 
    err =(y2 - y1)/15; 
    delta = norm(err,'inf'); 
    tau = tol*max(norm(y1,'inf'),1.0); 
    if delta <= tau 
        x = x+h; 
        y = err+y2; 
        xout = [xout;x]; 
        yout = [yout;y']; 
        errout = [errout;err]; 
        if (delta ~= 0.0) 
            h = min ([hmax,4*h,0.9*h*(tau/delta)^(1/(p+1))]); 
        else 
            h = min([hmax,4*h]); 
        end 
    else 
       h = h*max([0.25,0.9*(tau/delta)^(1/(p+1))]); 
    end 
end 
if (x < xn) 
    disp('SINGULARITY LIKELY G2.') 
end 
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3. Matlab code for modified Hairer and Wanner (1999) 
 
 
Step 1 (G2SNMHW_fix.m) 

 

function [YY,trace,theta] = G2SNMHW(f,J,tol,x,y,h,theta) 

  
a1 = 1/4; 
a2 = 1/2; 
b = sqrt(3)/6; 
A = [a1,a1-b;a1+b,a1]; 
c = [a2-b;a2+b]; 

  
m = length(y); 
s = length(c); 
e = ones(s,1); 
z = zeros(m,1);  
Z = kron(e,z); 
trace = 0; 
Y = kron(e,y); 
Im = eye(m); 

  
F1 = f(x+c(1)*h,y); 
F2 = f(x+c(2)*h,y); 

  
J1 = J(x+c(1)*h,y); 
J2 = J(x+c(2)*h,y); 

  
Minv = inv([Im-h*A(1,1)*J1,-h*A(1,2)*J2 ; -h*A(2,1)*J1,... 

 Im-h*A(2,2)*J2]); 

  
G1 = h*A(1,1)*F1+h*A(1,2)*F2; 
G2 = h*A(2,1)*F1+h*A(2,2)*F2; 
G = [G1;G2]; 
DZ = Minv*G; 

  
temp = norm(DZ,'inf'); 
eta = theta/(1-theta); 
if (eta*temp <= 1.e-1*tol)   
    YY = Y+DZ;  
    return; 
end 
Z = Z+DZ; 

  
maxit=10; 
for i = 1:maxit 
    z1 = Z(1:m); 
    z2 = Z(m+1:2*m); 

     
    F1 = f(x+c(1)*h,z1+y); 
    F2 = f(x+c(2)*h,z2+y); 

     
    G1 = h*A(1,1)*F1+h*A(1,2)*F2-z1; 
    G2 = h*A(2,1)*F1+h*A(2,2)*F2-z2; 
    G = [G1;G2]; 
    DZ = Minv*G; 
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    delta = norm(DZ,'inf'); 
    theta = delta/temp;  
    if (theta >= 1) 

        trace = 1; 
        eta=1.0; 
        break; 
    end 

     
    if ((theta^(10-i)/(1-theta))*delta > 1.e-1*tol) 
        trace = 1; 
        break; 
    end 
    eta = theta/(1-theta);  
    theta = (max(1.0e-16,theta))^(0.8); 
    Z = Z+DZ; 
    if (eta*delta <= 1.e-1*tol) 
        break; 
    end 
    temp = delta; 
end 
YY = [y+Z(1:m);y+Z(m+1:2*m)];    

 

 

Step 2 (nstep_fixG2SNMHW.m) 

 

function [y,trace,hout] = nstep_fixG2SNMHW(f,J,tol,x0,y0,h0,m) 
n = length(y0(:)); 
hout = h0; 
trace = 1; 
theta = 0.8; 

  
while trace 
    trace = 0; 
    x = x0; 
    y = y0(:); 
    for i = 1:m 
        [Y,tr,theta] = G2SNMHW(f,J,tol,x,y,hout,theta); 
        if tr 
            trace = 1; 
            hout = hout/2; 
            break; 
        end 
        y = y+sqrt(3)*(Y(n+1:2*n)-Y(1:n)); 
        x = x+hout; 
    end 
end 

  
if (hout < h0) 
    trace = 1;  
end 

 

 

Step 3 (variable_fixG2SNMHW.m) 

 
Function[xout,yout,h,errout]=variable_fixG2SNMHW(f,J,tol,x0,xf,y0,h0) 

  
p = 4; 
pow = 1/(p+1); 
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if nargin < 6 
    tol = 1.e-6; 
end 

  
x = x0; 
y = y0(:); 
err = (y-y0)/(2^p-1); 
hmax = (xf-x)/16; 
hmin = (xf-x)/2.e8; 
h = max([h0,(xf-x)/1.e7]); 
xout =x; 
yout = y'; 
errout = err; 

  
while ((x < xf) && (h >= hmin)) 
  if x+h > xf, h = xf-x; end 
    [y1,trace,hout] = nstep_fixG2SNMHW(f,J,tol,x,y,h,1); 
    if trace,[h,hout]; h= hout; end 
    [y2,~,~] = nstep_fixG2SNMHW(f,J,tol,x,y,h/2,2); 
  err = (y2-y1)/15; 
  delta = norm(err,'inf');  
  tau = tol*max([norm(y,'inf'),1.0]); 
  if (delta <= tau) 
    x = x+h; 
    y = y2+err; 
    xout = [xout;x]; 
    yout = [yout;y']; 
    errout = [errout;err]; 
    if (delta ~= 0.0) 
      h = min([hmax,4*h,0.9*h*(tau/delta)^pow]); 
    else 
      h = min([hmax,4*h]); 
    end 
  else 
    h = h*max([0.25,0.9*(tau/delta)^pow]); 
  end 
end 

  
if (x < xf) 
  disp('SINGULARITY LIKELY  G2.') 
end 

 

 

4. Matlab code for real life problems (problem.m) 
 
function [f,J,tol,x0,xn,y0,h0] = problem(problem) 

  
tol=1.e-7; 

 
switch (problem) 

     
    case 'PR'   %prothero robinson 
        q=-10000;    

        f=@(x,y)(q*y+cos(x)-q*sin(x)); 
        J=@(x,y)(q); 
        x0=0; 
        xn=5; 
        h0=0.001; 
        y0=0; 



112 
 

         
    case 'VDP'   %van de pol 
        eps=1.e-3; 
        f=@(x,y)([y(2);((1-y(1)^2)*y(2)-y(1))/eps]); 
        J=@(x,y)([0,1;(-2*y(1)*y(2)-1)/eps,(1-y(1)^2)/eps]); 
        x0=0; 
        xn=5;  
        h0=0.01; 
        y0=[2;0]; 

  
    case 'ROBER'   %robertson 
        f=@(x,y)([-0.04*y(1)+10^4*y(2)*y(3);... 
            0.04*y(1)-10^4*y(2)*y(3)-(3.e7)*y(2)^2;... 
            (3.e7)*y(2)^2]); 
        J=@(x,y)([-0.04,10^4*y(3),10^4*y(2);... 
            0.04,(-10^4)*y(3)-(6.e7)*y(2),-10^4*y(2);... 
            0,(6.e7)*y(2),0]); 
        x0=0; 
        xn=10;  
        h0=0.01; 
        y0=[1;0;0]; 

  
    case 'HIRES' 
        f=@(x,y)([-1.71*y(1)+0.43*y(2)+8.32*y(3)+0.0007;... 
            1.71*y(1)-8.75*y(2);... 
            -10.03*y(3)+0.43*y(4)+0.035*y(5);... 
            8.32*y(2)+1.71*y(3)-1.12*y(4);... 
            -1.745*y(5)+0.43*y(6)+0.43*y(7);... 

-280*y(6)*y(8)+0.69*y(4)+1.71*y(5)-

0.43*y(6)+0.69*y(7);... 
            280*y(6)*y(8)-1.81*y(7);... 
            -280*y(6)*y(8)+1.81*y(7)]); 
        J=@(x,y)([-1.71,0.43,8.32,0,0,0,0,0;... 
            1.71,-8.75,0,0,0,0,0,0;... 
            0,0,-10.03,0.43,0.035,0,0,0;... 
            0,8.32,1.71,-1.12,0,0,0,0;... 
            0,0,0,0,-1.745,0.43,0.43,0;... 
            0,0,0,0.69,1.71,-280*y(8)-0.43,0.69,-280*y(6);... 
            0,0,0,0,0,280*y(8),-1.81,280*y(6);... 
            0,0,0,0,0,-280*y(8),1.81,-280*y(6)]); 
        x0=0; 
        xn=321.8122;  
        h0=0.01; 
        y0=[1;0;0;0;0;0;0;0.0057]; 

      
    case 'KAPS' 
        q = -10000; 
        f=@(x,y)([(q-2)*y(1) - q*y(2)^2; y(1) - y(2) - y(2)^2]); 
        J=@(x,y)([(q-2),-2*q*y(2); 1,-1 - 2*y(2)]); 
        y0 = [1;1];  
        x0 = 0;      

        xn = 5;      
        h0 = 0.01; 

         
    case 'BRUS'    %brusselator 

 f=@(x,y)([1 +(y(1)^2)*y(2) - 4*y(1);3*y(1) - (y(1)^2)*y(2)]); 
        J=@(x,y)([2*y(1)*y(2)-4,y(1)^2;3 - 2*y(1)*y(2),-y(1)^2]); 
        x0=0; 
        xn=10; 
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        y0=[1.5;3]; 
        h0=0.01; 
        % n=100; 

         
    case 'OREG'    %oreganator 
        f=@(x,y)([77.27*(y(2)+y(1)*(1-y(1)*8.375*10^(-6) - y(2)));  
                 (1/77.27)*(y(3)-(1+y(1))*y(2)); 0.161*(y(1)-y(3))]);  

               
        J=@(x,y)([77.27-2*77.27*y(1)*8.375*10^(-6) - 77.27*y(2), 

77.27 - 77.27*y(1),0 ; -y(2)/77.27,-1/77.27 - 
y(1)/77.27,1/77.27 ; 0.161,0,-0.161]); 

        x0 = 0;      
        y0 = [1;2;3];      

        xn = 30;      
        h0 = 0.01; 

     
   

5. Order plot to run the data (order_testproblem.m) 
 
clearvars 
clc 

  
[f,J,tol,x0,xn,y0,h0] = problem('ROBER'); 

  
n = (xn-x0)/h0;  
y = y0; 
nit = 8;     
m = length(y); 
Tol = zeros(nit,1); 

  
Y1 = zeros(nit,m); 
C1 = zeros(nit,1); 
LE1 = zeros(nit,1); 
err1 = zeros(nit,m); 
Lerrout1 = zeros(nit,1); 

  
Y2 = zeros(nit,m); 
C2 = zeros(nit,1); 
LE2 = zeros(nit,1); 
err2 = zeros(nit,m); 
Lerrout2 = zeros(nit,1); 

  
Y3 = zeros(nit,m); 
C3 = zeros(nit,1); 
LE3 = zeros(nit,1); 
err3 = zeros(nit,m); 
Lerrout3 = zeros(nit,1); 

  
H = zeros(nit,1); 

  
rep = 30; 

  
for i=1:nit 
    tic 
    for j=1:rep 
        

[xout1,yout1,hout1,errout1]=variable_fixG2SNGMR(f,J,tol,x0,xn,y0,h0); 
    end 
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    cp1=toc; 

     
    tic 
    for j=1:rep 
        

[xout2,yout2,hout2,errout2]=variable_fixG2SNHW(f,J,tol,x0,xn,y0,h0); 
    end 
    cp2=toc; 

     
    tic 
    for j=1:rep 
           

[xout3,yout3,hout3,errout3]=variable_fixG2SNMHW(f,J,tol,x0,xn,y0,h0); 
    end 
    cp3=toc; 

     
    Y1(i,:)=yout1(end); 
    C1(i)=cp1; 

     
    Y2(i,:)=yout2(end); 
    C2(i)=cp2; 

     
    Y3(i,:)=yout3(end); 
    C3(i)=cp3; 

     
    err1(i,:)=errout1(end); 
    err2(i,:)=errout2(end); 
    err3(i,:)=errout3(end); 

  
    Tol(i) = tol; 
    tol = tol/10; 

     
    H(i)=h0; 
    h0=h0/2; 
    n=2*n; 

     
    if i==1 
        disp('~Iteration 1~'); 
    elseif i==2 
        disp('~Iteration 2~'); 
    elseif i==3 
        disp('~Iteration 3~'); 
    elseif i==4 
        disp('~Iteration 4~'); 
    elseif i==5 
        disp('~Iteration 5~'); 
    elseif i==6 
        disp('~Iteration 6~'); 
    elseif i==7 
        disp('~Iteration 7~'); 
    elseif i==8 
        disp('~Iteration 8~'); 
    end 

     
end 
  

 
yexact=Y1(nit,:); 
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yexact1=Y2(nit,:); 
yexact2=Y3(nit,:); 
E1=abs(Y1-kron(ones(nit,1),yexact)); 
E2=abs(Y2-kron(ones(nit,1),yexact1)); 
E3=abs(Y3-kron(ones(nit,1),yexact2)); 

  
for i=1:nit 
    LE1(i)=norm(E1(i,:)); 
    LE2(i)=norm(E2(i,:)); 
    LE3(i)=norm(E3(i,:)); 
end 

  
LTol=Tol; 

  
LC1=(C1/rep); 
LC2=(C2/rep); 
LC3=(C3/rep); 

  
yexact=err1(nit,:); 
yexact1=err2(nit,:); 
yexact2=err3(nit,:); 

  
errout1=abs(err1-kron(ones(nit,1),yexact))/15; 
errout2=abs(err2-kron(ones(nit,1),yexact))/15; 
errout3=abs(err3-kron(ones(nit,1),yexact))/15; 

  
for i=1:nit 
    Lerrout1(i)=norm(errout1(i,:)); 
    Lerrout2(i)=norm(errout2(i,:)); 
    Lerrout3(i)=norm(errout3(i,:)); 
end 

  

  
figure(1) 
loglog(LTol,LE1,'bx-'); 
hold on 
loglog(LTol,LE2,'ro-'); 
hold on 
loglog(LTol,LE3,'mv-'); 
legend('GMR scheme','HW scheme','Modified HW scheme'); 
xlabel('\fontsize{14}Tolerance'); 
ylabel('\fontsize{14}||Global Error||'); 
title('\fontsize{14}ROBERTSON') 
grid on 

  
figure(2) 
loglog(LC1,LE1,'bx-'); 
hold on 
loglog(LC2,LE2,'ro-'); 
hold on 
loglog(LC3,LE3,'mv-'); 
legend('GMR scheme','HW scheme','Modified HW scheme'); 
xlabel('\fontsize{14}CPU Time'); 
ylabel('\fontsize{14}||Global Error||'); 
title('\fontsize{14}ROBERTSON') 
grid on 
figure(3) 
loglog(LTol,Lerrout1,'bx-'); 
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hold on 
loglog(LTol,Lerrout2,'ro-'); 
hold on 
loglog(LTol,Lerrout3,'mv-'); 
legend('GMR scheme','HW scheme','Modified HW scheme'); 
xlabel('\fontsize{14}Tolerance'); 
ylabel('\fontsize{14}||Error Estimation||'); 
title('\fontsize{14}ROBERTSON') 
grid on 
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APPENDIX B 

 
 
 

The code below shows the MATLAB code for the implementation of 3-stage (G3) 
Gauss method. The first part contains the main function of G3 method followed by the 
nstep file which functioning as computing the updated ny  and variable file which 
compute the variable stepsize where the extrapolation technique is implemented. These 
three parts is required to all schemes which denote as G3SNGMR (G3 with simplified 
Newton for GMR), G3SNHW (G3 with simplified Newton for HW) and G3SNMHW 
(G3 with simplified Newton for modified HW) schemes. The code for real life problems 
is computed in different file. Lastly, the order plot file is to run the numerical 
approximation.  
 
 
1. MATLAB code for González-Pinto et al. (1994, 1995) 
 
 
Step 1 (G3SNGMR_fix) 

 
function [YY,trace,theta] = G3SNGMR_fix(f,J,tol,x,y,h,theta) 
 

A = [5/36, 2/9-sqrt(15)/15, 5/36-sqrt(15)/30;... 
     5/36+sqrt(15)/24, 2/9, 5/36-sqrt(15)/24;... 
     5/36+sqrt(15)/30, 2/9+sqrt(15)/15, 5/36]; 

         
c = [0.5-sqrt(15)/10;1/2;0.5+sqrt(15)/10]; 
trace = 0;         
m = length(y); 
s = length(c); 
e = ones(s,1); 
z = zeros(m,1); 
Z = kron(e,z); 
Y = kron(e,y); 

  
T = [0.1190762649202001,-0.01352480890549548,0.002955703944789629;... 
    0.2567321613764653,0.2864264722250291,- 0.008257284502425157;... 
    0.2617169889707876,0.5210947821158048,0.2027174624121108];  

 
J1=J(x+c(1)*h,y); 
J2=J(x+c(2)*h,y); 
J3=J(x+c(3)*h,y); 

  
F1=f(x+c(1)*h,y); 
F2=f(x+c(2)*h,y); 
F3=f(x+c(3)*h,y); 

     
DG = [eye(m)-h*T(1,1)*J1,-h*T(1,2)*J2,-h*T(1,3)*J3;... 
     -h*T(2,1)*J1,eye(m)-h*T(2,2)*J2,-h*T(2,3)*J3;... 
     -h*T(3,1)*J1,-h*T(3,2)*J2,eye(m)-h*T(3,3)*J3]; 

  
G1 = - h*(A(1,1)*F1+A(1,2)*F2+A(1,3)*F3); 
G2 = - h*(A(2,1)*F1+A(2,2)*F2+A(2,3)*F3); 
G3 = - h*(A(3,1)*F1+A(3,2)*F2+A(3,3)*F3); 
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G = [G1;G2;G3]; 
DZ = DG\(-G); 

  
temp = norm(DZ,'inf'); 
eta = theta/(1.-theta); 
if (eta*temp <= 1.e-1*tol) 

    YY = Y+DZ; 

    return;  

end 
Z = Z+DZ; 

  
maxit=10; 

  
for i = 1:maxit 
    z1 = Z(1:m); 
    z2 = Z(m+1:2*m); 
    z3 = Z(2*m+1:3*m); 

      
    F1 = f(x+c(1)*h,z1+y); 
    F2 = f(x+c(2)*h,z2+y); 
    F3 = f(x+c(3)*h,z3+y); 

     
    G1 = z1-( h*(A(1,1)*F1+A(1,2)*F2+A(1,3)*F3)); 
    G2 = z2-(h*(A(2,1)*F1+A(2,2)*F2+A(2,3)*F3)); 
    G3 = z3-(h*(A(3,1)*F1+A(3,2)*F2+A(3,3)*F3)); 
    G = [G1;G2;G3]; 
    DZ = DG\(-G); 

     
    delta = norm(DZ,'inf'); 
    theta = delta/temp;  
    if (theta >= 1) 

        trace = 1; 
        eta=1.0; 
        break; 
    end 
 

    if ((theta^(10-i)/(1-theta))*delta > 1.e-1*tol) 
        trace = 1; 
        break; 
    end 
    eta = theta/(1-theta);  
    theta = (max(1.0e-16,theta))^(0.8); 
    Z = Z+DZ; 
    if (eta*delta <= 1.e-1*tol) 
        break; 
    end 
    temp = delta; 
end 
YY = [y+Z(1:m);y+Z(m+1:2*m);y+Z(2*m+1:3*m)]; 

 

 

Step 2 (nstep_fixG3SNGMR.m) 

 
function [y,trace,hout]=nstep_fixG3SNGMR(f,J,tol,x0,y0,h0,n) 

  
m = length(y0(:)); 
hout = h0; 
trace = 1; 
theta = 0.8; 
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while trace 
    trace = 0; 
    x = x0; 
    y = y0(:); 

     
    for i=1:n 
        [Y,tr,theta] = G3SNGMR_fix(f,J,tol,x,y,hout,theta); 
        if tr 
            trace = 1; 
            hout = hout/2; 
            break 
        end 
        y = -y+(1/3)*(5*Y(1:m)-4*Y(m+1:2*m)+5*Y(2*m+1:3*m)); 
        x = x+hout; 
    end 
end 
if (hout < h0) 
    trace = 1; 
end 

 

 
Step 3 (variable_fixG3SNGMR.m) 

 
function 

[xout,yout,h,errout]=variable_fixG3SNGMR(f,J,tol,x0,xn,y0,h0) 

  
p = 6; 
pow = 1/(p+1); 

 
if nargin < 6 
    tol = 1.e-6; 
end 

  
x = x0; 
y = y0(:); 
err = (y-y0)/(2^p-1); 
hmax = (xn-x)/16; 
hmin = (xn-x)/2.e8; 
h = max([h0,(xn-x)/1.e7]); 
xout = x; 
yout = y'; 
errout = err; 

  
while ((x < xn) && (h >= hmin)) 
  if x+h > xn, h = xn-x; end 
    [y1,trace,hout] = nstep_fixG3SNGMR(f,J,tol,x,y,h,1); 
    if trace,[h,hout]; h= hout; end 
    [y2,~,~] =nstep_fixG3SNGMR(f,J,tol,x,y,h/2,2); 
  err = (y2-y1)/63; 
  delta = norm(err,'inf');  
  tau = tol*max([norm(y,'inf'),1.0]); 
  if (delta <= tau) 
    x = x+h; 
    y = y2+err; 
    xout = [xout;x]; 
    yout = [yout;y']; 
    errout = [errout;err]; 
    if (delta ~= 0.0) 
      h = min([hmax,4*h,0.9*h*(tau/delta)^pow]); 
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    else 
      h = min([hmax,4*h]); 
    end 
  else 
    h = h*max([0.25,0.9*(tau/delta)^pow]); 
  end 
end 

  
if (x < xn) 
  disp('SINGULARITY LIKELY  G3.') 
end 

 

 

 

2. Matlab code for Hairer and Wanner (1999) 
 

 
Step 1 (G3SNHW_fix.m) 

 
function [YY,trace,theta]=G3SNHW_fix(f,J,tol,x,y,h,theta) 
 

maxit = 10; 
a1 = sqrt(15)/15; 
a2 = sqrt(15)/30; 
a3 = sqrt(15)/24; 
b = sqrt(15)/10; 
A = [5/36 , 2/9 - a1 , 5/36 - a2 ; 5/36 + a3 , 2/9 , 5/36 - a3 ;... 
    5/36 + a2 , 2/9 + a1 , 5/36]; 
C = [1/2 - b ; 1/2 ; 1/2 + b]; 
m = length(y);     
s=length(c);       

e = ones(s,1);     
z = zeros(m,1);  

Z = kron(e,z);      

Y = kron(e,y); 
trace = 0; 
kappa = 1.e-1; 
Im = eye(m); 

  
T = [0.1190762649202001,-0.01352480890549548,0.002955703944789629;... 
     0.2567321613764653,0.2864264722250291,-0.008257284502425157;... 
     0.2617169889707876,0.5210947821158048,0.2027174624121108]; 

  
Tinv = inv(T); 
Ainv = inv(A); 
S = Tinv*Ainv*T; 
W = kron(Tinv,Im)*Z; 
 

 
F1 = f(x+c(1)*h,y); 
F2 = f(x+c(2)*h,y); 
F3 = f(x+c(3)*h,y); 
F = [F1;F2;F3]; 

  
J1 = J(x+c(1)*h,y); 
J2 = J(x+c(2)*h,y); 
J3 = J(x+c(3)*h,y); 
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DG = [(1/h)*S(1,1)*Im-Tinv(1,1)*J1,(1/h)*S(1,2)*Im- 

Tinv(1,2)*J2,(1/h)*S(1,3)*Im-Tinv(1,3)*J3;... 
      (1/h)*S(2,1)*Im-Tinv(2,1)*J1,(1/h)*S(2,2)*Im- 

Tinv(2,2)*J2,(1/h)*S(2,3)*Im-Tinv(2,3)*J3;... 
      (1/h)*S(3,1)*Im-Tinv(3,1)*J1,(1/h)*S(3,2)*Im- 

Tinv(3,2)*J2,(1/h)*S(3,3)*Im-Tinv(3,3)*J3];  

   
G = (1/h)*kron(S,Im)*W-kron(Tinv,Im)*F;  

  
DW = DG\(-G); 

 
sigma = norm(DW,'inf'); 
eta = theta/(1.-theta); 
if (eta*sigma <= kappa*tol) 
   YY =  Y + DW;    
    return; 
end 
W = W+ DW; 

  
for i = 1:maxit 
    W1 = W(1:m);     
    W2 = W(m+1:2*m); 
    W3 = W(2*m+1:3*m); 
    W = [W1;W2;W3];  

     
    TI = kron(T,Im)*W; 

        
    F1 = f(x+c(1)*h,TI(1:m)+y); 
    F2 = f(x+c(2)*h,TI(m+1:2*m)+y); 
    F3 = f(x+c(3)*h,TI(2*m+1:3*m)+y); 
    F = [F1;F2;F3]; 

     
    G = (1/h)*kron(S,Im)*W-kron(Tinv,Im)*F; 

  
    DW = DG\(-G); 
    beta = norm(DW,'inf'); 
    theta = beta/sigma; 

  
    if (theta >= 1) 
        trace = 1; 
        eta = 1.0; 
        break 
    end 
    if ((theta^(10-i)/(1-theta))*beta > kappa*tol) 
        trace = 1; 
        break; 
    end 

     
    eta = theta/(1-theta); 
    theta = (max(1.e-16,theta))^(0.8); 
    W = W + DW; 
    if (eta*beta)<=(kappa*tol) 
        break; 
    end 
    sigma = beta; 
end 
TI=kron(T,Im)*W;  
YY=[TI(1:m)+y;TI(m+1:2*m)+y;TI(2*m+1:3*m)+y]; 
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Step 2 (nstep_fixG3SNHW.m) 

 
function [y,trace,hout]=nstep_fixG3SNHW(f,J,tol,x0,y0,h0,n) 

  
theta = 0.8; 
m = length(y0(:)); 
hout = h0; 
trace = 1; 

  
while trace 
    trace = 0; 
    x = x0; 
    y = y0(:); 

     
    for i = 1:n 
        [Y,tr,theta] = G3SNHW_fix(f,J,tol,x,y,hout,theta); 
        if tr 
            trace = 1; 
            hout = hout/2; 
            break 
        end 
        y = -y+(5/3)*Y(1:m)-(4/3)*Y(m+1:2*m)+(5/3)*Y(2*m+1:3*m); 
        x = x+hout; 
    end 
end 
if (hout < h0) 
    trace = 1; 
end 

 

 

Step 3 (variable_fixG3SNHW.m) 

 
function [xout,yout,h,errout]=variable_fixG3SNHW(f,J,tol,x0,xn,y0,h0) 

  
p = 6; 

  
if nargin<6  

   tol = 1.e-6; 
end 

  
x = x0; 
y = y0(:); 
err = (y-y0)/(2^p-1); 
hmax = (xn-x)/16; 
hmin = (xn-x)/2.e8; 
h = max([h0,(xn-x)/1.e7]); 
xout =x; 
yout = y'; 
errout = err; 

  
while (x < xn) && (h >= hmin) 
    if (x + h > xn) 
        h = xn - x ; 
    end 
    [y1,trace,hout] = nstep_fixG3SNHW(f,J,tol,x,y,h,1);   
    if trace 
        h = hout; 
    end 
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    [y2,~,~] = nstep_fixG3SNHW(f,J,tol,x,y,h/2,2); 
    err =(y2 - y1)/63; 
    delta = norm(err,'inf'); 
    tau = tol*max(norm(y1,'inf'),1.0); 
    if delta <= tau 
        x = x+h; 
        y = err+y2; 
        xout = [xout;x]; 
        yout = [yout;y']; 
        errout = [errout;err]; 
        if (delta ~= 0.0) 
                h = min ([hmax,4*h,0.9*h*(tau/delta)^(1/(p+1))]); 
        else 
            h = min([hmax,4*h]); 
        end 
    else 
       h = h*max([0.25,0.9*(tau/delta)^(1/(p+1))]); 
    end 
end 
if (x < xn) 
    disp('SINGULARITY LIKELY G3.') 
end 

 

 

 

3. Matlab code for modified Hairer and Wanner (1999) 
 

 
Step 1 (G3SNMHW_fix.m) 

 

function [YY,trace,theta] = G3SNMHW_fix(f,J,tol,x,y,h,theta) 

  
a1 = sqrt(15)/15; 
a2 = sqrt(15)/30; 
a3 = sqrt(15)/24; 
b = sqrt(15)/10; 
A = [5/36 , 2/9 - a1 , 5/36 - a2 ; 5/36 + a3 , 2/9 , 5/36 - a3 ;... 
    5/36 + a2 , 2/9 + a1 , 5/36]; 
c = [1/2 - b ; 1/2 ; 1/2 + b]; 

  
m = length(y); 
s = length(c); 
e = ones(s,1); 
z = zeros(m,1);  
Z = kron(e,z); 
trace = 0; 
Y = kron(e,y); 
Im = eye(m); 
F1 = f(x+c(1)*h,y); 
F2 = f(x+c(2)*h,y); 
F3 = f(x+c(3)*h,y); 

  
J1 = J(x+c(1)*h,y); 
J2 = J(x+c(2)*h,y); 
J3 = J(x+c(3)*h,y); 

     
Minv = inv([Im-h*A(1,1)*J1 , -h*A(1,2)*J2 , -h*A(1,3)*J3 ;... 
      -h*A(2,1)*J1 , Im-h*A(2,2)*J2 , -h*A(2,3)*J3 ;... 
       -h*A(3,1)*J1 , -h*A(3,2)*J2 , Im-h*A(3,3)*J3]);  
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G1 = h*A(1,1)*F1+h*A(1,2)*F2+h*A(1,3)*F3; 
G2 = h*A(2,1)*F1+h*A(2,2)*F2+h*A(2,3)*F3; 
G3 = h*A(3,1)*F1+h*A(3,2)*F2+h*A(3,3)*F3; 
G = [G1;G2;G3]; 

  
DZ = Minv*G; 

  
temp = norm(DZ,'inf'); 
eta = theta/(1-theta); 
if (eta*temp <= 1.e-1*tol)  
    YY = Y+DZ; 

    return;  

end 
Z = Z+DZ; 

  
maxit = 10; 
for i = 1:maxit 
    z1 = Z(1:m); 
    z2 = Z(m+1:2*m); 
    z3 = Z(2*m+1:3*m); 

     
    F1 = f(x+c(1)*h,z1+y); 
    F2 = f(x+c(2)*h,z2+y); 
    F3 = f(x+c(3)*h,z3+y); 

  
    G1 = h*A(1,1)*F1+h*A(1,2)*F2+h*A(1,3)*F3-z1; 
    G2 = h*A(2,1)*F1+h*A(2,2)*F2+h*A(2,3)*F3-z2; 
    G3 = h*A(3,1)*F1+h*A(3,2)*F2+h*A(3,3)*F3-z3; 
    G = [G1;G2;G3]; 

     
    DZ = Minv*G; 

     
    delta = norm(DZ,'inf'); 
    theta = delta/temp;  
    if (theta >= 1)  
        trace = 1; 
        eta=1.0; 
        break; 
    end 
    if ((theta^(10-i)/(1-theta))*delta > 1.e-1*tol) 
        trace = 1; 
        break; 
    end 
    eta = theta/(1-theta);  
    theta = (max(1.0e-16,theta))^(0.8); 
    Z = Z+DZ; 
    if (eta*delta <= 1.e-1*tol) 
        break; 
    end 
    temp = delta; 
end 
YY = [Z(1:m)+y;Z(m+1:2*m)+y;Z(2*m+1:3*m)+y];  
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Step 2 (nstep_fixG3SNMHW.m) 

 

function [y,trace,hout] = nstep_fixG3SNMHW(f,J,tol,x0,y0,h0,m) 

  
n = length(y0(:)); 
hout = h0; 
trace = 1; 
theta=0.8; 

  
while trace 
    trace = 0; 
    x = x0; 
    y = y0(:); 
    for i = 1:m 
        [Y,tr,theta] = G3SNMHW_fix(f,J,tol,x,y,hout,theta); 
        if tr 
            trace = 1; 
            hout = hout/2; 
            break; 
        end 
        y = -y+(5/3)*Y(1:n)-(4/3)*Y(n+1:2*n)+(5/3)*Y(2*n+1:3*n); 
        x = x+hout; 
    end 
end 

  
if (hout < h0) 
    trace = 1;  
end 

  
 

Step 3 (variable_fixG3SNMHW.m) 

 
function  

[xout,yout,h,errout] = variable_fixG3SNMHW(f,J,tol,x0,xn,y0,h0) 

  
p=6; 
pow = 1/(p+1); 
if nargin < 6 
    tol = 1.e-6; 
end 

  
x = x0; 
y = y0(:); 
err = (y-y0)/(2^p-1); 
hmax = (xn-x)/16; 
hmin = (xn-x)/2.e8; 
h = max([h0,(xn-x)/1.e7]); 
xout = x; 
yout = y'; 
errout = err; 
while (x < xn) && (h >= hmin) 
  if (x+h > xn) 
      h = xn-x;  
  end 
    [y1,trace,hout] = nstep_fixG3SNMHW(f,J,tol,x,y,h,1); 
    if trace 
        h = hout;  
    end 
    [y2,~,~] = nstep_fixG3SNMHW(f,J,tol,x,y,h/2,2); 
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  err = (y2-y1)/63; 
  delta = norm(err,'inf');  
  tau = tol*max(norm(y,'inf'),1.0); 
  if (delta <= tau) 
    x = x+h; 
    y = y2+err; 
    xout = [xout;x]; 
    yout = [yout;y']; 
    errout = [errout;err]; 
    if (delta ~= 0.0) 
      h = min([hmax,4*h,0.9*h*(tau/delta)^pow]); 
    else 
      h = min([hmax,4*h]); 
    end 
  else 
    h = h*max([0.25,0.9*(tau/delta)^pow]); 
  end 
end 

  
if (x < xn) 
  disp('SINGULARITY LIKELY  G3.') 
end 
 

 

4. Matlab code for real life problems (problem.m) is just similar to the one used for 
G2 method.  
 
 

5. Order plot to run the data (order_testproblem.m) 
 
clearvars 
clc 

  
[f,J,tol,x0,xn,y0,h0] = problem('ROBER'); 

  
n = (xn-x0)/h0;  
y = y0; 
nit = 8;     
m = length(y); 
Tol = zeros(nit,1); 

  
Y1=zeros(nit,m); 
C1=zeros(nit,1); 
LE1=zeros(nit,1); 
err1=zeros(nit,m); 
Lerrout1=zeros(nit,1); 

  
Y2=zeros(nit,m); 
C2=zeros(nit,1); 
LE2=zeros(nit,1); 
err2=zeros(nit,m); 
Lerrout2=zeros(nit,1); 

  
Y3=zeros(nit,m); 
C3=zeros(nit,1); 
LE3=zeros(nit,1); 
err3=zeros(nit,m); 
Lerrout3=zeros(nit,1); 
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H=zeros(nit,1); 

  
rep=1; 

  
for i=1:nit 
    tic 
    for j=1:rep 
        

[xout1,yout1,hout1,errout1]=variable_fixG3SNGMR(f,J,tol,x0,xn,y0,h0); 
    end 
    cp1=toc; 

     
    tic 
    for j=1:rep 
        

[xout2,yout2,hout2,errout2]=variable_fixG3SNHW(f,J,tol,x0,xn,y0,h0); 
    end 
    cp2=toc; 

     
    tic 
    for j=1:rep 
        

[xout3,yout3,hout3,errout3]=variable_fixG3SNMHW(f,J,tol,x0,xn,y0,h0); 
    end 
    cp3=toc; 

     
    Y1(i,:)=yout1(end); 
    C1(i)=cp1; 

     
    Y2(i,:)=yout2(end); 
    C2(i)=cp2; 

     
    Y3(i,:)=yout3(end); 
    C3(i)=cp3; 

     
    err1(i,:)=errout1(end); 
    err2(i,:)=errout2(end); 
    err3(i,:)=errout3(end); 

  
    Tol(i) = tol; 
    tol = tol/10; 

     
    H(i)=h0; 
    h0=h0/2; 
    n=2*n; 

 
     

if i==1 
        disp('~Iteration 1~'); 
    elseif i==2 
        disp('~Iteration 2~'); 
    elseif i==3 
        disp('~Iteration 3~'); 
    elseif i==4 
        disp('~Iteration 4~'); 
    elseif i==5 
        disp('~Iteration 5~'); 
    elseif i==6 
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        disp('~Iteration 6~'); 
    elseif i==7 
        disp('~Iteration 7~'); 
    elseif i==8 
        disp('~Iteration 8~'); 
    end 

     
end 

  
yexact=Y1(nit,:); 
yexact1=Y2(nit,:); 
yexact2=Y3(nit,:); 

  
E1=abs(Y1-kron(ones(nit,1),yexact)); 
E2=abs(Y2-kron(ones(nit,1),yexact1)); 
E3=abs(Y3-kron(ones(nit,1),yexact2)); 

  
for i=1:nit 
    LE1(i)=norm(E1(i,:)); 
    LE2(i)=norm(E2(i,:)); 
    LE3(i)=norm(E3(i,:)); 
end 

  
LTol=Tol; 

  
LC1=(C1/rep); 
LC2=(C2/rep); 
LC3=(C3/rep); 

  
yexact=err1(nit,:); 
yexact1=err2(nit,:); 
yexact2=err3(nit,:); 

  
errout1=abs(err1-kron(ones(nit,1),yexact))/63; 
errout2=abs(err2-kron(ones(nit,1),yexact))/63; 
errout3=abs(err3-kron(ones(nit,1),yexact))/63; 

  
for i=1:nit 
    Lerrout1(i)=norm(errout1(i,:)); 
    Lerrout2(i)=norm(errout2(i,:)); 
    Lerrout3(i)=norm(errout3(i,:)); 
end 

  
figure(1) 
loglog(LTol,LE1,'bx-'); 
hold on 
loglog(LTol,LE2,'ro-'); 
hold on 
loglog(LTol,LE3,'mv-'); 
legend('GMR scheme','HW scheme','Modified HW scheme'); 
xlabel('\fontsize{14}Tolerance'); 
ylabel('\fontsize{14}||Global Error||'); 
title('\fontsize{14}ROBERTSON') 
grid on 

  
figure(2) 
loglog(LC1,LE1,'bx-'); 
hold on 
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loglog(LC2,LE2,'ro-'); 
hold on 
loglog(LC3,LE3,'mv-'); 
legend('GMR scheme','HW scheme','Modified HW scheme'); 
xlabel('\fontsize{14}CPU Time'); 
ylabel('\fontsize{14}||Global Error||'); 
title('\fontsize{14}ROBERTSON') 
grid on 

  
figure(3) 
loglog(LTol,Lerrout1,'bx-'); 
hold on 
loglog(LTol,Lerrout2,'ro-'); 
hold on 
loglog(LTol,Lerrout3,'mv-'); 
legend('GMR scheme','HW scheme','Modified HW scheme'); 
xlabel('\fontsize{14}Tolerance'); 
ylabel('\fontsize{14}||Error Estimation||'); 
title('\fontsize{14}ROBERTSON') 
grid on 

 

 

  

 

 

 

 
 




