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ABSTRACT

The research is aimed to find the most efficient implementation strategies by Gauss
numerical methods for solving stiff problems and the best error estimation in the
variable stepsize setting. The numerical methods considered as a research methodology
are the 2-stage (G2) and 3-stage (G3) implicit Runge-Kutta Gauss methods. Two
strategies by Hairer and Wanner (HW) and Gonzalez-Pinto, Montijano and Randez
(GMR) schemes were implemented. The variable stepsize setting employed the
simplified Newton is modified to fit according to HW and GMR schemes in solving the
nonlinear algebraic systems of the equations. The error estimation for the variable
stepsize setting is computed using extrapolation technique with stepsizes h and A/2.

HW and GMR schemes used the transformation matrix 7 to improve the efficiency of
the methods and also compared with the modified Hairer and Wanner (MHW) scheme
without using any transformation matrix 7. Findings showed that G2 method using
MHW scheme gave an efficient implementation in solving Kaps, Oreganator and
HIRES problems while for G3 method, it was efficient in solving Kaps, Brusselator,
Oreganator, Van der Pol and HIRES problems. In terms of error estimation, the G2
method gave the best error estimation for Brusselator, Oreganator, Van der Pol and
HIRES problems, while for the G3 method it was efficient in solving Kaps, Brusselator,
Oreganator, Van der Pol and HIRES problems, both by using HW scheme. In
conclusion, the MHW scheme without any transformation matrix 7 can be as efficient
as the HW and GMR schemes by using the variable stepsize setting and the MHW
scheme is recommended in solving stiff problems. As for the implications, this research
could be extended to other different types of problems such as delay and fuzzy
differential equations.



KECEKAPAN PELAKSANAAN BAGI KAEDAH RUNGE-KUTTA GAUSS
MENGGUNAKAN TETAPAN SAIZ LANGKAH BERUBAH-UBAH

ABSTRAK

Kajian ini bertujuan untuk mencari strategi pelaksanaan yang paling cekap dengan
kaedah numerik Gauss untuk menyelesaikan masalah kaku dan anggaran ralat terbaik
dalam tetapan saiz langkah berubah-ubah. Kaedah berangka yang dianggap sebagai
metodologi kajian adalah kaedah Runge-Kutta Gauss tahap-2 (G2) dan tahap-3 (G3)
tersirat. Dua strategi oleh Hairer dan Wanner (HW) dan Gonzalez-Pinto, Montijano dan
Randez (GMR) dilaksanakan. Pengaturan saiz langkah berubah-ubah menggunakan
Newton yang dipermudah diubah suai agar sesuai dengan skim HW dan GMR dalam
menyelesaikan sistem persamaan algebra tidak linear. Anggaran ralat untuk tetapan saiz
langkah berubah-ubah dikira menggunakan teknik ekstrapolasi dengan saiz langkah 7
dan #/2. Skim HW dan GMR menggunakan matriks transformasi 7 untuk
meningkatkan kecekapan kaedah dan juga dibandingkan dengan skim Hairer dan
Wanner yang diubah (MHW) tanpa menggunakan matriks transformasi 7 . Penemuan
menunjukkan bahawa kaedah G2 menggunakan skim MHW memberikan pelaksanaan
yang cekap dalam menyelesaikan masalah Kaps, Oreganator dan HIRES sedangkan
untuk kaedah G3, ia berkesan dalam menyelesaikan masalah Kaps, Brusselator,
Oreganator, Van der Pol dan HIRES. Dari segi anggaran ralat, kaedah G2 memberikan
anggaran ralat terbaik untuk masalah Brusselator, Oreganator, Van der Pol dan HIRES,
sementara untuk kaedah G3 1a berkesan dalam menyelesaikan masalah Kaps,
Brusselator, Oreganator, Van der Pol dan HIRES, kedua-duanya dengan menggunakan
skim HW. Kesimpulannya, skim MHW tanpa matriks transformasi 7 dapat menjadi
secekap skim HW dan GMR dengan menggunakan pengaturan saiz langkah berubah-
ubah dan skim MHW disarankan dalam menyelesaikan masalah kaku. Sebagai
implikasi, kajian ini dapat diperluas ke berbagai jenis masalah lain seperti persamaan
tunda jenis lewat dan persamaan pembezaan kabur.
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CHAPTER 1

INTRODUCTION

1.1 Introduction to Numerical ODEs

Ordinary differential equations (ODEs) represent a mathematical model for many
systems in various discipline of knowledge. Fatunla (2014) described that the numerical
approximations are obtained at some specified points in the integration interval. The
numerical method is said to be convergent if the method acquiring the properties of zero
stability and consistency as mentioned by Lambert (1991). In numerical approximation,
there exist a fact regarding conservation law. Shampine (2018) did mentioned that all
linear conservation law are satisfying the numerical approximations of the standard
methods. For nonlinear conservation law, the numerical methods basically do not
produce a solution. Furthermore, the most well-known Adam-Bashforth is recognized
to be a very efficient numerical method for the solution of linear and nonlinear
differential equations including for the non-integer orders (Atangana & Araz, 2020).
This is based on the Lagrange interpolation polynomial, however their accuracy is less

than Newton interpolation’s polynomial. Since many years before, numerical methods



for ODEs has been used in many discipline of research areas such as engineering,
chemical, physics, biology, medical, astronomy and others due to its ability that provide

the approximate solutions of nonlinear ODE:s arising in those fields.

Nowadays, highly accurate solution for many kinds of complicated ODEs can
be obtained by numerical approximation with the help of sophisticated software for
computational mathematics. Development of computing power has revolutionized the
utility of realistic mechanical and mathematical models in almost all fields as mentioned
previously. Thus, a subtle numerical analysis is needed to implement these
mathematical model that represents the real life problems such as given by Toufik and
Atangana (2017), Owolabi (2019) and Araz (2020). Numerical method is said to be
more advantages than analytical method because of the time consuming by the
analytical method is much longer than numerical method when it comes to complex
problems. The numerical methods are used when there is no solution for analytical
methods. Even though the solution of analytical method is exact, however the analytical

solution is sometimes unknown and in this case the numerical approach is required.

1.1.1 Ordinary Differential Equations

An equations that contained a derivative of one or more unknown functions (or
dependent variable) with respect to one or more independent variable is called
differential equations (DEs). DEs can be used to solve many system in real life problems

including chemical, physical and biological processes. ODEs are parts of DEs that



consists only ordinary derivatives of one or more unknown functions with respect to

only one independent variable.

First order ODEs can be written in the following form

y'=f(x,y), y(xo):yoo Si[xe,x, IxR" - R”. (1.1)

f 1s autonomous if it is a function of only y . But it is called non autonomous if f is
explicitly depends on x. In equation (1.1), x is time variable or known as the

independent variable and y is called the dependent variable, x, is the initial time and

¥, 1s the initial value. Function / isused to identify the unknown function y satisfying

the ODEs.

For some equations that arising in physical modelling, Butcher (2016)
mentioned that some of it are naturally expressed in one form or the other, but the
emphasizing is always appropriate to write a non-autonomous equation in an
corresponding autonomous form. There exists the coefficients R” where it is referring
to a set of real number while the coefficient N represents a set of positive integers.

Equation (1.1) is known as the initial value problems (IVPs) if the value of x, and y,

are given.

ODEs also can be solved analytically. However, analytical approach are difficult
to solve stiff ODEs problem. This is causing by the most rational stiff systems that do
not have analytical solutions, so the numerical methods is required to solve this kind of

ODE:s problem. A stiff ODEs is one of the fundamental of the solution that decays much



faster than the others (Lapidus & Schiesser, 1976). This behavior is sometimes
troublesome even though it can be solved by numerical methods, because these systems
are characterized by very high stability, which might turn into very high instability
when approximated by standard numerical methods (Butcher, 2016). To overcome the
instability problem, a few researcher in the past decade come out with an idea in
developing many new sophisticated methods. Bjurel, Dahlquist, Lindberg, Linde, and
Oden (1970) and Willoughby (1974) are the main literature survey that contributed to
the finding of this methods. These methods consist of a wide variety of both explicit
and implicit methods. Therefore, it is possible to perform the approximation of a

solution when the exact solution of the ODEs problem is unknown.

There are three types of numerical methods that are popular among
mathematicians in the solution of ODEs. These are Runge-Kutta (RK) methods, Linear
Multistep methods and General Linear methods. Butcher (2016), mentioned the fact
that Runge-Kutta methods only involve one step method. Fatunla (2014) give a brief
explanations regarding one-step method where the consistency of this method ensures
that the scheme is at least of order one. One of a simple RK method is the explicit Euler
method. The explicit and implicit RK methods are able to produce a good approximate
solution for certain problems depends on the nature of equations. The explicit and
implicit RK methods are differ in term of the equations, coefficient and steps. Although
explicit methods are easy to implement if compared to the implicit methods, the
methods need more time to obtain the approximate solution (Cash, 1975). The
implementation is not significant when the time taken by explicit methods are more
than double the time consumed by the implicit methods. The difference of processing

time occurs because of the internal stage equations of the explicit methods depends on



each other. The second stage equation need the value of the first stage equation and so
on. On the other hand, for implicit methods every internal stage equations are
independent which contribute to the shorter processing time. Besides, the explicit RK
(ERK) is less stability compare to implicit RK (IRK) (Shampine, 1984). For these
reason, this research is focusing on only IRK methods. A detailed introduction

regarding RK methods is given in Subsection 1.1.2.

In application of mathematical modelling, there exists a special parameter that
is called stiffness ratio and can be found in the ODEs system. A stiff equation is defined
as a differential equation when the solution for solving the equations is numerically
unstable for certain numerical methods, unless the appropriate stepsize selection is
chosen to be extremely small (Liu, Zhang, & Zhang, 2019). Hairer and Wanner (1996)
give few examples of stiff equations where it consists of a differential equations in
chemical reactions, automatic control, electronic networks and biology. In obtaining a
satisfactory results, it is not recommended to use a very small stepsize because this will
lead to longer computational complication and is unfavorable to numerical
approximation which can increase the round-off error. In the meantime, this will affect
the accuracy of the simulation and the numerical results for stiff problems is not
efficient, thus it is required to use a method with better stability to solve it (Liu et al.,
2019). A problem is also called stiff by the fact that when the numerical solution of
slow smooth movements is considerably perturbed by nearby rapid solutions (Hairer &
Wanner, 1999). Simply said, a system is stiff when it involves different components

that changing rapidly and slowly together.



To understand stiffness, consider the Prothero Robinson (PR) problem which is given

in equation (1.2).
V=2(y-g(x))+g'(x). »(0)=g(0), (12)
where g (x) =sin(x) with exact solution y(x)=g(x) and A is stiffness parameter.

When A become large negative number such -10000, PR problem is considered as a
stiff problem resulting in using a much smaller stepsize to achieve convergence solution
and in order to achieve stability as described by Gorgey (2012) and Butcher (2016).
This implies high computational cost and so the search for methods with extended
regions of stability is motivated (Dormand, 2018). A detailed explanation on stiff

problems is given in Section 1.2.

When the numerical methods is applied throughout the investigation, there must
be some errors that might spoil the solution, in other word it might cause less efficient
and less accurate solution. Generally, common error is divided into two type namely
local and global errors. Local error is a type of error that is produced by numerical
method in an individual step where the value at the beginning of that step is assumed to
be exact. When the local errors after n steps is accumulated, then this is where the global
error will produced. In other words, the global error is another type of error that
accumulated from the local error after n steps. Butcher (2016) had mentioned the fact
that the accumulation is not necessarily causing by the summation of local errors at each
n steps, on the other hand it is causing by the sum of the bounds on the local errors.
Dormand (2018) described that the best process for global error computation is based

on a parallel solution of a related system of differential equations. These are constructed



to have a solution satisfied by the actual global error of the main system of equations.

Local errors, [, can be defined by

ln:un(xn)_yn’ (13)
where, u, 1s the solution curve and y, is called exact solution curve. The global error,

g, 1s written in the following form

gn:y(‘xn)_yn’ (14)

where y(x”) is the solution curve at n steps. Equation (1.4) then can be written as

g, =y(xn)—un (xn)+ln, (1.5)
where ¢, is the actual error after n steps. Thus, there are two types of global error, one

is related to the local errors at the present step and the other is related to the local errors

at the previous steps.

Other than these errors, there is another error known as round-off error as
mentioned before. These errors can destroy the numerical solutions if it is significant in
numerical approximation. Detailed about round-off errors will be discussed on the next

chapter. In the next section, a detail explanations regarding RK methods is discussed.

1.1.2 Introduction to Runge-Kutta Methods

Runge-Kutta (RK) methods have been popular among mathematicians for many year
and are developed specialize in finding an approximate solution for ODEs. This

methods are originally developed by Runge towards the end of the nineteenth century



and generalized by Kutta in the early twentieth century. These methods are easy to
implement compared to Taylor polynomial scheme which requires the formation and

evaluation of higher derivatives as described by Dormand (2018). Basically, an s-stage

RK methods for the step (x,_,,v,,) —(x,,»,) with stepsize & can be defined as

Y=y, +hYa,f(x,, +ehy)), (1.6)
Jj=1

Y = Vucr +h2b,f (x,+¢,h.Y,), (1.7)
j=1

where 7, j=1,2,...,s, s is the number of stage. Y, represents the internal stage values

for the i stage and y, represents the update of y at the n” step. The coefficient a is

used to find the internal stages by using the linear combinations of the stage derivatives.
The vector b represents the quadrature weights which indicates how the approximation
to the solution depends on the derivatives of the internal stages. The coefficient ¢ is the
vector of abscissas which indicates the positions within the step of the stage values. A

detailed explanation can be found in Butcher (2016).

It is called a one-step method and can be demonstrated schematically in the following

diagram:

Figure 1.1. Diagram of One-Step Runge-Kutta Methods.



The coefficient a and ¢ must hold the row-sum condition as given in the Table 1.1.
The coefficients in the general equation (1.6) and (1.7) shall be represented by a
partitioned tableau known as the Butcher tableau (Butcher, 2016) of the form

c | 4

b

bT
where A is a matrix that consist of the a values of RK methods and 5" is referring to

vector b which is the quadrature weights.

RK methods are divided into two components, namely the implicit Runge-Kutta
(IRK) and the explicit Runge-Kutta (ERK) methods. The ERK methods form a
triangular matrix 4 of the coefficient a . One example of famous ERK methods is the
classical RK method of order-4 (RK4). In IRK methods, the coefficient matrix 4 is not
triangular that make a big difference with ERK methods. There are several types of
implicit methods and it can be divided into few categories, the first one is known as
fully-implicit if matrix A4 is not lower triangular and it is called semi-implicit if 4 is
lower triangular with at least one non-zero diagonal element. Besides, the IRK methods
is also known as diagonally-implicit if 4 is lower triangular with all the diagonal
elements are equal and non-zero or simply called as diagonally implicit Runge-Kutta
(DIRK) and singly implicit if 4 is matrix with a single non-zero eigenvalue singly

implicit Runge-Kutta (SIRK). Table 1.1 describe these properties.
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Table 1.1

Butcher Tableau of Explicit RK and Implicit RK Methods

Explicit RK Implicit RK
0
C | Ay 4y a,
G| Ay
Cy | Gy Ay ay

Explicit methods are easy to implement as the internal stages can be calculated
directly without depending on later stages as described on Subsection 1.1.1. However,
explicit methods cannot be used to solve stiff problems since they have poor stability
behavior (refer to Section 1.2). In other word, implicit methods are suitable for solving
stiff problems however they are more costly to implement. The implementation of

implicit methods is discussed in Chapter 3 on Section 3.4.

Some examples of ERK methods are the Euler method, explicit trapezoidal rule,
explicit midpoint rule and other higher order explicit methods. The simplest ERK
methods is the Euler method which of order-1. For the IRK methods, it consists of some
methods such as the implicit Euler method, implicit midpoint rule, implicit trapezoidal
rule, Gauss methods, Radau methods, Lobatto methods and other higher order implicit
methods (Hairer & Wanner, 1996). For this research, it is only involving 2-stage (G2)
and 3-stage (G3) Gauss methods. The Butcher tableau (Butcher, 2016) for the 2-stage

and 3-stage Gauss methods are given in Table 1.2.
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Table 1.2

Butcher Tableau of G2 and G3 Methods

2-stage Gauss method (G2) 3-stage Gauss method (G3)
Lis) s 2 5 s Vi
130 1 143 2 10 36 9 15 36 30
260 4 40 1 5 VI35 2 5 5
J— _+_ —_ —_——
l+£ l+£ 1 2 36 24 9 36 24
L L B 155 is 2 15 5
1 1 2 10 |36 30 9 15 36
2 2 5 4 5
18 9 18

G2 method is of order 4 whereas G3 method is of order 6. The defining equations as
referring to equation (1.6) and (1.7) for the 2-stage Gauss method are given in equation
(1.8), (1.9) and (1.10) while in equation (1.11), (1.12) and (1.13), it is referring to the

defining equation for the 3-stage Gauss method.

The stage equations of 2-stage Gauss method are defined by

N=y. +h(ij}71 ‘”{l_g}Fz’

4

\/_ (1.8)
1 3 1

Y, = hl| —+— |F, +h| — |F,.

2=Vt (4+6]1+ (4)2

The internal stage derivative equations of the 2-stage Gauss method are defined by

(1.9)
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The update equation of the 2-stage Gauss method is defined by

The equations (1.11) are the stage equations of the 3-stage Gauss method.

},lzyn—l-i_h i E+h z—@ F‘2+h i_@ F‘S,
36 9 15 36 30

R R R A RNty
36 24 9 36 24

L=dath 5, F+h 2,15 F+h| 2 |F.
36 30 9" 15 36

The internal stage derivative equations of 3-stage Gauss method are defined by

) | 5
Fi_fLXn—l_'_h(E IOJ’YIJ,
f;=f[xn_l+h(§j%j, (L.12)

[
£ _f{xn—l H{EJFE]’Y}’J'

The update equation of 3-stage Gauss is defined by

5 4 5

Since this research only focuses on IRK methods, thus several IRK methods will
be used in solving ODEs problems. Some ODEs problems have an equation of exact
solution. There exists an error of approximation where it is referring to the difference
between the approximate solution and the exact solution. Normally, the efficiency of
the methods can be represented by the graph of the error versus the tolerance and

computational (CPU) time. In addition, the efficiency can be improved by proper
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method of implementation by various researchers. Thus, several implementations were

tested in solving several ODEs problems including chemistry and physics problems.

In numerical methods, ODEs plays an important rule in solving a simple linear
equation. Several analytical methods can be used to solve the equations such as
separable variable, factorization, substitution and other methods. However, analytical
solution for nonlinear equations are always hard to solve. On the other hand, several
type of numerical methods mentioned earlier is also quite important since it can solve
approximate solution of the nonlinear equations whenever the exact solution is
unknown. In obtaining a good result of numerical solutions, the combination of a good
implementation and very small error will lead to the closest exact solution. The IRK
and ERK methods are able to produce a good approximate solution for certain problems

depends on the nature of equations.

1.2  Problem Statement

As ERK method is very easy to implement, so the internal stages can be calculated
directly without depending on the later stages as mentioned on the previous section.
Besides, this method also incurs cheap implementation cost. Even though ERK methods
having this advantages, however the stability of the ERK methods is classified as not
A-stable (Iserles, 2009). Thus, the ERK methods cannot be used to solve stiff problems
compared to the IRK methods as they have poor stability (Sanderse & Koren, 2012).
IRK methods not only possess strongest stability properties, thus it also satisfy the

properties of 4-contractivity (algebraic stability) even though it is difficult to implement
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(Hairer & Wanner, 1981). Therefore they are suitable in solving stiff problems. The
IRK methods not only important in solving stiff problems, furthermore it is beneficial
to differential algebraic equations. Nevertheless, the IRK methods are expensive and
difficult to implement due to the nonlinear equations involved when finding the internal

stage derivatives Y, and need to be replaced by an iterative computation which is known

as Newton-Raphson iteration. Even though it is difficult to implement, the IRK methods
gives a fewer stages for the same order and better stability if compared to the ERK
methods. Due to this better stability, the implicit methods are widely used in the

applications of physics, engineering, chemistry and medical problems.

There are two ways to implement Newton-Raphson iterations, which are full
Newton and simplified Newton. Full Newton iteration is preferred for nonstiff problems
as investigated by Muhammad and Gorgey (2018). However, to solve certain real-life
stiff problems such as Van der Pol, Brusselator and Oregonator problems, small
stepsize such as 0.001 is required if using constant stepsize setting. This not only takes
longer computational time, round-off errors also can accumulate and destroy the
solution. Therefore using constant stepsize is no longer appropriate. For this research,
variable stepsize setting will be used to investigate the performances of three different

implementation strategies.

At the beginning of the code, a technique known as compensated summation is
introduced to make sure the round-off errors will not destroy the numerical solutions.
The purpose of compensated summation is to minimize the effect of round-off errors
and it is applied together with simplified Newton iteration. However, based on the

numerical results for Prothero-Robinson test problem with ¢ =—10000, there is no
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effect in terms of accuracy on G2 method with simplified Newton and compensated
summation (G2SNCS) (Refer Figure 2). The numerical results showed that G2 using
simplified Newton without compensated summation (G2SNWCS) has similar results
with G2SNCS. Therefore, no compensated summation is required to investigate the
performance of G2 and G3 methods using implementation schemes by Hairer and
Wanner (1999), Gonzalez-Pinto, Gonzalez-Concepcion, and Montijano (1994) and

Gonzalez-Pinto, Montijano, and Randez (1995).

. PROTHERO ROBINSON . PROTHERO ROBINSON
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Figure 1.2. The effect of round-off error on (a) Tolerance and (b) CPU Time between
G2SNCS and G2SNWCS for Prothero Robinson problem using variable stepsize
setting.

Although in Muhammad (2018) thesis, he studied of the implementation
strategies by Hairer and Wanner (1999), Cooper and Butcher (1983) and Gonzélez-
Pinto et al. (1994, 1995) schemes, however he studied only for constant stepsize setting.
In difficult nonlinear ODEs problems, constant stepsize setting will require more
computational time to solve depends on the stiffness ratio. For example, consider the
Robertson problem (Robertson, 1966) or it was known as ROBER problem. Hairer and

Wanner (1996) are the one who gave the name ROBER. A detailed explanation

regarding ROBER problem is given in Subsection 5.1.1.
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Variable stepsize setting is very important to be implemented for the numerical
approximations of RK Gauss methods. When the variable stepsize setting is used, the
stepsize changing policy will automatically adjusted especially when the difficult
nonlinear problems involved. Hence, in this research, a variable stepsize setting is
investigated in detailed using the implementation schemes from Hairer and Wanner

(1999) and Gonzalez-Pinto et al. (1994, 1995).

1.3  Research Objectives

This thesis investigated two numerical methods for solving the ordinary differential
equations (ODEs) such as 2-stage Gauss (G2) and 3-stage Gauss (G3) methods. The
main objectives of this research are:
1. To study the implementation ideas for implicit Runge-Kutta methods
recommended by Hairer and Wanner (1999) and Gonzalez-Pinto et al. (1994,
1995) using variable stepsize setting.
2. To study the best error estimation for the variable stepsize setting in solving stiff
problems.
3. To investigate the most efficient implementation strategy for Gauss methods in

solving stiff problems using variable stepsize setting.
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Research Questions

In this research, several questions of interest are wished to attempt. Some of these are:

1.

1.5

How does the implementation schemes by Hairer and Wanner (1999) and
Gonzélez-Pinto et al. (1994, 1995) are implemented for implicit Runge-Kutta
methods using variable stepsize setting?

Which scheme is giving the best error estimation for the variable stepsize setting
in solving stiff problems?

Which implementation strategy is the most efficient for the Gauss methods in

solving stiff problems by using variable stepsize setting?

Significant of Research

By the end of the research, the researchers are wish to obtain:

1.

The computational cost for the implicit methods can be reduced by using the
most efficient implementation strategy suggested.

The most efficient implementation strategy can be identified for the Gauss
methods in solving stiff problems.

Researchers have broad knowledge regarding the idea of the implementation
techniques for implicit Runge-Kutta methods.

Researchers can start using implicit Runge-Kutta methods which is proven to
satisfy the efficiency properties and capable in solving real life problems

especially for Robertson and Van der Pol problems.
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5. The round-off errors can be reduced even without using compensated

summation technique for the variable stepsize setting.

1.6 Scope of Study

This research focuses on the IRK methods. Only 2-stage (G2) and 3-stage (G3) Gauss
methods that emphasized in this research. Preliminary study of this research is about
understanding the ideas of implementation for IRK methods recommended by various
researchers including the standard/common implementation methods. The first stage in
this research is to perform test problems using Prothero Robinson (1974) problem to
investigate the importance of using simplified Newton with compensated summation
for variable stepsize setting. The implementation strategies by Hairer and Wanner
(1999) and Gonzalez-Pinto et al. (1994, 1995) are selected to solve real life problems
such as Robertson, Van der Pol, Kaps and Oreganator problems using variable stepsize
setting. All of these problems are given by Hairer and Wanner (1996). A detailed
explanation regarding all of these problems can be found in Section 5.1. The
construction of the G2 and G3 methods as well as the numerical experiments for all the

problems involved are performed using MATLAB R2019a numerical software.
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1.7  Thesis Outlines

There are 6 chapters in this thesis.

Chapter 1 is about the Introduction. This chapter divided into five main parts.
The first part discussed about the background of this study which is the introduction to
numerical ODEs including some basic knowledge regarding RK methods, problem

statement, objectives, significant of research and scope of this research.

Chapter 2 discussed about the literature review. A brief explanation about
history of implementation of RK methods, efficiency of Gauss methods and the

implementation ideas by other researchers is discussed in this chapter.

In Chapter 3, the discussion regarding research methodology that consists of
research design, the construction of 2-stage (G2) and 3-stage (G3) Gauss methods and
the implementation of implicit Runge-Kutta methods based on the simplified Newton

iteration.

Chapter 4 gives the construction of implementation strategies by Hairer and
Wanner (1999) and Gonzélez-Pinto et al. (1994, 1995) in solving some real life
problems such as Robertson and Brusselator problems as given by Hairer and Wanner
(1996). The implementation strategies will be used in solving real life problems in

Chapter 5.
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Chapter 5 gives the numerical experiments of this research. This chapter gives
all the numerical results for real-life problems. The numerical results are given by the
tolerance and computational (CPU) time diagrams. The tolerance diagram indicates the
accuracy of the methods while the CPU time diagram is to measure the efficiency for
certain stepsize. A detailed description of variable stepsize setting and explanation of

error estimation also will be discussed in this chapter.

Lastly, Chapter 6 summarizes the numerical results and presents some

conclusions and also the suggestions for future work.



CHAPTER 2

LITERATURE REVIEW

2.1  History of Runge-Kutta Methods

In numerical analysis, there exists a method that is called the Runge-Kutta (RK)
methods. RK methods consists of implicit and explicit iterative methods, which
includes the popular method which is known as Euler method. The Euler method is
being used in temporal discretization for the approximate solutions of ordinary
differential equations (ODEs) (DeVries & Hasbun, 2011). Carl Runge and Martin
Wilhelm Kutta are the well-known German mathematicians that developed this

methods around 1900 (Butcher, 1996).

Carl Runge was completing his famous paper one hundred years ago and this
work was published in 1895. He extended the approximation of Euler method to a more
elaborate scheme which useful in producing greater accuracy. A detailed explanations
was mentioned by Butcher (1996). The basic idea of Euler method was to generate the

solution of an initial value problems (IVPs) in more precise steps. At the beginning of



22

the step, the rate of change of the solution that evaluated from the derivative formula is
treated as constant in each step. Rechenberg (2001) described the differential equations
that occur in the atomic spectra research had led Carl Runge developed the numerical
method to solve the equations. Hitchens (2015) mentioned the fact that Martin Kutta is
the one who contributed to the numerical method for differential equation in the

aerodynamics.

Development of RK methods are done since past decades by many researchers.
The first published article is in 1895. They searched for greater order of explicit Runge-
Kutta (ERK) throughout the years. Modern development of RK processes has occurred
since 1960, mainly as a direct result of the advances due to Butcher in the development
and simplification of RK error coefficients (Dormand, 2018). Butcher (1996) gave the
chronology of the developed methods by the corresponding author based on the order

hierarchy as given in the Table 2.1.

Before 1970, Kuntzmann (1961) and Butcher (1964) suggested that the IRK
methods are based on Gauss quadrature formulae. To construct a good method in
solving stiff problems, the criteria that need to be considered are high accuracy, good
stability and low implementation cost. The Gauss methods are chosen because they are
highly stable as well as high accuracy and possess higher order than explicit and other
implicit methods where the order p is equal to 2s, s is referring to the number of
stages of the IRK methods. The higher the order of Legendre Polynomials, the more
accurate the numerical approximation is (Cerrolaza, Shefelbine, & Garzon-Alvarado,
2018). Even though the Gauss methods possess a good stability and high accuracy

properties, therefore they are expensive to implement because the methods have
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different and complex eigenvalues which makes the implementation difficult.
Nevertheless, the Gauss methods are categorized as a symmetric method. Gorgey and
Muhammad (2017) mentioned further regarding this behaviour. It is an advantages for
Gauss methods since it provide capability to give more accurate solution. This kind of

property is an extra advantage that cannot be found in ERK methods.

Table 2.1

List of the Explicit Methods Based on the Order and Author (Butcher, 1996)

Order (p) | Stages (s) Author Year Reference
2 2 Runge 1985 (Runge, 1895)
3 3 Heun 1900 (Huen, 1900)
4 4 Kutta 1901 (Kutta, 1901)
5 6 Kutta 1901 (Kutta, 1901)
5 6 Nystrom 1925 (Butcher, 1996)
6 8 Huta 1956 (Huta, 1965)
6 7 Butcher 1964 (Butcher, 1964b)
7 9 Butcher 1987 (Butcher, 1987)
8 11 Curtis 1970 (Curtis, 1970)
8 11 Cooper and Verner | 1972 | (Cooper and Verner, 1972)
10 18 Curtis 1975 (Curtis, 1975)
10 17 Hairer 1978 (Hairer, 1978)

The IRK methods consist of several types of components named with semi-
implicit RK (SIRK) methods, semi-explicit RK (SERK) methods, diagonally-implicit

RK (DIRK) methods and singly-diagonally-implicit RK (SDIRK) methods (Butcher,
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1996). The IRK methods for which a; =0, for j > i, are called semi-implicit formulae,

the class of which the one-stage RK2 are members. These can be made it as 4-stable.
For practical purposes they are simpler to implement than the fully implicit formulae,

since each stage consists of the determination of only a single f . When solving stiff

problems, it was found out that the Gauss and Lobatto IIIA methods suffer from the
order reduction phenomenon. This is one of the disadvantage of one step methods that
can be found when solving stiff problems. For example, the numerical order of
convergences for fully IRK methods such as Gauss-Legendre methods suffers from
order reduction where their order decreases from 2s to s, coefficient s denoted the
number of internal stages (Rang, 2016). To make sure the order reduction is reduced, a
researcher came out with the study of stability and convergence and a new technique

known as symmetrization has been introduced by Gorgey (2012).

The RK methods 1is called A-stable if the stability function

R(z):1+sz(l—zA)7le where e:(l,...,l)TeR‘“, b:(bl,...bs)Tand A=(a!./.)i

satisfy the properties |R (z)| <1 forall ze C™. Otherwise, if R(«)<1, the RK methods

is called strongly A4-stable and L-stable if R(0)=0 (Ehle, 1973). Rang (2016) did

mentioned about A-stability property implies that RK method is dissipative for
Dahlquist’s problem. It is guarantee in getting stable numerical solution if the method
satisfy the A-stability. RK method is called B-stable if they are algebraically stable and
able to solve the nonlinear problems. Some of it are Gauss-Legendre, Radau [A, Radau

ITA and Lobatto IIIC methods. Furthermore, other advantages of Gauss-Legendre
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methods is also the behaviour that satisfy the simplifying conditions B(1),...,B(2p)

and C(l),...,C(s).

Since many decades, many researchers studied this method for solving ODEs
problems such as Chan (1990), Cong (1994), Calvo, Franco, Montijano and Randez
(2009). Zhu, Hu, Tang, and Zang (2016) showed in their article that second order
symmetric RK methods perform better than non-symmetric RK method in long-term
integration and almost energy conservation. Several years before, Chan and Gorgey
(2013) reported that symmetric RK methods with symmetrization techniques give more

accuracy and efficiency for solving stiff linear problem.

2.2  Efficiency of Gauss methods

In numerical analysis, it is very important to choose a method that satisfy the
good stability properties and having higher order of convergence rate. Since RK
methods complies with these properties, thus a method such as Gauss methods are
particularly being chosen because of their advantages that suitable in solving stiff
systems. This is also due to sufficiently high stage and classical orders. The
computational cost of these methods is relatively high because they are fully implicit
and require at each step the evaluation of msxms system of equation (1.6). The
coefficient m is refers to the dimension of the system and coefficient s is refers to the
stage of derivatives. Even though the computational cost is relatively high, however the

methods provide better solution of same accuracy as the order of the IRK methods. The
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study showed that the methods numerically integrate various sorts of ODEs such as
non-stiff and stiff problems, Hamiltonian systems and invertible equations. Gonzalez-
Pinto et al. (1994) investigated an experiment regarding linear stability of IRK methods.
In their research, they proposed a method by Cooper and Butcher (1983) in determining
the most efficient method in solving IRK methods. They concluded that the
implementation by using Gauss method performs much better than DIRK method even
though both of the methods are categorized as A-stable and have the same order 4. This
is such a big difference that can be found during the investigation due mainly to the fact
that the both methods having the same cost per step required on one side. Even though

the Gauss methods having the handicap of solving the implicit system

Y=e®y, +h(A®I )F(Y) (similarly, refer to equation 1.6) during the experiments,

however their relatively high stages and good stability properties make them not only
competitive but highly recommended to other methods like DIRK methods for the

solution of nonlinear stiff problems when implemented using special iterative schemes.

Varah (1979) described the comparison of methods used in producing an
efficient implementation of IRK methods. Since we concerned that Butcher methods
have order s or s+1, while the Gauss methods have order 2s or 2s—1, it can be seen
that for the method that has the properties of same order method, Gauss methods require
less work per step compared to Butcher methods. Moreover, it also turn out that the
Butcher methods having an error constants larger than Gauss methods especially for the
A-stable methods. This leads the methods to produce more steps for the same accuracy.
In addition, this inefficient behaviour make it difficult to compare these methods with
stiff multistep methods like those of Gear (1980). In Gauss-Legendre method, the

operations involved are complex because of the complexities in eigenvalues. If it were
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programmed directly in a language with complex type declarations, it may be requires
much less work compared to complex multiplication that involving four real ones. For
example, it is more practical to use a factor of two in Fortran on IBM 370 machines.
Gonzalez-Pinto et al. (1994) also mentioned that Gauss methods having of advantages
of high order of convergence in comparison with the number of stages and good
stability properties that make it suitable for solving stiff systems. Due to this, Gauss

methods requires relatively high computational cost since they are fully implicit.

A research by Agam and Yahaya (2014), they have developed a more efficient
and stable method of new 3-stage IRK methods using collocation method at pertubed
Gaussian points. Basically, the method is different from the existing 3-stage Gauss in

term of the equation of the internal stage value Y, and the coefficient of b in the

equation of the update solution y . The internal stage derivative F () in the equation

1

Y of the existing 3-stage Gauss method was replaced with a new one that was

formulated using collocation method. Besides, the coefficient of b in the equation (1.6)
from the general form of RK was replaced with new coefficient b that was computed
using new coefficient c. It is proved that this new method produced an efficient results
than the existing 3-stage Gauss method in solving one dimensional of a linear and a

nonlinear problems of first order ODEs.

Kulikov (2015) constructed nested Gauss and Lobatto methods for solving stiff
differential problems using variable stepsize. The methods preserved the properties of
IRK methods, such as A-stability, symmetry and symplecticity. Symplectic RK

methods was systematically developed by Sanz-Serna (1988). Their idea is based on
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algorithm of algebraic stability introduced that involving stiff systems studied by
Burrage and Butcher (1979). Sanz-Serna (2016) did mentioned that these methods also
has a wide range of applications not only in Hamiltonian problems but also beneficial
in other applications that required the use of adjoint systems and optimal control
problems. Gorgey and Mat (2018) have mentioned about the combination of two
methods that can be shown to be symmetric and symplectic which is known as
partitioned RK methods (PRK) that also advantageous in solving Hamiltonian system
that is separable. A further explanations about PRK can be found in Abia and Sanz-

Serna (1993) and Sun (2000).

Generally, Gauss method is also known as a collocation method that based on

the Gaussian quadrature formulas. Since the algebraic accuracy of Gaussian quadrature

formulas for point s is 2s—1 while its truncation erroris /, = y(x,_, )= y,,, = O(hzs+1 ),

hence it is satisfies the order conditions which is 2s. The order of numerical methods
is the crucial indicator in measuring the accuracy of the method. Basically, the higher
accuracy is affected by the relatively higher order of the numerical method. For SDIRK
and SIRK methods, the maximum attainable order for both methods are s+1. Here, it
is clear that the Gauss method has higher order and higher accuracy, which is the main
objective why this method is chosen as numerical approximation. However, it is
doubtful when this method is applied to a large system simulation because it is fully
implicit with a larger computational cost. This caused the computational cost to grow
increasingly expensive for higher stages methods and higher dimensional system.
Because of this reasons, it is necessarily to reduce its computational cost by using new
method proposed by Liu et al. (2019). This method is known as banded IRK (BIRK)

method and will be discussed further on the Section 2.3.
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2.3  Implementation Ideas by Other Researchers

Butcher (1997) introduced a classic transformed method which is known as singly
implicit Runge-Kutta (SIRK) method where the method has only one real s fold
eigenvalue. Nevertheless, not all SIRK methods are categorized as 4-stable that makes
the maximum attainable order reduced. Thus, Liu et al. (2019) proposed a new method
which is known as banded implicit Runge-Kutta (BIRK) method. The aim of this
method is to reduce the computational cost by making a changes to the Jacobian matrix
from a full coefficient matrix to a banded matrix while maintaining the high accuracy
and good stability properties. The purpose of reducing the computational cost for IRK
methods produced a singly diagonally implicit Runge-Kutta (SDIRK) method, where
the coefficient matrix A4 is lower triangular with same diagonal elements A rather than
using a full coefficient matrix (Ababneh & Ahmad, 2009). Even though the SDIRK
method has a straightforward computational advantages over the fully IRK method,
however the method has some inconvenience components that makes their stability and
accuracy affected by the simplification of the coefficient matrix 4. The main
advantages of BIRK methods is that the method reduced the computational complexity
of the LU factorization and back substitution to the Newton update iteration which this
behaviour did not obtained by Gauss-IRK method. In addition to that, the BIRK method
maintained a good accuracy compared to the Gauss-IRK method. Hence, it can
concluded that the BIRK method is easier to implement programmatically compared to

the SDIRK and SIRK methods. This method of order 2s is also categorized as 4-stable.

Berghe and Daele (2011) presented the development of symmetric and

symplectic modified exponentially-fitted Runge-Kutta (EFRK) method. They derived
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the EFRK methods as a 4-stage Gauss of eighth-order. The suitable frequency is needed
for determining the order and accuracy. The numerical results shows that the solutions
from classical and the 4-stage EFRK method are not largely different compared with
the solutions of 2-stage and 3-stage methods. The construction procedure for the
development of other EFRK method of different order also being recommended. In
addition, the EFRK method preserved the symplectic properties. They also mentioned
that the method gives same result as other exponentially fitted methods such as
multistep methods. Furthermore, the method provide more accuracy than the classical

method, hence their studies considered as a great achievement.

In Skvortsov and Kozlov (2014), an efficient implementation has been
developed for three types of diagonally implicit Runge-Kutta (DIRK) methods. Four
types of implementation scheme involved namely, trivial, modified trivial, standard and
economical schemes. The trivial is about the use of trivial prediction which is the
computed values at the initial point of approximation step that being used as initial
values for iterations. For modified trivial, it is being used to modify stage equation of
the corresponding methods. Different approach is applied to the standard
implementation where the initial values for the iteration are provided as a linear
combination of the previous stage values. For the economical scheme, it is about a
prediction for estimating the initial values of internal stage derivative. Based on the
numerical test problem, it is showing a result that economical scheme secures an
acceptable convergence by a single calculation, but the standard scheme requires two
computations. By right, the economical scheme saves one calculation at each implicit
stage compared to the standard scheme. The schemes also has been tested to solve real

life problems such as Van der Pol, Oregonator and HIRES by using three different
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values of tolerance. The tested is to capture the size of error, number of internal stages

derivative function and Jacobian.

Nazari, Mohammadian, Charron, and Zadra (2014) performed optimization on
3-stage DIRK methods in finding a scheme that can retains a good order accuracy. The
numerical results shows that the new scheme giving highly accurate solution than their
previous scheme for the problem that involving larger stepsize. Other than that, the new
scheme gives better accuracy for low spatial resolutions with the same stepsize. The
scheme that was developed is also categorized as A-stable which makes it suitable
option for solving stiff problems. Even though the scheme gives better efficiency, the
computation for diffusion coefficient is not really cheap. However the proposed scheme

performs well with large stepsize for the problem involved.

An updated technique known as generalized summation-by-part (GSBP) was
constructed by Boom and Zingg (2015) in solving IRK methods. The methods that was
constructed are based on Lobatto IIIC and Radau IA/IIA discontinuos collocation,
Gauss quadrature points and some algebraically stable and DIRK method. The
numerical simulation shows that the GSBP methods are more competent compared to
the classical summation-by-parts (SBP) methods. The comparison has been
investigated between the Gauss and Radau [A methods when applying the GSBP
methods. The numerical results obtained are both of the methods retains the same
properties, however the Gauss method is more efficient in terms of stage error. For the
non-SBP method with the same number of stages, it gives more efficient result however

it is categorized as not L-stable. The study is extended to fifth-order explicit singly
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DIRK (ESDIRK) method that beneficial in constructing higher order GSBP methods

which are diagonally implicit (Boom & Zingg, 2015).

Zhang, Sandu, and Tranquilli (2015) discovered a new technique specialize to
recover the order of corresponding IRK methods for their research. They introduced a
refinement procedure to correct stage values that was motivated from the simplified
Newton method. The procedure successfully recover the order of the methods in solving
non-stiff, midly stiff and stiff problems. In some cases, the order is recovered by only
small number of refinement iterations for non-stiff and midly stiff problems, however
for stiff problems large number of refinement iterations is needed since the increasing
stiffness deteriorates the convergence. Before refinement procedure been introduced,
the approximate matric factorization to high order linearly IRK methods is unstable for
stiff problems. After several test problems has been done, they concluded that the
refinement procedure improves the efficiency and it validates the accuracy and stability

based on theoretical findings.

Development of a new Runge-Kutta method has been developed by Ramos
(2019). This development was known as a two-step hybrid block method that was
specialized for numerically solving first-order IVPs. This method largely using the
well-known schemes of RK and multistep methods. A new formula of this method is
obtained by choosing two intermediate points of the interpolation derivation and
collocation at different points through the optimization of the local truncation errors
with continuous approximation. This method are practicing self-starting method where
it does not provide any starting values when using other approaches. Even though this

method might requires more computational cost, however the number of occurrences
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of the source term / is reduced that resulting in the most competent formulation. For
linear problems, it might be seen the both formulation are essentially the same, but when
the problem where f is difficult, this reformulation will result in an outstanding saving
on computational cost. The existing block methods are using this strategy in getting the
best behaviour of the block formulation. Moreover, this method consists of a good
characteristics which satisfy the convergence order and A-stability property that make

it appropriate for solving stiff problems.

In Kennedy and Carpenter (2019), a general purpose of DIRK methods has been
performed to first order ODEs that involving five types of explicit singly diagonally
implicit Runge-Kutta (ESDIRK) and their implicit-explicit (IMEX) methods. The
purpose of the methods is focusing on achieving a 2-stage order, stiff-accuracy, L-
stability, internal L-stability, an embedded method with good quality, algebraic stability

of matrix eigenvalues with a small magnitudes and a small values of a,. All of the

mentioned characteristics are persistently important in maximizing the scheme
efficiency. An embedded method is being used to facilitate the stepsize control through
error estimation. As the stage order affected the order reduction, focusing on 2-stage
order helps in determining the accuracy. The order reduction is depends on the problem
that being tested. It is observed that the methods produced moderate order reduction for
the Kaps problem while the Van de Pol problem is having a severe order reduction. For
the problems that categorized as excessively stiff behaviour, the utility of the fifth and
sixth order of ESDIRK methods that being used in this research is lower compared to

those lower order methods.
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In the same year of 2019, a researcher that was known as Zhang had discovered
a new RK methods using unstructured numerical search. The emphasizing of the new
methods is to exhibit a minimum number of stages in constructing RK methods in order
to maximize their order. Nevertheless, higher order RK methods are challenging to be
implemented since their parameter must comply with an exponentially large system of
polynomial equations. In his research, he studied about the strategy in decreasing the
number of stages for higher order method. The research that has been investigated
proved that the 10"-order RK method only required 16 stages. He was the first one that
managed to break a 40 years standing record that proved giving a less number of stages
in achieving the accuracy. The mechanism of techniques and theorems that empowering

the discovery of this method is discussed further in his research (Zhang, 2019).

2.4  Variable Stepsize Setting

Variable stepsize setting is crucial for the solution of nonlinear equations such as
stochastic wave equations of Schrodinger because they are typically nonlinear which
the error might propagate very rapidly and deteriorate the solutions. This was given by
Wilkie and Cetinbas (2005). In their research, they showed that by implementing the
variable stepsize, the explicit 9th order RK method (with an embedded 8th order
method) of ODEs yields an order 4.5 method for stochastic differential equations
(SDEs) which is part of the stochastic differential systems. When the lower order
methods is implemented with constant stepsize, the solutions produced is highly

inaccurate that might destroy the solutions, hence they become relatively inefficient
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because of their lower order. This clearly proved that the variable stepsize setting is

suitable in solving higher order methods.

In difficult mathematical applications, it is unrealistic to use a constant stepsize
setting. This is due to the research that was investigated by Chan and Razali (2014)
regarding the two-step symmetrization in a constant stepsize setting. In order to achieve
the convergence, a very small stepsize is required so that the approximate solution is
closed to the exact solution. Razali, Nopiah and Othman (2018) did mentioned about
the ways of computing the approximate solution so that it is close to exact solution. A
specific tolerance and a right method selections is necessary so that the estimated error
lies within the given tolerance at each step and the stepsize for the next step can be

predicted which generate an error within the tolerance.

In 2015, an investigation regarding variable stepsize setting based on reference
separation system for online blind source separation (BSS) was done by Xu, Yuan, Jian,
and Zhao (2015). BSS is about extracting the latent unknown source signals from their
observed mixtures by an array of sensors without highlighting the original source
signals and the mixing coefficients. In order to improve the learning rate and stability
performance, they proposed a new variable stepsize algorithms. During the iteration,
there is increasingly in terms of the correlation between the estimated and original
source signals. To overcome this, the reference separation system was introduced to
approximately estimate the correlation in terms of mean square error (MSE). The MSE
is important in updating the stepsize. In their simulations, they demonstrated that the
proposed method exhibits good convergence rate and gives excellent performance than

the constant stepsize setting for the noise-free case. Aside from that, their proposed
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method is also converging faster than the classical variable stepsize setting in both

stationary and nonstationary environments.

A research regarding the variable stepsize algorithm for solving the nonlinear
Duffing oscillator (second order nonlinear initial-value ODEs) was investigated by
Rasedee et al. (2017). A variable order stepsize (VOS) together with the backward
difference formulation (BDF) was introduced to solve the numerical approximation of
Duffing oscillator. BDF is functioning in overcome an uninteresting calculations of
integration coefficients everytime the stepsize make a changes as required by the
divided difference formulation that based on the Direct Integration (DI) method. A
further work regarding the Duffing oscillator can be found in Branch and Manshahr
(2016) and Najafi and Nemati (2017). The VOS with backward difference (VOSBD)
method was tested on several nonlinear Duffing oscillators of different parameters.
Their numerical approximations shows that the DI method gives an excellent behaviour
for larger tolerances whereas the VOSBD is better with a stringent tolerance. It can be
concluded that the VOS algorithm provides an efficient computational code without

affecting its accuracy.

As we concern, the variable stepsize setting is very important to be implemented
as many researchers are still finding the best way that suitable to solve certain problems
either in mathematical, biological, chemical, physical, engineering or in any related
fields. In 2017, a new generalized variable stepsize was investigated by Wang, Zhou,
Wang, and Chen (2017) that involving the CQ algorithm for solving the split feasibility
problem (SFP). The proposed technique consists of two algorithms, namely CQ

algorithm with two simpler variable stepsizes and two general KM-CQ algorithms with
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generalized variable stepsizes. Both of the general algorithms with the generalized
variable stepsizes able to solve the SFP and solve some special variational inequality
even better. The models that being used in this investigation are the compressed sensing
and deconvolution models. The proposed stepsizes with the former ones are then
compared with those models and the numerical results appear to give an excellent

behaviour.

Apart of SDEs, there also exists a stochastic delay differential equations
(SDDEs) and an equation known as stochastic pantograph differential equations
(SPDEs) are parts of it. This was studied by Yang, Yang and Xiao (2020). The exact
solution of nonlinear SPDEs was introduced by Guo and Li (2019) and established the
Razumikhin-type theorems on the ath moment polynomial stability. Yang, Yang,
Wang, and Han (2019) are the one that investigated the mean-square stability of
nonlinear SPDEs. The numerical solutions of SPDEs by using constant stepsize are
investigated by many researchers previously (Fan, Song & Liu, 2009). When the
difficult problems is applied throughout the investigation, it leads to the limited
computer memory that encourages the researchers to implement the variable stepsize
setting and transformation approach for the deterministic pantograph equations to solve
the storage problem. Yang et al. (2020) were originally investigated the asymptotical
mean-square stability under variable stepsize for linear SPDEs by using linear 6-
methods. Linear #-methods is also categorized as A4-stable as proved by Liu (1995).
From the investigation by Yang et al. (2020), they proved that the stability region of
linear f-methods by using variable stepsize is the same as the deterministic problems

where fe(1,1].



CHAPTER 3

RESEARCH METHODOLOGY

3.1 Introduction

In this research, only 2-stage and 3-stage Gauss methods will be focused. It will covers
the construction of the 2-stage and 3-stage Gauss methods using MATLAB R2019a
software. The construction are based on the implementation schemes by Hairer &
Wanner (1999) and Gonzalez-Pinto et al. (1994, 1995). Besides, this chapter also
include the MATLAB code for the implementation methods. The implementation are

done based on Newton-Raphson iteration. The Newton-Raphson iteration for f(x) =0

where f(x):R" —R" is given by

, ['(x,)%0. 3.1)

The simplified Newton method evaluates Jacobian once while the full Newton method
evaluate Jacobian many times throughout the iterations (Hairer & Wanner, 1996). Only
simplified Newton was used in solving test and real life problems. To complete this

research, the efficiency of 2-stage and 3-stage Gauss methods has been compared based



39

on different schemes proposed by other researchers using different problems taken from

Enright, Hull, and Lindberg (1975) and Gorgey (2012).

3.2  Research Design
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Figure 3.1 represents a research design for the thesis. The thesis starts by
choosing the proper type of differential equations. Since the most important purpose of
this research is to find an efficient implementation technique in solving stiff problem,
thus only ordinary differential equations (ODESs) are considered and it can be clarify by
using Runge-Kutta (RK) methods. 2-stage (G2) and 3-stage (G3) Gauss methods are a
family of implicit Runge-Kutta (IRK) methods and are chosen since they are efficient
in solving stiff problems (Chan & Gorgey, 2013). In 1964, Butcher presented RK
methods based on the Radau and Lobatto quadrature formulas. Since Hairer and
Wanner (1999) implementation scheme was originally implemented to Radau IIA
method, therefore this method of order-3 was also being tested in this research to clarify

either we implemented the right implementation scheme for the G2 and G3 methods.

Although IRK methods are advantages in solving stiff problems, however they
are difficult to implement if compared to explicit RK (ERK) methods as stated in section
1.2 under problem statement. The stage equation (1.8) need to be solved using Newton-
Raphson iteration. Some computationally cheaper variants are often being used when
at each Newton iteration, the methods required the s evaluations of the Jacobian matrix
df /0y and a LU decomposition of a sd x sd matrix (Antofiana, Makazaga, & Murua,
2018). Since the problems that being investigated in this research is considered as a stiff
problems, thus the fixed point iteration is no longer appropriate to be used and hence

the Newton iteration is implemented to compute the stage vectors Y, from equation

(1.6). Even though the Newton iteration is suitable in solving stiff problems, it does not
means that the non-stiff problems cannot implemented this iteration. The Newton
iteration may be still be an attractive choice where in some cases, the quadruple

precision or in arbitrary precision arithmetic calculations with high precision
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computations is implemented with mixed-precision strategies in order to reduce the cost
of the linear algebra and also the evaluation of the Jacobians that was performed in
lower-precision arithmetic than the evaluations of the right-hand side of the system of

ODE:s (Baboulin et al., 2009).

Newton-Raphson iteration can be divided into two parts which are full Newton
and simplified Newton. Full Newton iteration is preferred for non-stiff problems
(Muhammad & Gorgey, 2018). Since the problems that are chosen for this research are
categorized as stiff problems, therefore only simplified Newton was considered
throughout the research. In difficult nonlinear ODEs problems, constant stepsize setting
will require more computational time to solve depends on the stiffness ratio as
mentioned previously in Section 1.2. In order to overcome this, a variable stepsize
setting was investigated in detailed using implementation schemes from Hairer and
Wanner (1999) and Gonzélez-Pinto et al. (1994, 1995) to investigate their effectiveness

and efficiencies in solving stiff real life problems.

In solving linear and nonlinear problems, it is preferable to choose a higher order
methods such as Radau IIA method of order-5 and G3 method of order-6. This is
because the higher order methods are having the tendency to give a greater accuracy
than lower order methods (Ismail & Gorgey, 2015). Lower order methods require
smaller stepsize than higher order methods. If the stepsize is chosen to be very small,
then this can lead to round-off error where eventually will destroy the solution. Thus, a
compensated summation technique is applied at the beginning of the code to minimize

the effect of round-off errors. A smaller quantities Z, =Y, —e®y, as suggested by

Hairer and Wanner (1996) and Butcher (2016) being used together with the code in
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order to reduce the influence of round-off errors. Chan and Gorgey (2013) and Gorgey
and Chan (2015) had mentioned that compensated summation is very useful when
solving a stiff problem that requires a very small stepsize and also when the accuracy
of the numerical solutions need to be increased by extrapolation technique. A
comparison between simplified Newton with compensated summation (SNCS) and
without compensated summation (SNWCS) using variable stepsize setting by Hairer
and Wanner (1999) and Gonzalez-Pinto et al. (1994, 1995) implementation schemes
has been investigated. However, the numerical results shows that there is no effect in
terms of accuracy on G2 method with simplified Newton and compensated summation
(G2SNCS), therefore no compensated summation is needed for this research as explain
in Section 1.2 under problem statement. Since there is no effect on compensated
summation using variable stepsize setting, the Matlab code are proceed without

compensated summation. The numerical results will be discussed in Chapter 5.

3.3  Construction of G2 and G3 Methods

Implicit Runge-Kutta (IRK) methods are called A4-stable if there are no stability

constraints for y' =4y, ReA <0 and /> 0. Dahlquist (1963) introduced this concept

for linear multistep methods, but this concept is also practiced to RK method processes.
A further explanations can be found in Hairer and Wanner (1996). Since their stability
properties has been proven, hence IRK methods are the main methods used in this
research. G2 and G3 methods are chosen since these two methods are convenient for

the solution of stiff differential equations.
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An s-stage Gauss method satisfies B(2s), C(s) and is of classical order 2s.

The abscissas are the zeros of the shifted Legendre polynomial P (2s—1), where P (x)

denoted the Legendre polynomial of degree s defined on the interval [1,1] (Williams,

2017). Few shifted Legendre polynomials are shown in Table 3.1.

Matrix 4 can be constructed using the equation A=CSDS™"'. The C is the root

obtained from the Legendre equation, S is the Vandermonde matrix for C, and D is the

diagonal matrix diag(l,%,...,l). The definition for the Vandermonde matrix is given
s

in Definition 3.3.1 on page 44.

Table 3.1

The first few shifted Legendre polynomials

: P (x)

0 1

1 2x—1

2 6x> —6x+1

3 20x° —=30x* +12x—1

Other investigation regarding shifted Legendre polynomials was experimented by
Wang and Chen (2020). They mentioned that the shifted Legendre polynomials
algorithm will increase the reliability on predicting the viscoelastic behaviors and

dynamic properties regarding the pipes conveying fluid problem.
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Definition 3.3.1 Vandermonde matrix (V) can be defined as follows (Butcher, 2016)

2 n-1 ]
I ¢ ¢ - ¢
2 n—1
Il ¢, & - ¢
— 2 n—1
V=1 ¢ ¢ - s
2 n—1
_l Cm cﬂl o cm _

where the ¢’s is taken from the C roots. In linear algebra, Vandermonde matrix is a
matrix with the terms of a geometric progression in each row which is written as mxn
matrix that was named after Alexandre-Théophile Vandermonde (1735-1796). A
thorough discussion on this can be found in Ycart (2012). Yaici and Hariche (2019) did
mentioned that both the Vandermonde matrix and its inverse are often appointed in the
control theory, derivation of numerical formulas and in the systems theory. It is also
very important for the solution of polynomial interpolation. The discovery of the
Vandermonde matrix was found around 1965 and even before, where many researchers
deals with the study and its properties, inverse and its determinant (Rushanan, 1989).
In Ye (2017), he proved that every generic mxn matrix is a product of Vandermonde
matrix and its transpose. Kim and Krduter (2018) also mentioned that Vandermonde
matrix is decomposed in order to obtain the variants of the Lagrange interpolation

polynomial.

The Legendre equation P,(x) =6x” —6x+1 (refer to Table 3.1) was used for 2-

stage Gauss (G2) method and having the roots for the equation {%-g} and

g

5+?] These roots are the ¢’s as in the Butcher tableau (refer to Table 1.2). The

construction of the G2 method is given next.
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A=CSDS™,
L\3 0 |1 LB 1 0] \3+1  B-1
|2 6 2 6 N 3
0 —
0 l+£ 1 l+£ 2]l -3 3
i 2 61 2 6
133
| 44 6 (3.2)
L1
4 6 4 |

Similarly, the ¢ value for the 3-stage Gauss method is obtained by solving the Legendre

polynomial for P, . The roots are given as (% _lﬂsj’(%} and (% + 1£05J The shifted

Legendre polynomial for G3 is B(x) =20x’—30x” +12x—1.

A=cspsTH,
[ il 5+\/E _E 5_\/E_
1 0 0 6 6
SolvingforDS_lz 0 1 0l = 15-10 20 J15-10 ,
0o o L o 20 10
L 3] 3 3
I 5+4/15 2 5_\/5_
6 3 6
_|zto-Vi5 10 i5-10
6 3 6 >
o 20 1o
9 9 9
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A=CSDS™!,
210 2 10 5 10 6 3 6
e L oo I 1L 1 ||-10-v15 10 +15-10
2 2 4 6 3 6 |
10 20 10
0 0 l+£ 1 14.@ 24_@ — - -
2710 || 10 5 10 9 9 9o |
5 2.5 5 5]
36 9 15 36 30
(s, 2 s Vi) 53
36 24 9 36 24
S5 2 s s
36 30 9 IS 36

Matrices (3.2) and (3.3) are obtained by using Maple 2019 mathematical software. A

detailed explanations regarding Legendre polynomials can be found in Butcher (2016).

3.4  Implementation of Implicit Runge-Kutta Methods

The 2-stage (G2) and 3-stage (G3) Gauss method has been implemented by using
simplified Newton of Newton-Raphson iteration. The implementation idea is taken
from Hairer and Wanner (1999) and Gonzalez-Pinto et al. (1994, 1995) which had been
modified according to the Gaussian method. Previously, Hairer’s code was done for the
Radau ITA method of order-3 where the eigenvalues are real (Hairer & Wanner, 1999).
However for this research, the Hairer’s code was tested on G2 and G3 methods to

investigate their accuracy and efficiency.
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Consider applying IRK method for solving the initial value problem (IVP) of an ODEs

with dimension N which is given by

y'(x):f(x,y), y(xo):yo . (3.4)
Generally, the approximate solution obtained by an s-stage RK methods with stepsize
h for the interval [xo,xn] can be defined by the following equations (Butcher, 2016):

W=e®y, , +h(A®L)F(x,, +chy"),

Vo=, (T ®1)F(x,, +ch,Y!), (3.5)

X, =x,+h,
where ® denotes the Kronecker product, e= (1,...,1)" and / v 1sthe NxN identity

matrix and y, is the update of the RK method. y, will be updated until the approximate

solution is obtained for each problem that being tested. Normally the numerical solution
is approximated until the desired solution is obtained or until the approximate solution

reached the target interval x, .

In equation (3.5), it can be seen that the function AF is computed to find the interval
stages as well as to find the update y, . This can be a waste of computational time.
Therefore, it is recommended by Hairer and Wanner (1996) to write the update of
equation (3.5) as given by:

v, =y b A (M —e®y, ). (3.6)
In addition to that, to make sure that the influence of round-off errors is reduced, it is
also suggested by Hairer and Wanner (1996) to use a smaller quantity such that

ZM =y _e®y . (3.7)
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Equation (3.5) then can be written in the form

2" =h(A®1,)F(x,, +chZ" +e®y, ) , (3.8)

where Z!" consist of sN x1 vector which is given by

Zl
70 _
VA

N

The RK method such as given in equation (3.8) is nonlinear because of the difficulties
that occurs in solving for ZI"'. However, this complexities can be figure out by
implemented the Newton-Raphson iterative method for N dimensional system of

equation such as

F Z[”]
U = 7l ( ) , (3.9)
J(Z[”])
where F (Z [”]) is given by sNx1 system of equation
f(x, +ehz+e®y, )
F(ZM)= : :
f (x,H +ch,z +e®y, | )
and the Jacobian matrix, J (Z ["]) = Zl is computed such that
zZ
o o o]
0z, 0z, 0z,
% &% 9
J(Z")=| &z e, oz, | . (3.10)
In I .. Y
| Oz, 0Oz, oz, |
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For simplicity, consider writing equation (3.8) as

G(2")=Z" —h(4a®1,)F(x

n—1

+ch,ZM +e®y, ). (3.11)

To solve for Z!", we need to find the Jacobian matrix as given in equation (3.10). This

can be obtained by taking the derivatives of equation (3.11) with respect to Z such that
Do (Z") =1, ~h(A®1,)J (x,, +ch, 2" +e®y, ). (3.12)

The values of Z!"l can be obtained by solving equations (3.11) and (3.12) using

Newton-Raphson iteration method introduced in equation (3.9) such that
-1
AZV =—G(ZV" )(DG (z["l)) : (3.13)

where,

Azl — ] _ ]
The update y, as given in equation (3.6) is therefore given by

Y, =Y, b A7 (3.14)
All of this transformation was introduced in Hairer and Wanner (1996). For cheaper

implementation cost, the coefficient matrix D, (Z ["]) is only evaluated at the starting

of the iteration. The rest of the computations used the same value of D, (Z ["]) and this

implementation is known as simplified Newton-Raphson method.



CHAPTER 4

IMPLEMENTATION OF G2 AND G3 METHODS

4.1  Implementation Issues

In solving ordinary differential equations (ODEs) problems, the main issues in the
implementation method that need to be considered is the strategy to achieve high
accuracy, high efficiency and low implementation cost. These criteria are the main
objectives in getting a good numerical approximation because it is related to
computational cost. There are several aspects that need to be considered in achieving
the objectives. Some of them are the convergence, tolerance, initial values and round-

off errors that will be discussed in the next subsection.

4.1.1 Convergence

In getting a good numerical approximation, the problems must satisfy the convergence

test which the convergence rate is given by HAZ o

SG)HAZ"H where ® <1 and k>1
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(Hairer & Wanner, 1996). It is considered satisfies the convergence test when the
approximate solution from step to step are approaching towards the exact solution.
Meaning to say, the convergence test is a relevant identification method in the iteration
of the numerical approximation. Convergence is a type of numerical method related to
truncation errors that provides the numerical solution to converge onto the exact
solution and when the truncation error approach zero at all stepsize indices in the limit
Ah — 0. As the stepsize become smaller, the maximum absolute global truncation error
between the analytical and numerical solutions is giving a smaller error. Atkinson, Han
and Steward (2009) gave a brief explanation regarding this matter. The mechanism to
measure the convergence test is referring to how stepsize, computational (CPU) time
and tolerance behaves with the global error in the numerical approximations. The
tolerance and stepsize are the identical criteria in deciding the converging test when
approaching the exact solution. It is said approaching the convergence if the tolerance
and stepsize are decreasing proportionally with global error. For the CPU time, it is
approaching convergence if the global error decreases as the CPU time increases. The
accuracy is determined by the tolerance and stepsize while the efficiency is shown by
the CPU time graphs that obtained from the numerical approximation. In this scenario,
the access of the accuracy is important before the efficiency because the accuracy can
determine whether the implementation is correct or wrong based on the order of the
IRK method. In other words, we can say that the accuracy is affected by the order of

the method which of order-4 for G2 method and order-6 for G3 method.

In deciding the most efficient implementation among researchers, it is important
to make a comparison which scheme is having the least error and the least CPU time

taken in solving the ODEs problems. The values selection for x and the number of
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iteration are also plays an important role in improving the convergence test. It is
suggested in Hairer and Wanner (1996) that the most efficient values of x is around
10" or 107 and this values was tested for the code RADAUS. They also mentioned
that the code becomes efficient with the use of relatively high number of iteration of 7
or 10. During this iteration processes, it helps the computations to restart the iteration

with a smaller stepsize (h/ 2) in condition where ® >1. If this case happened, the

computations is interrupted that lead the iteration to become diverge. We can conclude
that the convergence test is a crucial issue to help the researchers to do the
troubleshooting and avoid unnecessary computations in case the approximate solution

goes wrong and not converging, furthermore gives beneficial to them in saving time.

4.1.2 Tolerance

Investigation regarding tolerance value selection was done by Hairer and Wanner
(1996). From the investigation, it shows that the code RODAS which is referring to
Rosenbrock’s codes of order 4 with an embedded order 3 error estimator is considered
giving best behaviour for low tolerances whereas the code RADAUS which refers to
Radau ITA method with s =3 of order 5 is recommended for high precision. As the
tolerances become smaller, the more precise the numerical approximation is for the
longer CPU time. The code was tested using Van der Pol, Robertson and Oreganator
problems together with different methods such as RODAS, LSODE, SEULEX and
RADAUS. SEULEX is an extrapolation code which implement the stiff linearly

implicit Euler extrapolation method. For LSODE, Hindmarsh (1980) was the first to
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implement this code that refers to backward difference formula (BDF) which is the

model for a class of multistep methods.

From the numerical approximation, the Rosenbrock’s code RODAS is giving

the best behaviour for low tolerances between 10~ to 107, while the extrapolation
code SEULEX is superior for stringent tolerances. The more stringent the value of
tolerances, the easier the method to solve the problems. However, it is preferred to use
not a very stringent tolerance as suggested by Muhammad (2018). Due to the cheapness
of the function evaluations by multistep code LSODE, more computing time is required

in general compared to one-step codes does. The code RADAUS gives the most definite

result for the code where the tolerance value is Tol=10" followed by RODAS,
SEULEX and LSODE. Furthermore, it has been proven that using smaller tolerances
gives the precise solution. Since RADAUS gives the precisest result among the others
and are part of a family of IRK methods, thus we are interested in investigating the

numerical approximation using different IRK methods such as G2 and G3 methods with

the use of the same tolerance value, Tol =10~ or using tolerance value which is smaller

than that.

4.1.3 Initial Value

An initial value problems (IVPs) is an ordinary differential equations (ODEs) together
with an initial condition or best known as initial value which specifies the value of the
unknown function at a given point in the domain. Initial value are frequently needed

values in solving the IVPs that involving a modelling system in mathematics, physics


https://en.wikipedia.org/wiki/Initial_condition
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and other sciences. In other words, the differential initial value is referring to an
equation which specifies how the system evolves with time given the initial conditions.
A proper selection of the initial value for ODEs is very important because it can be an
alternative approach to achieve converging solution. By selecting the proper initial
value, it can avoid the codes fail if the initial value inappropriate. Basically, most of the
ODE:s have the initial value. It is belongs to the variables in the ODEs. The initial value

is generally assigned as x, and y, in the ODEs problem. The number of initial value is

the same as the dimension of the ODEs. Practically, the initial value can be changed
accordingly in the implementation in order to achieve converging solution. To get the
best initial value, basically the researchers will carry out a task for try and error until

the solution converge and achieving their accuracy and efficiency.

4.1.4 Round-off Errors

Round-off errors is an error created due to approximate representation of number
(Butcher, 2016). This happened when the stepsize chosen is very small that can destroy
the solution. Thus, it is suggested to use not a slightly small stepsize to avoid the round-
off error from accumulate at the numerical approximation. When this is happened, it
will affect the accuracy of the iteration and thus cannot represent the order of the IRK
methods. However, some stiff ODEs problems are demanding of using relatively
smaller stepsize in order to achieve convergence. To reduce the effect of round-off error
when smaller stepsize is applied, it is suggested to apply a technique known as
compensated summation. Compensated summation is a technique used to minimize the

effect of round-off error and therefore beneficial in improving the accuracy and
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efficiency. Higham (1993) explained further about compensated summation in their
research. He did mentioned about the instability sometimes is not caused by the
accumulation of millions of rounding errors, but by the dangerous growth of just a few
rounding errors. The compensated summation works as capturing the round-off error at
each individual step where the round-off error is gathered for y-values. Thus, the
compensated summation is very important to be implemented in getting better
numerical approximation especially when extrapolation is applied together. Detailed
investigation on a numerical results regarding the use of other compensated summation

is also given in Antofiana et al., (2018).

Even though compensated summation technique gives a lot of advantages,
however this technique is not applied to this research. This is regarding the numerical
approximation that has been tested on the Prothero-Robinson problem. The numerical
analysis shows no requirement in using compensated summation with simplified
Newton for variable stepsize setting. This behaviour was explained in details in Chapter
1 under problem statement section. Hence, the Gauss methods of order 2 (G2) and of
order 3 (G3) were implemented only with simplified Newton to study the behaviour in

achieving the convergence.

4.2  Variable Stepsize Setting

In achieving the convergence faster, one of the strategy that can be followed for the
implementations of IRK methods is by employing the variable stepsize instead of

constant stepsize. Variable stepsize are very useful in getting excellent performance for
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IRK methods. A stepsize control formula that was originally proposed by Gustafsson,
(1994) based on the two-step estimator, which in combination with the standard one-
step estimator, proved that the code RADAUS fails less steps in the integration of some

stiff problems (Hairer & Wanner, 1996).

A research regarding the variable stepsize control for Radau IIA methods has
been done by Gonzdlez-Pinto, Hernandez-Abreau, and Montijano (2019). In their
research, they proposed a new strategy in pursuing a variable stepsize setting
nevertheless not an extension of Gustafsson (1994). They mentioned that the two-step
estimator does not needed any additional evaluation of the derivative function unlike
the one-step estimator does. This gives a briefly explanation that when the variable
stepsize setting is used, no filtering is needed for that estimator and thus gives beneficial
to the codes which save some extra solutions of real linear systems that are required by
the one-step estimator. From the numerical results obtained, it shows that the code takes

slightly smaller number of steps which is 4897 steps for the two-step estimator, while
one-step estimator gives a value of 4923 steps for the same tolerance (Tol =10"%) and

this results has been tested for Van der Pol problem. Furthermore, stepsize control for
tolerance proportionality has also been considered giving nice global errors with the
supplied tolerances. However, one-step estimator gives fewer Jacobian evaluations than
two-step estimator but the error produced much bigger than two-step estimator. We can
summarized here that two-step estimator or variable stepsize setting gives an efficient

results in solving stiff problems.
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4.2.1 Error Estimation

In solving stifft ODEs problems of IRK methods, extrapolation technique has been
introduced as an alternative for local error estimation and is applied together with G2
and G3 methods. Bader and Deuflhard (1983) introduced a METANI code, where this
code was known as a first successful extrapolation code for stiff differential equations
which implements the linearly implicit midpoint rule. Extrapolation is a technique to
enhance the stability and efficiency of a method. The general equation of extrapolation

is given by

27 (yz)_yl

; 4.1
Y (4.1)

y=
where p is the order of the RK methods and y, and y, are the solutions attained by

using stepsizes, & and h/2 respectively. The difference between y, and y, gives the

local error estimation. This step halving or best known as step doubling in obtaining the
local error estimation was introduced by Shampine (1985). This technique is also
known as Richardson extrapolation. Extrapolation can be found in two difference
modes such as active and passive modes. Active extrapolation happened when the value
of extrapolation is used to capture the next computation while passive extrapolation
occurs when there is no need in using the extrapolated value for any subsequent

computations (Ismail & Gorgey, 2015).

Since extrapolation can increase accuracy and efficiency, many researchers are
still finding the best ways to apply extrapolation. Gorgey (2012) showed that passive
extrapolation of the G2 method is more competent than the active extrapolation for

linear problems that using constant stepsize setting. In addition to that, Farago, Havasi,
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and Zlatev (2013) found out that computational time by using Richardson extrapolation
for both active and passive modes are more than ten times smaller than the
corresponding computing time by the backward Euler formula. Thus, they concluded
that extrapolation is an impressive technique for increasing the accuracy and efficiency
with taking into account the computational cost especially when the accuracy condition
is not too low. Another approaches was investigated in Gorgey and Mat (2018)
regarding the efficiency of IRK methods in solving simple harmonic oscillators. After
a very short period of time, they concluded that passive extrapolation is observed to
produce quadratic error growth while for active extrapolation, a linear error growth is
obtained for a much longer period of time. It can be summarized here that the numerical
results for active extrapolation is observed to give the lowest error if compared with
passive extrapolation. Therefore, there is only one mode that can be applied in the

variable stepsize setting which is the active mode.

Another approach to estimate the local error was given by Gorgey (2012). In
her thesis, symmetrizer is used to estimate the local error for G2 method. Although the
error estimation by using symmetrizer is efficient, the computational time between this
approaches with the traditional error estimation by the extrapolation is not much
different. Therefore, local error for the variable stepsize in this article is estimated using

extrapolation technique.

The variable code that estimate the local error started by setting the coefficient

x=x,, p=4 which is the order of G2 method and p =6 which is the order of G3

method. We then set up the minimum and maximum / values that is required for the

problem by setting
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h. =(x,—x)/16 , h =(x,—x)/2x10". (4.2)

To make sure that we are choosing the correct value of /4 for each problem, set
h= max([ho,(xn —x)/107]). (4.3)
If x+h> x,, then the first value of the update for stepsize # which is y, is computed.
Then, another two steps of the update is computed for 4/2 which is denoted by y,.

Upon obtaining the values of y, and y,, the local error is estimated such that

E=V =i (44)

where 6 =||¢|_ and 7 « Tol.max(||yl|w ,1.0).

If 6 <7, thus the new value of x and the improved result, y =y, + & is computed. A

sophisticated stepsize strategy has been used in deciding the stepsize selection. It leads

to the formula
1
h < minqhmax,4h,0.9h(r/6)p+l D (4.5)

If condition (4.5) is satisfied, then the / value is accepted. Otherwise we reject it and

the /# formula is recomputed by using the following condition
1
h < h.max ({0.25, 0.9(z/8)r+ D . (4.6)

This variable code implementation is introduced in Hairer and Wanner (1996).

4.3  Implementation Strategies

The strategies that being used for the implementation of the RK methods in this research

is simplified Newton of Newton-Raphson iteration. As mentioned in the previous
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chapter, no compensated summation is needed for the iteration of variable stepsize
setting. Newton-Raphson is chosen because of the capability in solving the IRK
methods and gives better solution compared to fixed-point iteration. Thus, it gives
efficient implementation for the numerical approximation. Hairer and Wanner (1996)
were the first to implement the simplified Newton technique and Radau ITA method of
order 5 is chosen as a method that being tested. Since then, it became popular for the
solution of stiff problems. Since the Jacobian is only evaluated once before Newton
iteration, therefore this strategy provide less computational cost that gives beneficial in

solving stiff ODEs problems.

In Antofiana et al. (2018), they also implemented the simplified Newton
iterations in getting efficient implementation for the symplectic IRK schemes. Based
on their investigation, when the value of the stiffness constant is increasing the
simplified Newton iteration that being implemented requires more iterations per step.
This observation motivated them to make a modification to the original simplified
Newton iteration to produce new algorithm which is known as Kahan’s compensated
summation. This algorithm requires an evaluations of the Jacobian matrix which at each
step s additional evaluations is required. In their numerical experiments using stiff
pendulum problem, the use of that algorithm does improve efficiency which is reduce
the number of iterations also shows a robustness. However, there is no interest of using
this algorithm for this research, thus only standard simplified Newton is implemented

throughout the research.

In our MATLAB implementation of variable stepsize, there are three script files

of pseudo code for simplified Newton method respectively. The first script file solves
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the nonlinear part of the method (see Algorithm 4.3.1), the second script file computes
the n steps of the base method (see Algorithm 4.3.2) and the third script file is the

variable code that estimates the local error (see Algorithm 4.3.3).

Algorithm 4.3.1: Newton Iteration (AZ = 0)

Settrace=0, Y =e® y and AZ = AG/-G.

Evaluate Jacobian.

Evaluate o = ||AZ ||m .

Evaluate =0 /(1-0).

if n.o <x.Tol, where x=10"
YY<Y+AZ

{ else Z«Z+AZ

fori<-1to 10

Evaluate F'(Z) using the same Jacobian.

Recalculate S =||AZ ||w and ®=f/o.

ifO>1

trace =1
n=1.0

elseif @ /(1-©).8> «.Tol
do< {trace =1

Evaluater7 < ©/(1-0).

Evaluate ® < max (10_16, @)0'8 .
if nf <x.Tol

{0<—ﬂ
L <—7Z+A7Z

YY<Z7

return (trace)
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Algorithm 4.3.2: Constant Stepsize (y)

Set TRACE =1and hout=h.
while TRACE
TRACE =0
X=X,
Y=Y
®=0.5
fori<—1ton
if TRACE =1
do< {hout < hout /2
Store the value of ¥, at the n+1-th step

if hout <h
{TRACE =1
return (y)

return (TRACE)

In the computational processes, there exists a numerical error where the error is
measured by the difference between two components, which are the numerical solution
and the exact solution. The efficiency graph that was obtained from the numerical
approximation could resolve whether the significant of round-off errors could affected
the implementation of the IRK method. For the case when the round-off errors is
increasing, the efficiency graph will generate a slope where it will change from negative
to positive slope. For some cases, the slope is zero which means the numerical errors is
at the same value and it should decreasing along numerical approximation. However,
round-off errors is not the only components that could significantly affected the
computations. The significant round-off error could be affected if the stepsize used is

very small that might destruct the computation (Butcher, 2016).
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Algorithm 4.3.3: Variable Stepsize (/)

while (x<x,) and (h>h,;,)

if (x+4>x,)

{h<x,—x

it TRACEh=h,,
Estimate the error, =y, , — V...
5 < |el.

T« T.max(||y|

if (§<T)

,-1.0)

X< x+h
V& Vo TE€
if (5=0)

h < min ([hmax,4.h, 0.9.4(T/5)"" })
Accept h.

else
h < min([h,,,.4.h])

else

h hmax([025,0.9.(1/5)" )

4.4  Implementation Scheme by Gonzalez-Pinto et al. (1994, 1995)

The methods introduced in this research retains the coefficients b, ¢, and a; of the 2-
stage (G2) and 3-stage (G3) Gauss methods. Implementation schemes by Gonzalez-
Pinto et al. (1994, 1995) is a modification from Cooper and Butcher (1983) where the
scheme consists of modified variables such as S=7, L=T"'P and B=7—-L. B and

S are sxs nonsingular real matrices while L is a strictly lower triangular sxs matrix.

Originally, the variable B, S, L and A (real positive number) in Cooper and Butcher
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(1983) were chosen so that the spectral radius of M (z) which is denoted by p[M (z)]
is minimum for Re(z) <0. Their scheme were selected because it was classified as the
most efficient implementation for the integration of stiff problems (Peat & Thomas,
1989). Even though the numerical results satisfies the convergence and efficiency
behaviour, however the numerical analysis that has been done before is specialize for
linear and constant coefficient problems only. Since the convergence for nonlinear stiff
problems has not been explored in details, therefore Gonzalez-Pinto et al. (1994, 1995)
iterative schemes were introduced in solving nonlinear stiff problems for G2 and G3

methods.

The general equation of the iterative scheme given by Gonzalez-Pinto et al. (1994,
1995) are modified based on equation 3.5 in previous chapter with some modification
from Cooper and Butcher (1983). The derivation of the iterative scheme can be found

in Gonzalez-Pinto et al. (1994) and the general equation are given as follows:

[1,-h(T®J)|EY =Y —e®y, , +h(4®1,)F (1), @.7)
Y[n+l] _ Y["] +E[”]’ |

where n=1,2,...,s. In Gonzalez-Pinto et al. (1994, 1995), the coefficient k& is used

instead of . In this thesis, we changed into coefficient » because we want to use the

same coefficient as the general equations of Runge-Kutta methods introduced by
Butcher (2016). Smaller quantities Z!" =Y —e® v, 1s applied to equation (4.7) and
the new equation of the iteration are given by

[1,-h(T®J)]|EM =7 +h(4 ®IN)F(Z["] +e®yn,1)’ “8)
Zb =z g, |
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There exists matrix 7 such that 7 is a real nonsingular constant matrix of dimension
s and it contained a unique eigenvalue A>0. This matrix 7 could advantages in

reducing the additional cost that was involved in the implementation.

The matrix 7 of G2 method is given by

go
T = ,
V3B
3 6

while the value of matrix 7 for G3 method is given by

T=yS(I-L)'S™, ®=1-0.0371745516 and }/=3/$,
0 0 ~0.0455241821  0.0441943589  0.0721518521

L=[20 0 0|, S=|-0.140048242 0.139620426  0.118832579 |,
0 0 1 ~0.244595668 1

[0.1190762649202001 —0.01352480890549548  0.002955703944789629
T =10.2567321613764653  0.2864264722250291  —-0.008257284502425157 |.
10.2617169889707876  0.5210947821158048 0.2027174624121108

The matrix 7 for G2 method is given by Gonzalez-Pinto et al. (1994) whereas the

matrix 7 for G3 method is given by Gonzalez-Pinto et al. (1995).

45 Implementation Scheme by Hairer and Wanner (1999)

For implementation scheme by Hairer and Wanner (1999), a new transformation has

been introduced and this changes are done to equations (3.11) — (3.13). Firstly, pre-

multiply (3.11) by (h4) " ®1,,. This gives
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G(21")= ((hA)’1 ®IN)Z[”] —F(x,,+ch 2" +e®y, ). (4.9)
Similarly, equation (3.12) becomes

Dy (21)= ((hA)‘1 ®IN)—J(xn_1 +ch,ZM+e®y, ). (4.10)
The reason for multiplying the stage derivatives by (hA)_1 ®1, is to transform matrix

T sothat S=T"'4"'T and W!" = (T T®I N)Z "I can be introduced where S is the

Jordan canonical form of 4 that has the same diagonal elements.

Since ZI" = (T®1,) W the stage equation (4.9) becomes

G = (L)W (T @1, )F (x,  +ch(T®L)W +e®y, ). (411
To solve for W!"! , we need to find the Jacobian so that Newton-Raphson can be applied.
Equation (4.10) becomes

D, (W)= (S®1,) (17" ®1,)J (%, +h(T®L )W +e®y,,).  (*12)

]

Finally, solving for wl by using Newton-Raphson iteration yields

-1

AW = (—G(W["]))(DG (W[”])) , (4.13)
where,

AW[”] — W[”“] _ W["] )

The update y, as given in (3.6) is therefore given by

Y, =y, b A (T L)W (4.14)



CHAPTER 5

NUMERICAL EXPERIMENTS

In this chapter, the numerical results on the efficiency of 2-stage (G2) and 3-stage (G3)
Gauss methods using implementation strategies by Hairer and Wanner (1999) and
Gonzélez-Pinto et al. (1994, 1995) were discussed for solving real life stiff problems.
The schemes were implemented by using variable stepsize setting with simplified
Newton iteration. All of these numerical results are very important in determining the
convergence test and to identify which implementation scheme gives efficient

behaviour.

The numerical experiments has been done by using MATLAB R2019a
mathematical software on HP with 2.3GHz Intel ® Core i3-7020U with RAM 8GB. All
of the problems that have been tested are categorized as nonlinear problems. For each
problem, the results are tested in terms of tolerance and computational (CPU) time plots.
The tolerance graph is referring to how the tolerance behaves on a certain given value
Tol and how does it affect the error. It also determined the accuracy of the methods for

the given problems based on the researcher’s implementation schemes. The tolerance
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used in this numerical experiments is Tol =107 . The efficiency of G2 and G3 methods
is measured in terms of CPU time (seconds) using tic and toc build-in function in
MATLAB. Implementation scheme by Hairer and Wanner (1999) is denoted by HW

scheme while Gonzalez-Pinto et al. (1994, 1995) is denoted by GMR scheme.

5.1 Real Life Problems

There are six problems that has been investigated such as Robertson, Kaps, Brusselator,
Oreganator, Van der Pol and HIRES problems. All of the problems are classified as
stiff nonlinear problems, thus all of these problems consumed more time for the
computations. The schemes is compared based on three different implementations,
which denoted by GMR scheme for Gonzalez-Pinto et al.(1994,1995), HW scheme for
Hairer and Wanner (1999) and the last one denoted by MHW scheme which refer to

modified HW scheme. The difference between HW and MHW scheme is that no
transformation such that (hA)f1 ®1,,S=T"'4"T and W = (T_1 ®IN)Z[”] is applied

to MHW scheme. The HW scheme is specially designed for the 3-stage RADAU
method and this scheme has been proven to give a robust implementation. As mentioned
in the previous chapter, the GMR scheme is a modification from Cooper and Butcher
(1983) implementation scheme. Their scheme is proven to give a convergent behaviour
for linear and constant coefficient problems and also very efficient for general
problems. Since the nonlinear stiff problems has been not investigated in details, thus
the GMR scheme is implemented in solving the nonlinear stiff problems for G2 and G3

methods.
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For MHW scheme, it is quite similar with HW scheme, however the scheme is not

involving the coefficient matrix 7 for the implementation.

511 Robertson Problem

The Robertson problem is a chemical reaction problem proposed by Robertson (1966)
that describes the kinetics of an autocatalytic reaction. It was known as ROBER
problem and consists of a stiff system of three nonlinear ODEs (Hairer & Wanner,

1996). The problem can be written in the following form

dy _ _
o =f(»), »(0)=y,,

with
yeR’, te[O,T].

The function / can also be written in a system as given by

yll =—-0.04y, +104y2y3 )2 (O) =1,
ylz :0-04)/1—104)/2)/3—3'107)/22 yz(O)ZO, (5.1
y; =310"p,° y,(0)=0.

Table 5.1 shows the structure of the reactions, where &, k,, k; are the rate constants and

A,B and C are referring to the chemical species involved.
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Table 5.1

Reaction scheme for problem ROBER

1. 4 4 5 B
2. B+B —% 3 C+B

3. B+C —5 5 4+C

Aiken (1985) describes some idealized conditions and the expectation that it is
involving rate functions and the mass action law is applied to it. The mathematical odel

of ROBER problem consists of a set of three ODEs and can be shown by

yi —ky, +ky,y,
Yo | =| _k2y22 _k3y2y3 > (5.2)
Y3 kzy22

with (yl (0),5,(0), », (O))T =(Yors Yo Vos )7 where the coefficients y,,y,,y, are the
concentrations of 4, B and C respectively, while y,,,y,,,,; are the concentrations for

which the time #=0. Since past decade, the ROBER problem became very popular
among mathematicians for the numerical studies and is favorable to be used as a test
problem for the solution of stiff systems. Originally, the problem was posed on the time
interval 0<7<40, but it is reasonable to integrate on much longer intervals in
determining their stability and efficiency. However, Hindmarsh (1980) discovered that

many codes fail if the problem is integrated at a longer computational time ¢.

For this numerical experiments, the problem is integrated to x, =10 with stepsize

h=0.01. The numerical result for G2 and G3 methods using Robertson problem is

given in Figures 5.1 — 5.3.
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Figure 5.1 and Figure 5.2 showed two plots which are the loglog absolute global error
versus loglog tolerance plot and loglog global error versus CPU time plot. In Figure 5.1
(a), as the tolerance gets stringent, we can see that the global error for HW scheme of
G2 method decreases and thus gives the smallest errors. However, the HW scheme
requires more computational time than GMR and the MHW schemes. Furthermore, the
GMR scheme as shown in Figure 5.2 (a) is being chosen as the most efficient scheme
in solving Robertson problem for G2 method. For the G3 method, it has been proven
that GMR scheme gives the smallest error among the others as the tolerances get
stringent (refer Figure 5.1(b)). The scheme also very efficient and takes shorter

computational time compared to HW and MHW schemes as shown in Figure 5.2 (b).

Figure 5.3 shows the error estimation by using extrapolation versus tolerance
for G2 and G3 methods. For G2 method, it shows that the MHW and HW schemes
collide to each other at the last iteration and hence give the smallest error value.
However we intended to choose the MHW scheme as the scheme that gives the best
error estimation. Same goes to G3 method as shown Figure 5.3 (b), the MHW scheme
is proven to give the best error estimation as the tolerance become stringent. For both
G2 and G3 methods, the error estimation obtained is not that significant. This behaviour

shows than the local extrapolation does not effected the implementation scheme.

5.1.2 Kaps Problem

The Kaps problem is used to investigate the decreased order phenomenon (Dekker &

—2x

Verwer, 1984). The exact solution of this problem is y,(x)=¢™* and y,(x)=¢™ . In
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an article written by Kennedy and Carpenter (2019), the exact solution of y, has been
modified which is y, = y,> where it is referring to emergent (algebraic variable). This

problem consist of stiffness parameter g and this is a two-dimensional nonlinear test

problem which given by
n=(a-2)y-q,’, 1w (0)=1, 52
V=N y,(0)=1

The problem is integrated to x, =5, stepsize /£=0.01 and constant stiff value

q =-10000 . The numerical result for Kaps problem is given in Figures 5.4 — 5.6.
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Figure 5.4. Global error versus tolerance of (a) G2 and (b) G3 methods for Kaps
problem.
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problem.



74

a) G2 method b) G3 method

Figure 5.6. Error estimation by using extrapolation versus tolerance of (a) G2 and (b)
G3 methods for Kaps problem.

For the Kaps problem as given in Figure 5.4, the error for the MHW scheme for G2 and
G3 methods gives the smallest error as the tolerance gets stringent. The MHW scheme
also giving the most efficiency behaviour in solving this two dimensional nonlinear test
problem as shown in Figure 5.5 (a) and (b) and it takes shorter computational time

compared to GMR and HW schemes. For the approximate tolerance value of

Tol =10""as shown in Figure 5.4 (b), the GMR scheme giving the least global error
than MHW scheme. However, the solution of GMR scheme is fluctuated significantly
as the tolerances become stringent meanwhile the global error of MHW scheme is
decreasing as the tolerance get stringent. Thus it can be concluded that the MHW
scheme is the most efficient implementation strategies in solving the Kaps problem for

G2 and G3 methods.

In Figure 5.6 (a), the MHW scheme also gives an efficient results for G2 method
where the error estimation by using extrapolation is smaller than the others. However,
for G3 method as shown in Figure 5.6 (b), it can be seen that all of the schemes is giving

almost similar solutions as the tolerance get stringent. Furthermore, it can be concluded
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that the error estimation by using extrapolation does not effected the implementation

strategies.

5.1.3 Brusselator Problem

The Brusselator is a theoretical model of a single chemical reaction or it is known as
autocatalytic reaction that was proposed by physical chemist, Ilya Prigogine and his
collaborators at the Free University of Brussels (Hairer & Wanner, 1996). The problem
is defined by the following equations:

)/'1':1"‘)/12)72—4)/1, yl(o)

| (5.3)
)7223)/1—)/12)/2, y2(0)=3.

The problem is integrated to x, =10 and stepsize /4 =0.01. The numerical result for

Brusselator problem is given in Figures 5.7 — 5.9.
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Figure 5.7. Global error versus tolerance of (a) G2 and (b) G3 methods for Brusselator
problem.
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Referring to Figure 5.7 (a), it can be shown that the scheme that gives the least error in
solving Brusselator problem for G2 method is the GMR scheme followed by HW and
MHW schemes. GMR scheme is said to give efficient numerical results among the
others as given in Figure 5.8 (a), therefore suitable in solving stiff problem. For the 3-
stage Gauss method as shown in Figure 5.7 (b), the HW scheme is giving the least
global error as the tolerance get stringent, however the scheme need more
computational time to solve the Brusselator problem as shown in Figure 5.8 (b). Hence,

the most efficient implementation scheme is proved by the MHW scheme as shown in
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Figure 5.8 (b) where it takes shorter computational time since there is a need in
numerical analysis to choose the implementation strategies that gives shorter

computational time in obtaining good numerical results.

Figure 5.9 shows the numerical results for G2 and G3 methods regarding the
error estimation that implemented using extrapolation technique. For G2 and G3
methods, it turns out that all schemes giving almost similar error at the last iteration.
Thus, it is difficult to choose which implementation schemes is giving the best error
estimation. However, it can be observed that the MHW scheme in Figure 5.9 (a) is
destroyed by the round-off error and hence, it is not recommended to be used in solving

Brusselator problem for G2 method.

5.1.4 Oreganator Problem

The Oreganator is one of the famous model with a periodic solution that was proposed
for the Belusov-Zhabotinskii reaction. It is one of the example of non-equilibrium
thermodynamics that categorized as nonlinear chemical oscillator of stiff problem with

three dimensions (Hairer & Wanner, 1996). The equations of the problem is given by

n_ _ -6 _—

» _77.127(y2+y1 (1-8375x10°, yz)) ¥ (0)=1,

i :ﬁ(%—(l‘*)’l)%) 7:(0)=2 4
y;=0-161(J/1_J’3) y3(0)_3

The problem is integrated to x, =30 and stepsize 4 =0.01. The numerical result for

Oreganator problem are given in Figures 5.10 — 5.12.
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a) G2 method b) G3 method

Figure 5.10. Global error versus tolerance of (a) G2 and (b) G3 methods for Oreganator
problem.
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Figure 5.11. Global error versus CPU time of (a) G2 and (b) G3 methods for
Oreganator problem.
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Figure 5.12. Error estimation by using extrapolation versus tolerance of (a) G2 and (b)
G3 methods for Oreganator problem.
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Figures 5.10 — 5.12 shows the numerical results obtained for Oreganator problem. From
the numerical results obtained, the G2 and G3 methods as shown in Figure 5.10 is
giving the least global error as the tolerance get stringent which implemented by GMR
scheme followed by MHW and HW schemes. However, the MHW scheme as shown
in Figure 5.11 gives the most efficient implementation strategies by G2 and G3 methods

and thus suitable in solving Oreganator problem.

In Figure 5.12, the error estimation that being investigated are not giving an
excellent behaviour. This is because the results obtained shows that the schemes is
fluctuated significantly and destroyed by the round-off errors for both G2 and G3
methods especially for GMR and MHW schemes. However, it can be seen that the HW
scheme is giving the best error estimation for both G2 and G3 methods as the tolerance

get stringent.

5.1.5 Van der Pol Problem

The Van der Pol oscillator was originally proposed by the well-known physicist,
Balthasar Van der Pol while he was working at Philips, Amsterdam which is one of the
largest electronics companies in the world. He found a stable oscillations or it is called
as relaxation-oscillations which are now known as a type of limit cycle in electrical
circuits employing vacuum tubes. The Van der Pol equation has being used in both the
physical and biological sciences. The equation consists of stiffness parameter ¢ . The

problem is defined by
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V=D, y,(0)=2,

o1 ) ~ (5.5)
V2 :;((1_)’1 )yz_y1> Vs (0)—0.

The problem is integrated to x, =5, stepsize £=0.01 and &£=10". The numerical

results for Van der Pol problem are given in Figures 5.13 — 5.15.

a) G2 method b) G3 method

Figure 5.13. Global error versus tolerance of (a) G2 and (b) G3 methods for Van der

Pol problem.
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Figure 5.15. Error estimation by using extrapolation versus tolerance of (a) G2 and (b)
G3 methods for Van der Pol problem.

Figures 5.13 — 5.15 shows the numerical results of G2 and G3 methods for Van der Pol
problem in terms of tolerance, CPU time and error estimation by extrapolation. In
Figure 5.13, it can be observed that GMR scheme for G2 method gives the least global
error followed by MHW and HW schemes, therefore it can be concluded that the
scheme gives better accuracy for the solution of nonlinear stiff problem. The GMR
scheme also giving the most efficient implementation strategies in solving Van der Pol
problem for the solutions of G2 method since it takes shorter computational time
compared to the others as shown in Figure 5.14 (a). For G3 method as shown in Figure
5.13 (b), as the tolerances become stringent the MHW and GMR schemes are observed
to give almost similar error where both of it are satisfying the efficiency behaviour.
Nevertheless, among these two schemes we intended to conclude that the MHW
scheme is the most efficient implementation strategies in solving Van der Pol problem

by the G3 method as it gives shorter computation time (refer Figure 5.14 (b)).

In Figure 5.15, both figures (a) and (b) shows the error estimation that estimated

using extrapolation technique. It can be observed that the error estimation obtained by
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G2 method is giving the best error estimation for GMR and HW schemes and both of
it are suitable for the solution of stiff problems using variable stepsize setting where the
schemes satisfy the convergence property. The MHW scheme as shown in Figure 5.15
(a) is fluctuated significantly and got destroyed by the round-off errors along the
iteration. However, the HW scheme is shown to give the best error estimation for G3

method where it generated the least error estimation as the tolerance become stringent.

5.1.6 HIRES Problem

Schéfer (1975) proposed a HIRES problem and defined it as a reaction of 8§ reactants.
The studied is about the photomorphogenesis of a plant that used a high-frequency-
controlled light source to grow a plant. The word HIRES was originally stand for ‘High
Irradiance RESponse” where the mathematical model of ODEs was given by Hairer and
Wanner (1996). A further explanation of HIRES can be found in Swart, Jacques and
Lioen (1998). HIRES is a nonlinear system of 8 dimensions and categorized as a

moderately stiff problem. The problem is of the following form

¥, =—1.71y, +0.43y, +8.32y, +0.0007, 7 (
V., =171y, -8.75y,, »,(0)=
y, =—10.03y, +0.43y, +0.035y,, i
Y, =832y, +1.71y, —1.12y,, v, (0 5.6)
y, = 1745y, +0.43y,+0.43y,, s ( |
y, =280y, +0.69y, +1.71y,—0.43y,+0.69y,,

y, =280y, v, —1.81y,, v (

Vi = =280y, +1.87y,, ¥:(0)=0.
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The problem is integrated to x, =321.8122 and stepsize #=0.01. The numerical

results for HIRES problem are given in Figures 5.16 — 5.18.

a) G2 method b) G3 method

Figure 5.16. Global error versus tolerance of (a) G2 and (b) G3 methods for HIRES
problem.
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Figure 5.17. Global error versus CPU time of (a) G2 and (b) G3 methods for HIRES
problem.
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Figure 5.18. Error estimation by using extrapolation versus tolerance of (a) G2 and (b)
G3 methods for HIRES problem.

Figure 5.16 shows the numerical results for HIRES problem by G2 and G3 methods. It
can be observed that the GMR scheme gives the lowest global error as the tolerance
become stringent for G2 method, whereas the HW scheme is giving the lowest global
error for G3 method. In terms of CPU time as shown in Figure 5.17, the MHW scheme
is the most efficient implementation strategies for both G2 and G3 methods where the

scheme is giving less computational time among the others.

Lastly, the numerical results for G2 and G3 methods are presented in terms of
error estimation that computed by using extrapolation technique (refer Figure 5.18).
The HW and MHW schemes are observed to give almost similar error estimation for
G2 and G3 methods towards the end of the iteration. However, we intended to choose
the HW scheme as the scheme that gives the best error estimation for both G2 and G3

methods in solving HIRES problem using variable stepsize setting.
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5.2 Summary on Numerical Results

Based on all the numerical results, it can be summarized that different problems gives
different numerical approximations depends on their stiffness ratio using different
implementation strategies. Apparently, the scheme proposed by Hairer and Wanner
(1999) or denoted as HW scheme gives the weaker yet less efficiency among the others
for the solution of stiff problems using variable stepsize setting. It can be concluded
that HW scheme is not recommended to be used with variable stepsize setting for Gauss
methods. This is due to the implementation that was investigated using 2-stage and 3-
stage Gauss methods. As it is concerned that even though the HW scheme is very
efficient in solving Radau IIA method, thus their efficiency is now proven to give an
efficient implementation limited to this method only, and thus not efficient when
implemented with other IRK methods such as 2-stage and 3-stage Gauss methods. It
might be a reason of the differences in eigenvalues where Radau IIA method only have
a single eigenvalue whereas the Gauss methods have a complex eigenvalue. Other than
that, Radau ITA method also satisfy the properties of A-stable and L-stable whereas
Gauss method only satisfied the A-stable property. The L-stable property only can be
found in Radau IIA method which contributes to the extra advantages. Furthermore, it
can be summarized that the MHW scheme is as efficient as GMR and HW schemes
when implemented with extrapolation technique even though the scheme is without any
transformation matrix 7. Table 5.2 shows the summary of the numerical results that was

obtained for the solution of G2 and G3 methods.
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Table 5.2

The most efficient implementation of real life stiff problems

Global error versus | Global error versus Error estlmqtlon
Problems tolerance CPU time (extrapolation)
versus tolerance
G2 G3 G2 G3 G2 G3
Robertson HW GMR GMR GMR MHW MHW
GMR
Kaps MHW MHW MHW MHW MHW HW
MHW
GMR GMR
Brusselator GMR HW GMR MHW HW HW
MHW
Oreganator GMR GMR MHW MHW HW HW
Van der Pol GMR MHW GMR MHW %1\3&1} HW
HIRES GMR HW MHW MHW HW HW

The summary on numerical results that was presented in Table 5.2 can also be illustrated

in terms of the error values for each scheme as shown in Table 5.3 and Table 5.4.

Table 5.3

Error values for each scheme in terms of global error versus tolerance (Tol = 10’13)

Problems Error values for each scheme (G2 method)
GMR HW MHW
Robertson 1.29314433252579¢-12 3.74256612837401e-13 1.7390072683974e-11
Kaps 6.15770636140043¢-16 3.2662438383076e-11 2.30607329869179¢-16
Brusselator 2.63775533058874¢-14 2.17300796281834e-13 1.10792004254562¢-11
Oreganator 7.75043188081224¢-10 1.6635073305158e-08 2.03212543216419¢-09
Van der Pol 3.33713731538484e-11 1.18690109433547¢-08 6.97397387928324e-11
HIRES 2.05399986098905¢-14 3.12527885208792¢-12 1.10873918922055¢-12
Problems Error values for each scheme (G3 method)
GMR HW MHW
Robertson 1.39703239165766¢-13 4.19109717497298e-13 4.44148181970094¢-10
Kaps 3.63261375116538e-12 2.90037660036354¢-12 1.61425130908426e-15
Brusselator 2.0222790867847¢-13 1.25607396694702¢-15 4.01943669423046¢-14
Oreganator 3.14428090124009¢-09 1.60922280152946¢-07 6.04281640138125¢-09
Van der Pol 2.25200245459964¢-10 2.58545366667904¢-09 1.62577421763854¢-10
HIRES 6.42259813206665¢-13 4.07593549004841e-13 2.29913913254419¢-12
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Table 5.4

Error values for each scheme in terms of error estimation by using extrapolation versus
tolerance (Tol = 107" )

Problems Error estimation values for each scheme (G2 method)
GMR HW MHW
Robertson 1.75203266981614¢-15 1.14736773620886¢-15 3.4656060859046¢-16
Kaps 2.61682076447296¢-19 1.74454717631531e-19 2.18068397039413¢-20
Brusselator 3.2937050688833¢-16 2.1771948760415¢-16 3.20996680442016¢-16
Oreganator 2.40844495663904¢-12 2.40844495663904¢-12 7.00129347860186¢-14
Van der Pol 6.97818870526122¢-15 1.74957147218309¢-14 1.13716563140937¢-14
HIRES 4.64167305834273¢-15 2.7952007132512¢-16 6.92498001638361e-16
Problems Error estimation values for each scheme (G3 method)
GMR HW MHW
Robertson 1.53367054264227¢-16 1.97431921063568¢-18 4.10416148056316¢-16
Kaps 2.34880926516375¢-20 6.55194163440414¢-20 3.70864620815329¢-21
Brusselator 4.43059600334046¢-18 9.81060543596816¢-18 1.58235571547874¢-18
Oreganator 2.54015182897119¢-14 2.54015182897119¢-14 2.54015182897119¢-14
Van der Pol 1.89882685857448¢-18 1.89882685857448¢-18 4.61984574691171e-15
HIRES 5.63961466719843¢-18 2.14606993911804¢-18 2.38595753801542¢-17

The error values that highlighted in red colour as shown in Table 5.3 and Table 5.4
indicates the lowest error obtained among the schemes for certain given tolerance,
Tol = 107". For the problem that highlighted more than one red colour indicates the

same error values obtained by the schemes.



CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

The main objectives of this thesis is to study the implementation schemes by Gonzélez-
Pinto et al. (1994, 1995) and Hairer and Wanner (1999) by using variable stepsize
setting that involving 2-stage (G2) and 3-stage (G3) Gauss methods. To know either the
implementation is correct or wrong, the first stage is to implement the schemes to Radau
ITA method of order 3. This method is chosen because it is proven to give a robust
implementation when implemented with Hairer and Wanner (1999) implementation
scheme using variable stepsize setting as mentioned previously. It is considered giving
a correct implementation if the numerical approximations satisfies the convergence test
and efficiency behaviour. Thus, the Matlab code is then being implemented using G2

and G3 Gauss methods.

Literature review suggested GMR scheme is constructed for the families of

Gauss methods while HW scheme is constructed for Radau ITA method. However,
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based on this research, it is shown that the standard implementation scheme with some
tuning using HW scheme known as modified HW (MHW) scheme that does not involve
any transformation matrix 7 can be as efficient as the HW and GMR schemes.
Therefore, this thesis proved that the transformation matrix 7 is not necessary and
although they can cause cheaper implementation, however the computational time is
marginally adjustable. Hence, the conclusions of the research are done by answering

the three objectives of this research.

6.1.1 Implementation Ideas

As mentioned previously, Hairer and Wanner (1999) implementation scheme is
specially designed for the 3-stage Radau method and it has been proven to give
robustness and satisfy the efficiency properties. For this research, an investigation
regarding researcher’s scheme has been investigated by using different implicit Runge-
Kutta (IRK) methods which are 2-stage (G2) and 3-stage (G3) Gauss methods. In the
research that was investigated by Gonzalez-Pinto et al. (1994, 1995), it has been proven
that the Gauss methods gives the least error than the diagonally-implicit Runge-Kutta
(DIRK) methods. In addition to that, they also found out that the performance of 3-stage
Radau method is poorer than the Gauss methods probably due to the one order less. In
other words, Gauss methods are particularly suitable for solving stiff systems because
they have higher order of convergence and good stability properties. This properties has
also been proven in the numerical results that was obtained for this research. The real
life problems that were investigated are the Robertson, Kaps, Brusselator, Oreganator,

Van der Pol and HIRES problems as explained in detailed in previous chapter. Based
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on the numerical results obtained, it can be summarized that all the scheme involved
which denote by GMR scheme for Gonzalez-Pinto et al. (1994, 1995), HW scheme for
Hairer and Wanner (1999) and the last one denote by modified HW (MHW) scheme

are suitable in solving certain real life problems by the G2 and G3 methods.

6.1.2 Best Error Estimation

The extrapolation technique has been implemented throughout the research to estimate
the best error estimation among the researcher’s schemes using six real life stiff
problems as described previously. From the numerical approximations obtained, it is
proven that the GMR scheme by using G2 method is giving the best error estimation
for Brusselator and Van der Pol problems, whereas for G3 method it is giving the best
error estimation for Kaps and Brusselator problems. For HW scheme, the G2 method is
giving the best error estimation for Brusselator, Oreganator, Van der Pol and HIRES
problems. The HW scheme by using G3 method is also giving the best error estimation
for all the problems except for the Robertson problem. The comparison also being
compared with the so-called MHW scheme without using any transformation matrix 7’
and it has been proven that the scheme is giving the best error estimation in solving
Robertson and Kaps problems by using G2 method meanwhile for the G3 method, the
Robertson, Kaps and Brusselator problems also giving the best error estimation. From
the numerical results obtained, it can be summarized that among these three schemes,
the HW scheme is giving the best error estimation because the scheme can solve almost

all real life stiff problems involved in this research.
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6.1.3 Most Efficient Implementation Strategies for Gauss Methods

In deciding the most efficient implementation strategy for Gauss methods, a comparison
has been made between the schemes by Gonzalez-Pinto et al. (1994, 1995) which is
denoted by GMR scheme, and the two types of Hairer and Wanner (1999)
implementation schemes which are denoted by HW and MHW schemes. The difference

between HW and MHW schemes are mentioned in previous chapter.

Based on all the numerical results obtained, it can be summarized that the GMR
scheme gives efficient implementation in solving Robertson, Brusselator and Van der
Pol problems using variable stepsize setting by the G2 method whereas for G3 method,
only Robertson problem gives the most efficiency behaviour. GMR scheme not only
satisfies the requirement of high accuracy and high efficiency in solving stiff problems
but also has lower computational cost. This clearly proved that the Robertson problem
is the most efficient stiff problem which implemented with GMR scheme because the

problem is satisfy the efficiency properties for both of G2 and G3 methods.

As mentioned previously, the HW scheme is specially designed for 3-stage
Radau ITA method and it has been proven to give a robust implementation. However,
for this research which implemented by using G2 and G3 methods, the scheme is not
giving good efficiency behaviour among the problems involved. None of the problems
involved are showing good efficiency behaviour. The reason might be because of the
differences in the eigenvalue involved since the 3-stage Radau IIA method is having a
single eigenvalue while the family of Gauss methods is consisting of complex

eigenvalue. Besides, the difference in stability behaviour might affected the numerical
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analysis. Generally, the Radau IIA method is satisfy the property of 4-stable and L-
stable while for the family of Gauss methods, it is only satisfy the property of A-stable.

L-stable is an extra advantages that only can be found in the family of Radau methods.

The scheme is also being compared with the so called MHW scheme. Even
though the MHW scheme is without using any transformation matrix 7, however the
scheme is proven to give efficient implementation for the solution of G2 and G3
methods and thus suitable in solving stiff problems using variable stepsize setting. For
the solution of G2 method, the scheme is efficient in solving Kaps, Oreganator and
HIRES problems while for the G3 method, it is efficient in solving all real life problems
except for the Robertson. This behaviour obviously shows that even though the MHW
scheme is without using any transformation matrix 7, the scheme is as efficient as GMR
and HW schemes. This research therefore recommended the use of MHW scheme in
solving stiff problems by the implicit Gauss methods as it is shown from all the
numerical experiments that MHW although requires a little computational time, the
scheme is considered to give the most stable behaviour and works as efficient as the

other two schemes.

6.2 Future Work

In this thesis, we have shown that the standard compensated summation is not a crucial
components that need to be implemented when the variable stepsize setting is used even

though it plays an important role in reducing the round-off errors. However, it will be



93

an interest to investigate in detailed the use of other compensated summation such as
Kahan’s compensated summation with implementation using other IRK methods.
Besides, the researchers also interested to conduct the implementation schemes using
higher order stages which implemented with different approach of Runge-Kutta
methods as introduced by various researchers in Section 2.3. This kind of approach is
then can be tested on more real life problems such as linear and nonlinear problems
with real and complex eigenvalues and also a few problems with nonlinear coupling

which implemented using variable stepsize setting.

Furthermore, the researcher also could extend the research based on other error
estimation such as symmetrization instead of extrapolation as described by Gorgey
(2015) in order to determine the error estimation by using variable stepsize setting.
Symmetrization is a technique that is use to dampens the oscillator behaviour caused
by the 2-stage (G2) and 3-stage (G3) Gauss methods. Symmetrizers can be used to
determine the error estimations for the Gauss method instead of extrapolation as it is
proven in Gorgey (2015) that, symmetrizers give less error estimation than by the local
extrapolation. Other than symmetrization and extrapolation, the error estimation also
can be determined by using any embedded method such as splitting and composition
methods as described by Blanes, Casas and Thalhammer (2019). This is the new error
estimator that proposed by them. In addition to these, this research can also explore
different types of problems such as delay differential equations as described by Roussel
(2019) as well as in Holder and Eichholz (2019). Lastly, the research also could be
extended to fuzzy differential equations as mentioned by Yu and Jafari (2019) and

Hussain and Abdul-Abbas (2019).
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APPENDIX A

The code below shows the MATLAB code for the implementation of 2-stage (G2)
Gauss method. The first part contains the main function of G2 method followed by the
nstep file which functioning as computing the updated y, and variable file which
compute the variable stepsize where the extrapolation technique is implemented. These
three parts is required to all schemes which denote as G2ZSNGMR (G2 with simplified
Newton for GMR), G2SNHW (G2 with simplified Newton for HW) and G2SNMHW
(G2 with simplified Newton for modified HW) schemes. The code for real life problems
is computed in different file. Lastly, the order plot file is to run the numerical
approximation.

1. MATLAB code for Gonzalez-Pinto et al. (1994, 1995)

Step 1 (G2SNGMR_ fix.m)

function [YY, trace,theta]=G2SNGMR fix(f,J,tol, x,y,h, theta)
maxit = 10;

al = 1/4;

a2 = 1/2;

b = sqrt(3)/6;

A = [al,al-b; al+b,all;

C = [a2-b;a2+b];

m = length(y);

s = length(c);

e = ones(s,1);

z = zeros(m,1);

7 = kron(e,z);

trace = 0;

Y = kron(e,y);

kappa = l.e-1;

Im = eye(m);

T = [sqrt(3)/6,0; sqrt(3)/3,sqgrt(3)/6];
F1 = f(x+c(1l)*h,vy);

F2 = f(x+c(2)*h,vy);

J1l = J(x+c (1) *h,vy);

J2 = J(x+c(2)*h,y);

DG = [Im - T(1,1)*h*J1,-T(1,2)*h*J2 ; -T(2,1)*h*J1l,Im - T(2,2)*h*J2];
G = [-A(1,1)*h*F1 - A(1l,2)*h*F2 ; -A(2,1)*h*F1 - A(2,2)*h*F2];

DZ = DG\ (-G) ;

sigma = norm(DZ, 'inf');

eta = theta/(l.-theta);

if (eta*sigma <= kappa*tol)
YY =Y + DZ;
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return;
end
72 = 7 + DZ;

for 1 = 1l:maxit
Z1 Z(1l:m);
722 = Z(m+1l:2*m);
F1 = f(x+c(l)*h,Z1l+y);
F2 f(x+c(2)*h,Z2+y) ;
G = [21 - A(1,1)*h*F1 - A(1,2)*h*F2 ; 22 - A(2,1)*h*F1 -
A(2,2)*h*F2];
DZ = DG\ (-G) ;
beta = norm(DZ, 'inf');
theta = beta/sigma;

if (theta >= 1)

trace = 1;
eta = 1.0;
break

end

if ((theta” (10-1i)/ (1-theta)) *beta > kappa*tol)
trace = 1;
break;

end

eta = theta/ (l-theta);
theta = (max(l.e-14,theta))”(0.8);
Z = 4 + DZ;
if (eta*beta)<=(kappa*tol)
break;
end
sigma = beta;
end
YY=[Z(l:m)+y ; Z(m+1l:2*m)+y];

Step 2 (nstep fixG2SNGMR.m)

function [y, trace,hout]=nstep fixG2SNGMR (f,J,tol,x0,y0,h0,n)
theta = 0.8;

m = length(y0(:));

hout = hO0;

trace = 1;

while trace

trace = 0;
x = x0;
y = y0(:);

for i=1:n

[Y, tr,theta] = G2SNGMR fix(f,J,tol,x,y,hout, theta);
if tr

trace = 1;

hout = hout/2;

break
end

y = y-sqgrt (3)*Y (l:m)+sgrt (3)*Y (m+1:2%*m) ;
x = x+hout;



end
end
if (hout < hO)
trace= 1;
end

Step 3 (variable_ fixG2SNGMR)
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function[xout, yout, h,errout]=variable fixG2SNGMR (f,J, tol,x0,xn,y0,h0)

p = 4;

if nargin<eé
tol = 1l.e-6;

end

x = x0;

y = y0(:);

err = (y-y0)/(2"p-1);
xout = x;

yout = y';

errout = err;

hmax = (xn-x)/16;
hmin = (xn-x)/(2.e8)
h = max ([h0, (xn-x)/1

while (x < xn) && (h >= hmin)

if (x + h > xn)

h = xn - x ;
end
[yl,trace,hout] = nstep fixG2SNGMR(f,J,tol,x,y,h,1);
if trace
h = hout;
end
[y2,~,~] = nstep fixG2SNGMR(f,J,tol,x,y,h/2,2);
err =(y2 - y1)/15;
delta = norm(err, '"inf');

tau = tol*max (norm(yl,'inf'),1.0);

if delta <= tau

x = x+h;
y = err+y2;
xout = [xout;x];
yout = [yout;y'];
errout = [errout;err];
if (delta ~= 0.0)
h = min ([hmax,4*h,0.9*h* (tau/delta)~(1/(p+1))1);
else
h = min([hmax, 4*h]) ;
end
else
h = h*max ([0.25,0.9* (tau/delta)~(1/(p+1)) 1)
end
end
if (x < xn)

end

disp ('SINGULARITY LIKELY G2.'")
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2. Matlab code for Hairer and Wanner (1999)

Step 1 (G2SNHW_fix.m)

function [YY, trace,theta]=G2SNHW fix(f,J,tol,x,y,h, theta)
maxit = 10;

al = 1/4;
a2 = 1/2;
b = sqgrt(3)/6;
A = [al,al-b;al+tb,al];
c = [a2-b ; a2+b];
m = length(y);
s = length(c);
e = ones(s,1);
z = zeros(m,1l);
72 = kron(e,z);
trace = 0;
kappa = 1l.e-1;
( .

Im = eye(m);

T = [sqrt(3)/6,0 ; sqgrt(3)/3,sqrt(3)/61];

Tinv = inv (T);

Ainv = inv (A);

S = Tinv*Ainv*T;

W = kron(Tinv, Im) *Z;
F1 = f(x+tc(1l)*h,vy);
F2 = f(x+tc(2)*h,y);
F = [F1;F2];

Jl = J(x+c(1)*h,y);
J2 = J(x+c(2)*h,y);

DG = [(1/h)*S(1,1)*Im - Tinv(l,1)*J1, (1/h)*S(1,2)*Im - Tinv(l,2)*J2;
(1/h)*S(2,1)*Im - Tinv(2,1)*J1, (1/h)*S(2,2)*Im - Tinv(2,2)*J2];

G = (1/h)*kron(S,Im)*W - kron(Tinv,Im)*F;
DW = DG\ (-G) ;
sigma = norm(DW, 'inf');

eta = theta/(l.-theta);
if (eta*sigma <= kappa*tol)

YY = Y + DW;
return;
end
W = W+ DW;
for 1 = 1l:maxit
Wl = W(l:m);
W2 = W(m+1:2*m) ;
W = [Wl;W2];

TI = kron (T, Im)*W;



end

TI =

YY

F1 = f(x+c(1)*h,TI(1l:m)+y);

F2 = f(x+c(2)*h,TI (m+1:2*m) +y) ;

F = [F1;F2];

G = (1/h)*kron(S,Im)*W-kron (Tinv, Im)*F;

DW = DG\ (-G) ;
beta = norm(DW, 'inf');
theta = beta/sigma;

if (theta >= 1)

trace = 1;
eta = 1.0;
break
end
if ((theta” (10-1i)/ (1-theta)) *beta > kappa*tol)
trace = 1;
break;
end

eta = theta/ (l-theta);
theta = (max(l.e-16,theta))”(0.8);
W =W + DW;
if (eta*beta)<=(kappa*tol)
break;
end
sigma = beta;

kron (T, Im) *W;
[TI(1l:m)+y;TI(m+1:2*m)+y];

Step 2 (nstep fixG2SNHW.m)

function [y, trace,hout]=nstep fixG2SNHW (f,J,tol,x0,y0,h0,n)
theta = 0.8;

m = length(y0(:));

hout = hoO;

trace = 1;

while trace

end
if

end

trace = 0;
x = x0;
y = y0(:);

for i=1:n

[Y,tr,theta] = G2SNHW fix(f,J,tol, x,y,hout, theta);
if tr

trace = 1;

hout = hout/2;

break
end

y = y-sqgrt (3)*Y (l:m)+sqgrt(3)*Y (m+1:2%*m);
x = x+hout;

end
(hout < hO0)
trace = 1;
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Step 3 (variable_ fixG2SNHW.m)
function [xout,yout,h,errout]=variable fixG2SNHW (f,J,tol,x0,xn,y0,h0)
p = 4;

if nargin<é
tol = 1.e-6;
end

x = x0;

y = y0(:);

err = (y-y0)/(2"p-1);
xout = x;

yout = y';

errout = err;

hmax = (xn-x)/16;

hmin =(xn-x)/(2.e8);

h = max ([hO, (xn-x)/1.e7]);

while (x < xn) && (h >= hmin)
if (x + h > xn)
h =xn - x;
end
[yl, trace,hout]=nstep fixG2SNHW(f,J,tol,x,y,h,1);
if trace
h = hout;
end
[y2,~,~]=nstep fixG2SNHW(f,J,tol,x,y,h/2,2);
err =(y2 - yl)/15;
delta = norm(err, 'inf');
tau = tol*max (norm(yl, 'inf'),1.0);
if delta <= tau

x = x+h;
y = err+y2;
xout = [xout;x];
yout = [yout;y'];
errout = [errout;err];
if (delta ~= 0.0)
h = min ([hmax,4*h,0.9*h* (tau/delta)~(1/(p+1))1]1);
else
h = min([hmax,4*h]);
end
else
h = h*max ([0.25,0.9* (tau/delta)” (1/ (p+1))1);

end
end
if (x < xn)

disp ('SINGULARITY LIKELY G2.')
end
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3. Matlab code for modified Hairer and Wanner (1999)

Step 1 (G2SNMHW_fix.m)

function [YY,trace,theta] = G2SNMHW(f,J,tol,x,vy,h,theta)
al = 1/4;
a2 = 1/2;

b = sqrt(3)/6;
A [al,al-b;al+b,all;
e} [a2-b;a2+b];

= length(y);
length(c);
= ones (s, 1)
, 1
z)

’

)7

’

m
s

e s
z zeros (m
7 = kron (e,
t

Y

I

race = 0;
= kron(e,vy);
m = eye(m);

Fl1 = f(x+c(1)*h,y);
F2 = f(x+c(2)*h,y);

Jl = J(x+c(1)*h,y);
J2 = J(x+c(2)*h,y);

Minv = inv ([Im-h*A(1,1)*J1,-h*A(1,2)*J2 ; -h*A(2,1)*J1,...
Im-h*A(2,2)*J2]);

Gl = h*A(1,1)*F1+h*A(1,2)*F2;
G2 = h*A(2,1)*F1+h*A(2,2) *F2;
G = [G1l;G2];
DZ = Minv*G;

temp = norm(DZ, 'inf');

eta = theta/ (l-theta);

if (eta*temp <= l.e-1*tol)
YY = Y+Dz;
return;

end

Z = 4+DZ;

maxit=10;
for 1 = 1l:maxit
zl = Z(1l:m);
z2 = Z(m+l:2*m);

F1 = f(x+c(l)*h,zl+y);
F2 = f(x+c(2)*h,z2+y);

Gl = h*A(1,1)*F1+h*A(1,2) *F2-2z1;
G2 = h*A(2,1)*F1+h*A(2,2) *F2-22;
G = [Gl;G2];
DZ = Minv*G;



delta norm (DZ, "inf'") ;
theta = delta/temp;
if (theta >= 1)
trace = 1;
eta=1.0;
break;
end

if ((theta”(10-i)/(l-theta))*delta > l.e-1*tol)

trace = 1;
break;
end
eta = theta/ (l-theta);
theta = (max(1.0e-16,theta))”(0.8);
7z = 74+DZ;
if (eta*delta <= l.e-1*tol)
break;
end
temp = delta;
end
YY = [y+Z(1l:m);y+Z(m+1:2*m)];

Step 2 (nstep fixG2SNMHW.m)

function [y, trace,hout] = nstep fixG2SNMHW(f,J,tol,x0,y0,h0,m)
n = length(y0(:));

hout = hO0;

trace = 1;

theta = 0.8;

while trace

trace = 0;
x = x0;
y = v0(:);
for 1 = 1:m
[Y,tr,theta] = G2SNMHW (f,J,tol, x,vy,hout, theta);
if tr
trace = 1;
hout = hout/2;
break;
end

y = y+sqgrt (3) *(Y(n+l:2*n)-Y(1l:n));
x = x+hout;
end
end

if (hout < hO)

trace = 1;
end

Step 3 (variable_ fixG2SNMHW.m)
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Function[xout, yout,h,errout]=variable fixG2SNMHW(f,J,tol,x0,xf,y0,h0)

’

1/ (p+1);

[

p
pow
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if nargin < 6
tol = 1l.e-6;

end

x = x0;

y = y0(:);

err = (y-y0)/(2"p-1);

hmax = (xf-x)/16;

hmin = (xf-x)/2.e8;

h = max([hO, (xf-x)/1.e7]):;
xout =x;

yout = y';

errout = err;

while ((x < xf) && (h >= hmin))
if x+h > xf, h = xf-x; end

[yl, trace,hout] = nstep fixG2SNMHW(f,J,tol,x,y,h,1);
if trace, [h,hout]; h= hout; end
[y2,~,~] = nstep fixG2SNMHW (f,J,tol,x,y,h/2,2);
err = (y2-y1l)/15;
delta = norm(err, 'inf');
tau = tol*max([norm(y, 'inf'),1.0]);
if (delta <= tau)
x = x+h;
y = y2+err;
xout = [xout;x];
yout = [yout;y'];
errout = [errout;err];
if (delta ~= 0.0)
h = min([hmax,4*h,0.9*h* (tau/delta) “pow]) ;
else
h = min([hmax, 4*h]) ;
end
else
h = h*max ([0.25,0.9* (tau/delta) "pow]) ;
end

end
if (x < xf)

disp ('SINGULARITY LIKELY G2.'")
end

4. Matlab code for real life problems (problem.m)
function [f,J,to0l,x0,xn,y0,h0] = problem(problem)
tol=1l.e-7;

switch (problem)

case 'PR' $prothero robinson
g=-10000;
f=Q@ (x,y) (q*y+cos (x) ~g*sin (x)) ;
J=@(x,y) (q);
x0=0;
xn=>5;
h0=0.001;

y0=0;



case

case

case

case

case

'VDP'
eps=1l.e-3;
(
(

f
J=
X

@
@(x,y)
0=0

%van de pol

X, Y) ((1-y (1

[y(2); ((1
[0 —2*y (1) *y (2

’
P1i (=

’

xn=5;
h0=0.01;

y0=

'ROBER'
=0 (x,

J=€ (x,y) ([-0.

[2;01;

%$robertson
y) ([-0.04*y (1
0.04*y (1)-10%4*
(3.e7)*y(2)"2]);

04,10%4*y
0.04, (-1074) *y(3) -
0, (6.e7)*y(2),0]);

x0=0;
xn=10;
h0=0.01;

yO0=

[1;0;01;

'HIRES'

=0 (x,

J=Q(x,y) ([

y) ([-1.71*y(
1.71%y (1)
-10.03*y
8.32%y (2
-1.745%y
-280*y (6)
0.43%y (6)+0.69%y (7
280*y (6) *y (8)
-280*y (6)

(3)+0.43*y (4
)+1.71%y (3)
(5)+0.43*y

) "2)*

(3),
(6.e7)*

Y(2)—Y(l
1) /eps,

)+1074*y
y(2)*y(3) -

1)+0.43*y
-8.75*y(2); ...
)+0.035*y (5
-1.12*
(6)+0.43*y (7
*y(8)+0.69*y
)i ..
-1.81*y (7
*y (8)+1.81*y (7
-1.71,0.43,8.32,0,0,0,0,0; ...

1.71,-8.75,0,0,0,0,0,0;

,8
ror 14
14
14 ,O,280*y
,0,-280%*

(8)

0
0
0
0
0 y(8),

3

0,0
,0,0,0.
,0,0,0
,0,0,0

4 4

x0=0;

xn=321.8122;

h0=0.01;
[1;0;0;0;0;0;0;,0.00571;

y0=

'KAPS'

q

yO

x0 =

Xn

hOo =

'BRUS'
f=Q (x
J=0@ (x

@(x
@(x

-10000;
)([(q-2)*y(1)
) ([ (g-2)
[1 1];
0;
5;
0.01;

$brusselator
y) ([1 +(y(1)"2)
y) ([2*y (1) *y (2)

x0=0;
xn=10;

*y(2)
-4,y (1)

- g*y(2)
,—2*q*y (2) ;

- 4*y (1)
"2

(8)

(

1074*y
v(2),

(2) +8.32%y

(2)*y (3);

3.e7)

v(4);...

-0.43,0.69,-280%
,-1.81,280%y (6
1.81,-280%

1,-1 - 2xy(2)]1);

)7 . ..
) 1)

-10.03,0.43,0.035, o o 0;
2,1.71,-1.12,0,0,0,0;

,-1.745,0.43,0.43,0,
69,1.71,-280%y

y (1)

;3 - 2%

(2) ;...
-10"4*y

)i ..
(4)+1.71*y (5) -

3%y

)5 ...

(

y (1

1) -
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)) /epsl);
(1-y (1

2)/eps])

*y(2)72; ...

(2) ;...

(3)+0.0007;

v(6);...

)i
y(6)1);

(y(1)r2)*y(2)1);
) *y(2),-y(1)"2]);
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y0=[1.5;31;
h0=0.01;
% n=100;
case 'OREG' %oreganator

f=0(x,y) ([77.27*(y(2)+y (1) *(1-y (1) *8.375*10" (-6) -
(1/77.27)* (y(3) = (1+y (1)) *y(2)); 0.161*(y(1

J=Q@(x,y) ([77.27-2*77.27*y (1) *8.375*10"(-6) - 77.27*y(2),
77.27 = 77.27*y(1),0 ; -y(2)/77.27,-1/77.27 -
y(1)/77.27,1/77.27 ; 0.161,0,-0.16171);

x0 = 0;

y0 = [1;2;3];
xn = 30;

hO = 0.01;

5. Order plot to run the data (order_testproblem.m)

clearvars
clc

[f,0,t0l,x0,xn,y0,h0] = problem('ROBER') ;

n = (xn-x0)/h0;

y = v0;

nit = 8;

m = length(y);

Tol = zeros(nit,1);
Yl = zeros (nit,m);
Cl = zeros(nit,1);

LE1l = zeros(nit,1);

errl = zeros(nit,m);
Lerroutl = zeros(nit,1);
Y2 = zeros(nit,m);

C2 = zeros(nit,1);

LE2 = zeros(nit,1);

err?2 = zeros(nit,m);
Lerrout?2 = zeros(nit,1);
Y3 = zeros(nit,m);

C3 = zeros(nit,1);

LE3 = zeros(nit,1);

err3 = zeros(nit,m);
Lerrout3 = zeros(nit,1);
H = zeros(nit,1);

rep = 30;

for i=1l:nit
tic
for j=l:rep

[xoutl, youtl, houtl,erroutl]=variable fixG2SNGMR (f,J,tol,x0,xn,y0,h0);
end



cpl=toc;

tic
for j=l:rep
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[xout2, yout2, hout2, errout2]=variable fixG2SNHW (f,J,tol,x0,xn,y0,h0);

end
cp2=toc;

tic
for j=l:rep

[xout3, yout3, hout3, errout3]=variable fixG2SNMHW(f,J,tol,x0,xn,y0,h0);

end

end
cp3=toc;

Y1(i,:)=youtl (end);
Cl(i)=cpl;

Y2 (i, :)=yout2 (end);
C2 (1) =cp2;

Y3 (i, :)=yout3(end);
C3(1)=cp3;

errl (i, :)=erroutl (end) ;
err2 (i, :)=errout2 (end) ;
err3 (i, :)=errout3(end);
Tol (i) = tol;

tol = tol/10;

H(i)=hO;
h0=h0/2;
n=2*n;

if i==
disp('~Iteration
elseif i==
disp('~Iteration
elseif i==
disp('~Iteration
elseif i==
disp('~Iteration
elseif i==
disp('~Iteration
elseif i==
disp('~Iteration
elseif i==7
disp('~Iteration
elseif i==
disp('~Iteration
end

yexact=Y1l (nit, :);

1~");
2~");
3~1)
4~');
5~');
6~"');
T~")
8~");
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yexactl=Y2 (nit, :);
yexact2=Y3 (nit, :);

El=abs (Yl-kron (ones(nit, 1), yexact));
E2=abs (Y2-kron (ones (nit, 1), yexactl));
E3=abs (Y3-kron (ones(nit, 1), yexact?2))

’

for i=1l:nit
LE1l (i)=norm(E1l(i,:));
LE2 (i)=norm(E2 (i, :));
LE3(i)=norm(E3(i,:));
end

LTol=Tol;

LC1=(Cl/rep);
LC2=(C2/rep) ;
LC3=(C3/rep);

yexact=errl (nit, :);
yexactl=err2 (nit, :);
yexact2=err3(nit, :);

erroutl=abs (errl-kron(ones(nit,1),yexact))/15;
errout2=abs (err2-kron(ones (nit, 1), yexact))/15;
errout3=abs (err3-kron(ones (nit, 1), yexact))/15;

for i=1l:nit
Lerroutl (i)=norm(erroutl (i, :));
Lerrout2 (i)=norm(errout2 (i, :));
Lerrout3 (i)=norm(errout3 (i, :));
end

figure (1)

loglog (LTol,LELl, 'bx-");

hold on

loglog (LTol,LE2, 'ro-");

hold on

loglog (LTol,LE3, 'mv-");

legend ('GMR scheme', "HW scheme', '"Modified HW scheme');
xlabel ('\fontsize{l4}Tolerance');

ylabel ('"\fontsize{14}||Global Error||"');
title('\fontsize{14}ROBERTSON")

grid on

figure (2)

loglog (LC1,LE]Ll, "bx-");

hold on

loglog (LC2,LE2, "ro-");

hold on

loglog (LC3,LE3, 'mv-");
legend ('GMR scheme', "HW scheme', '"Modified HW scheme');
xlabel ('\fontsize{14}CPU Time');

ylabel ('"\fontsize{14}||Global Error||"');
title('\fontsize{14}ROBERTSON")

grid on

figure (3)

loglog (LTol,Lerroutl, 'bx-");
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hold on

loglog (LTol, Lerrout2, 'ro-");

hold on

loglog (LTol,Lerrout3, 'mv-");

legend ('GMR scheme', "HW scheme', '"Modified HW scheme');
xlabel ('\fontsize{l4}Tolerance');

ylabel ('"\fontsize{14}||Error Estimation]||");
title('\fontsize{14}ROBERTSON")

grid on
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APPENDIX B

The code below shows the MATLAB code for the implementation of 3-stage (G3)
Gauss method. The first part contains the main function of G3 method followed by the
nstep file which functioning as computing the updated y, and variable file which
compute the variable stepsize where the extrapolation technique is implemented. These
three parts is required to all schemes which denote as G3SNGMR (G3 with simplified
Newton for GMR), G3SNHW (G3 with simplified Newton for HW) and G3SNMHW
(G3 with simplified Newton for modified HW) schemes. The code for real life problems
is computed in different file. Lastly, the order plot file is to run the numerical
approximation.

1. MATLAB code for Gonzalez-Pinto et al. (1994, 1995)

Step 1 (G3SNGMR_fix)

function [YY, trace,theta] = G3SNGMR fix(f,J,tol,x,y,h,theta)

A = [5/36, 2/9-sqrt(15)/15, 5/36-sqrt(15)/30;...
5/36+sqrt (15) /24, 2/9, 5/36-sqrt(15)/24;...
5/36+sqrt (15) /30, 2/9+sqrt(15)/15, 5/36];

c = [0.5-sqrt(15)/10;1/2;0.5+sqgrt (15)/101;

trace = 0;

m = length(y);
s = length(c);
e = ones(s,1);
z = zeros(m,1l);
72 = kron(e,z);
Y = kron(e,y);

T = [0.1190762649202001,-0.01352480890549548,0.002955703944789629; ...
0.2567321613764653,0.2864264722250291,- 0.008257284502425157; ...
0.2617169889707876,0.5210947821158048,0.2027174624121108];

J1=J (x+c (1) *h,y);
J2=J (x+c(2) *h,vy);
J3=J (x+c (3) *h,y);

Fl=f (x+c (1) *h,v);
F2=f (x+c(2)*h,vy);
F3=f (x+c(3) *h,v);

DG = [eye(m)-h*T(1,1)*J1,-h*T(1,2)*J2,-h*T(1,3)*J3;...
-h*T(2,1)*J1l,eye(m)-h*T(2,2)*J2,-h*T(2,3)*J3;...
-h*T(3,1)*J1,-h*T(3,2)*J2,eye (m)-h*T(3,3)*J3];

Gl = - h*(A(1,1)*F1+A(1,2)*F2+A(1,3)*F3);
G2 - h*(A(2,1)*F1+A(2,2) *F2+A(2,3) *F3) ;
G3 - h*(A(3,1)*F1+A(3,2) *F2+A(3,3) *F3) ;



G = [G1l;G2;G3];
DZ = DG\ (-

temp = norm(DZ, 'inf');

eta = theta/(l.-theta);

if (eta*temp <= l.e-1*tol)
YY = Y+Dz;
return;

end

72 = 72+D7Z;

maxit=10;

for i = l:maxit
zl = Z(1l:m);
z2 = Z(m+l:2*m);
z3 = Z(2*mt1l:3*m);

F1 = f(x+c(1)*h,zl+y);
F2 = f(x+c(2)*h,z2+y);
F3 = f(x+c(3)*h,z3+y);

Gl = -( h*(A(1,1)*F1+A(1,2)*F2+A(1,3) *F3));
G2 = - (h *(A(Z, Yy *F1+A(2,2) *F2+A (2,3) *F3)) ;
G3 = - (h*(A(3,1)*F1+A(3,2) *F2+A(3,3) *F3) ) ;
G = [Gl G2; G3]
DZ = DG\ (-G) ;

delta = norm(DZ, 'inf');
theta = delta/temp;
if (theta >= 1)
trace = 1;
eta=1.0;
break;
end

if ((theta”(10-1i)/(l-theta))*delta > l.e-1*tol)

trace = 1;
break;
end
eta = theta/ (l-theta);
theta = (max(1.0e-16,theta))”~(0.8);
Z = 4+DZ;
if (eta*delta <= l.e-1*tol)
break;
end
temp = delta;
end
YY = [y+Z2(1l:m);y+Z(m+1:2*m); y+Z (2*m+1:3*m) ];

Step 2 (nstep_ fixG3SNGMR.m)

function [y, trace,hout]=nstep fixG3SNGMR (f,J,tol,x0,y0,h0,n)

m = length(y0(:));
hout = hoO;

trace = 1;

theta = 0.8;
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while trace

trace = 0;
x = x0;
y = y0(:);

for i=1l:n

[Y,tr,theta] = G3SNGMR fix(f,J,tol,x,y,hout,theta);
if tr
trace = 1;
hout = hout/2;
break
end
y = —y+(1/3)*(5*Y(1:m)-4*Y (m+1:2*m) +5*Y (2*m+1:3*m) ) ;
x = x+hout;
end
end
if (hout < hO)
trace = 1;
end

Step 3 (variable fixG3SNGMR.m)

function
[xout, yout, h,errout]=variable fixG3SNGMR (f,J,tol,x0,xn,y0,h0)

p = 6;

pow = 1/ (p+1);

if nargin < 6
tol = 1.e-6;

end

x = x0;

y = y0(:);

err = (y-y0)/(2%p-1);

hmax = (xn-x)/16;

hmin = (xn-x)/2.e8;

h = max([hO, (xn-x)/1.e7]);
xout = x;

yout = y';

errout = err;

while ((x < xn) && (h >= hmin))
if x+h > xn, h = xn-x; end
[yl, trace,hout] = nstep fixG3SNGMR(f,J,tol,x,y,h,1);
if trace, [h,hout]; h= hout; end
[y2,~,~] =nstep fixG3SNGMR(f,J,tol,x,y,h/2,2);
err = (y2-yl)/63;
delta = norm(err, 'inf');
tau = tol*max([norm(y, 'inf'),1.0]);
if (delta <= tau)
x = x+h;
y = y2+err;
xout = [xout;x];
yout = [yout;y'l]l;
errout = [errout;err];
if (delta ~= 0.0)
h = min([hmax,4*h,0.9*h* (tau/delta) “powl]);



else
h = min([hmax, 4*h]);
end
else
h = h*max ([0.25,0.9* (tau/delta) “pow]) ;
end
end
if (x < xn)

disp ('SINGULARITY LIKELY
end

G3.")

2. Matlab code for Hairer and Wanner (1999)

Step 1 (G3SNHW_fix.m)

2/9 ,

function [YY, trace,theta]=G3SNHW fix(f,J,tol,x,y,h, theta)

maxit = 10;

al = sqrt(15)/15;

a2 = sqrt(15)/30;

a3 = sqrt(15)/24;

b = sqgrt(15)/10;

A= [5/36 , 2/9 - al , 5/36 - a2 ; 5/36 + a3 ,

5/36 + a2 , 2/9 + al , 5/36]1;

cC =11/2 - b ; 1/2 ; 1/2 + bl;

m = length(y);

s=length(c);

e = ones(s,1);

z = zeros(m,1l);

7 = kron(e,z);

Y = kron(e,vy);

trace = 0;

kappa = 1l.e-1;

Im = eye(m);

T = [0
0
0.2617169889707876,0.5210947821158048,0.20271746241211087];

Tinv = inv (T);

Ainv = inv (A);

S = Tinv*Ainv*T;

W = kron(Tinv, Im) *Z;

F1 = f(x+c(1l)*h,vy);

F2 = f(x+tc(2)*h,y);

F3 = f(x+c(3)*h,vy);

F = [F1;F2;F3];

Jl = J(x+c(1l)*h,vy);

J2 = J(x+c(2)*h,y);

J3 = J(x+c(3)*h,vy);
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5/36 - a3 ;...

.1190762649202001,-0.01352480890549548,0.002955703944789629; ...
.2567321613764653,0.2864264722250291,-0.008257284502425157; ...



DG = [(1/h)*S(1,1)*Im-Tinv (
Tinv (1,2)*J2, (1/h)*S(
(1/h)*S(2,1) *Im-Tinv (
Tinv(2,2)*J2, (1/h) *S(

(
(

1,1)*J1, (1/h) *S(1,2) *Im-
1,3) *Im-Tinv (1,3)*J3;...
2,1)*J1, (1/h) *S(2,2) *Im-
2,3)*Im-Tinv (2, 3) *J3; ...
3,1)
3,3)

14

4

(1/h)*S(3,1) *Im-Tinv
Tinv(3,2)*J2, (1/h) *S

*J1, (1/h)*S(3,2) *Im-
*Im-Tinv (3, 3) *J3];

14

14
G = (1/h)*kron (S, Im)*W-kron (Tinv, Im)*F;
DW = DG\ (-G) ;

sigma = norm(DW, 'inf');
eta = theta/(l.-theta);
if (eta*sigma <= kappa*tol)
YY = Y + DW;
return;
end
W = W+ DW;

for 1 = 1l:maxit
Wl = W(l:m);

W2 = W(m+1:2*m) ;
W3 = W(2*m+1:3*m) ;
W = [Wl,;W2;W3];
TI = kron (T, Im)*W;

F1 = f£f(x+c(1)*h,TI(1:m)+y);
F2 = £ (x+c(2)*h, TI(m+1:2*m)+y);

F3 = £(x+c(3)*h,TI(2*m+1:3*m)+y) ;
F = [F1;F2;F3];
G = (1/h)*kron(S,Im)*W-kron (Tinv, Im)*F;

DW = DG\ (-G) ;
beta = norm(DW, 'inf');
theta = beta/sigma;

if (theta >= 1)

trace = 1;
eta = 1.0;
break
end
if ((theta” (10-1i)/ (1-theta)) *beta > kappa*tol)
trace = 1;
break;
end

eta = theta/ (l-theta);

theta = (max(l.e-16,theta))”(0.8);

W =W + DW;

if (eta*beta)<=(kappa*tol)

break;

end

sigma = beta;
end
TI=kron (T, Im) *W;
YY=[TI(l:m)+y;TI(m+1:2*m)+y;TI(2*m+1:3*m)+y];
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Step 2 (nstep fixG3SNHW.m)

function [y, trace,hout]=nstep fixG3SNHW (f,J,tol,x0,y0,h0,n)
theta = 0.8;

m = length(y0(:));

hout = hoO;
trace = 1;

while trace

trace = 0;
x = x0;
y = y0(:);
for 1 = 1:n
[Y,tr,theta] = G3SNHW fix(f,J,tol,x,y,hout, theta);
if tr
trace = 1;
hout = hout/2;
break
end
y = —y+(5/3)*Y(1:m)-(4/3)*Y (m+1:2*m)+(5/3) *Y (2*m+1:3*m) ;
x = x+thout;
end
end
if (hout < hO)
trace = 1;
end

Step 3 (variable fixG3SNHW.m)
function [xout,yout,h,errout]=variable fixG3SNHW (f,J, tol,x0,xn,y0,h0)
P = 6;

if nargin<e6
tol = 1l.e-6;

end

x = x0;

y = y0(:);

err = (y-y0)/(2"p-1);

hmax = (xn-x)/16;

hmin = (xn-x)/2.e8;

h = max([hO0, (xn-x)/1.e7]);
xout =x;

yout = y';

errout = err;

while (x < xn) && (h >= hmin)
if (x + h > xn)
h =xn - x ;
end
[yl,trace,hout] = nstep fixG3SNHW(f,J,tol,x,y,h,1);
if trace
h = hout;
end



[y2,~,~] = nstep fixG3SNHW(f,J,tol,x,y,h/2,2);
err =(y2 - yl1)/63;
delta = norm(err, 'inf');

tau = tol*max (norm(yl, 'inf'),1.0);
if delta <= tau
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x = x+h;

y = err+y2;

xout = [xout;x];

yout = [yout;v']l;

errout = [errout;err];

if (delta ~= 0.0)

h = min ([hmax,4*h,0.9*h* (tau/delta)~(1/(p+1))]);
else
h = min([hmax, 4*h]);
end
else

h = h*max ([0.25,0.9* (tau/delta)~ (1/(p+1))]1);

end
end
if (x < xn)

disp ('SINGULARITY LIKELY G3.')
end

3. Matlab code for modified Hairer and Wanner (1999)

Step 1 (G3SNMHW_ fix.m)

function [YY, trace,theta] = G3SNMHW fix(f,J,tol,x,y,h,theta)
al = sqgrt(15)/15;

a2 = sqrt(15)/30;

a3 = sqrt(15)/24;

b = sqgrt(15)/10;

A = [5/36 , 2/9 - al , 5/36 - a2 ; 5/36 + a3 , 2/9 , 5/36 - a3
5/36 + a2 , 2/9 + al , 5/36]1;
c=1[1/2 -b ; 1/2 ; 1/2 + bl;

m = length(y);
s = length(c);
e = ones(s,1);
z = zeros(m,1l);
7 = kron(e,z);
trace = 0;

Y = kron(e,vy);

Im = eye(m);

Fl f(x+c (1) *h,vy);
F2 f(x+c(2)*h,vy);
F3 = f(x+c(3)*h,vy);

J1l = J(x+c(1l)*h,vy);
J2 J(x+c(2)*h,v);
J3 = J(x+c(3)*h,y);

Minv = inv([Im-h*A(1,1)*J1 , -h*A(1,2)*J2 , -h*A(1,3)*J3 ;...
-h*A(2,1)*J1 , Im-h*A(2,2)*J2 , -h*A(2,3)*J3 ;...
-h*A(3,1)*J1 , -h*A(3,2)*J2 , Im-h*A(3,3)*J3]);

7 oe e



Gl = h*A(1,1)*Fl+h*A(1,2)*F2+h*A (1, 3) *F3;
G2 = h*A(2,1)*F1+h*A(2,2) *F2+h*A (2, 3) *F3;
G3 = h*A(3,1)*F1+h*A(3,2) *F2+h*A (3, 3) *F3;

G = [Gl;G2;G3];
DZ = Minv*G;
temp = norm(DZ, 'inf');

eta = theta/ (l-theta);
if (eta*temp <= l.e-1*tol)

YY = Y+Dz;
return;
end
Z = 4+DZ;
maxit = 10;
for 1 = 1l:maxit
z1l = Z(1l:m);
z2 = Z(m+1:2*m) ;

z3 = Z(2*m+1:3*m) ;

Fl1 = f(x+c(1l)*h,zl+y);
F2 = f(x+c(2)*h,z2+y);
F3 = f(x+c(3)*h, z3+y);

Gl = h*A(1,1)*F1+h*A(1,2)*F2+h*A(1,3) *F3-2z1;
G2 = h*A(2,1) *F1+h*A(2,2) *F2+h*A(2,3) *F3-22;
G3 = h*A(3,1)*F1+h*A(3,2) *F2+h*A (3, 3) *F3-23;

G = [G1l;G2;G3];
DZ = Minv*G;
delta = norm(DZ, 'inf');

theta = delta/temp;
if (theta >= 1)

trace = 1;
eta=1.0;
break;
end
if ((theta” (10-i)/(l-theta))*delta > 1l.e-1*tol)
trace = 1;
break;

end
eta = theta/ (l-theta);
theta = (max(1.0e-16,theta))”~(0.8);
Z = 4+DZ;
if (eta*delta <= l.e-1*tol)
break;
end
temp = delta;
end
YY = [Z(l:m)+y;Z(m+1:2%*m)+y;Z(2*m+1:3*m)+y];
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Step 2 (nstep fixG3SNMHW.m)

function [y, trace,hout] = nstep fixG3SNMHW(f,J,tol,x0,y0,h0,m)

n = length(y0(:));

hout = hoO;
trace = 1;
theta=0.8;

while trace

trace = 0;
x = x0;
y = y0(:);
for 1 = 1:m
[Y, tr,theta] = G3SNMHW fix(f,J,tol,x,y,hout, theta);
if tr
trace = 1;
hout = hout/2;
break;
end
y = —y+(5/3)*Y(1:n)=-(4/3)*Y (n+1:2*n)+(5/3)*Y (2*n+1:3*n) ;
x = x+hout;
end

end

if (hout < hO)
trace = 1;
end

Step 3 (variable fixG3SNMHW.m)

function
[xout, yout, h,errout] = variable fixG3SNMHW (f,J,tol,x0,xn,y0,h0)

p=6;
pow = 1/ (p+1);
if nargin < 6

tol = 1.e-6;
end
x = x0;
y = y0(:);
err = (y-y0)/(2%p-1);
hmax = (xn-x)/16;
hmin = (xn-x)/2.e8;
h = max([hO, (xn-x)/1.e7]);
xout = x;
yout = y';
errout = err;

while (x < xn) && (h >= hmin)
if (x+h > xn)
h = xn-x;
end
[yl,trace,hout] = nstep fixG3SNMHW(f,J,tol,x,y,h,1);
if trace
h = hout;
end
[y2,~,~] = nstep fixG3SNMHW (f,J,tol,x,y,h/2,2);
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err = (y2-yl)/63;
delta = norm(err, 'inf');

tau = tol*max(norm(y, 'inf'),1.0);
if (delta <= tau)
x = x+h;
y = y2+err;
xout = [xout;x];
yout = [yout;y'];
errout = [errout;err];
if (delta ~= 0.0)
h = min([hmax,4*h,0.9*h* (tau/delta) “pow]) ;
else
h = min([hmax,4*h]) ;
end
else
h = h*max ([0.25,0.9* (tau/delta) “pow]) ;
end
end

if (x < xn)
disp ('SINGULARITY LIKELY G3."'")
end

4. Matlab code for real life problems (problem.m) is just similar to the one used for
G2 method.

5. Order plot to run the data (order_testproblem.m)

clearvars
clc

[f,T0,t0ol,x0,xn,v0,h0] = problem('ROBER");

n (xn-x0) /h0;

y = yO0;

nit = 8;

m = length(y);

Tol = zeros(nit,1);

o+

Yl=zeros(nit,m);
Cl=zeros(nit,1);
LEl=zeros(nit,1);
errl=zeros(nit,m);
Lerroutl=zeros(nit,1);

Y2=zeros (nit,m);
C2=zeros (nit,1);
LE2=zeros (nit,1);
err2=zeros (nit,m);
Lerrout2=zeros (nit,1);

Y3=zeros (nit,m);
C3=zeros (nit,1);
LE3=zeros (nit,1);
err3=zeros (nit,m);
Lerrout3=zeros(nit,1);
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H=zeros (nit,1);
rep=1;

for i=l:nit
tic
for j=l:rep

[xoutl, youtl, houtl,erroutl]=variable fixG3SNGMR(f,J,tol,x0,xn,y0,h0);
end
cpl=toc;

tic
for j=l:rep
[xout2, yout2, hout2, errout2]=variable fixG3SNHW (f,J,tol,x0,xn,y0,h0);
end
cp2=toc;
tic
for j=l:rep
[xout3, yout3, hout3, errout3]=variable fixG3SNMHW(f,J,tol,x0,xn,y0,h0);

end
cp3=toc;

Y1 (i, :)=youtl (end);
Cl(i)=cpl;

Y2 (i, :)=yout2 (end);
C2 (1) =cp2;

Y3 (i, :)=yout3(end);

C3(1)=cp3;

errl (i, :)=erroutl (end) ;
err2 (i, :)=errout2 (end) ;
err3 (i, :)=errout3(end);
Tol (i) = tol;

tol = tol/10;

H(i)=hO;
h0=h0/2;
n=2*n;

if i==
disp('~Iteration 1~");
elseif i==2
disp('~Iteration 2~'");
elseif i==
disp('~Iteration 3~');
elseif i==4
disp('~Iteration 4~");
elseif i==
disp('~Iteration 5~'");
elseif i==
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disp('~Iteration 6~'");

elseif i==
disp('~Iteration 7~");
elseif i==
disp('~Iteration 8~'");
end

end

yexact=Y1l (nit, :);
yexactl=Y2 (nit, :);
yexact2=Y3 (nit, :);

El=abs (Yl-kron (ones (nit, 1), yexact));
E2=abs (Y2-kron (ones (nit, 1), yexactl));
E3=abs (Y3-kron (ones (nit, 1), yexact2))

’

for i=1:nit
LE1 (i)=norm(E1l (i, :));
LE2 (i)=norm(E2 (i, :));
LE3 (i)=norm(E3(i,:));
end

LTol=Tol;

LC1=(Cl/rep);
LC2=(C2/rep) ;
LC3=(C3/rep);

yexact=errl (nit, :);
yexactl=err2(nit, :);
yexact2=err3(nit, :)

’

erroutl=abs (errl-kron(ones(nit, 1), yexact))/63;
errout2=abs (err2-kron (ones (nit, 1), yexact))/63;
errout3=abs (err3-kron(ones (nit, 1), yexact))/63;

for i=1l:nit
Lerroutl (i)=norm(erroutl (i, :));
Lerrout2 (i)=norm(errout2 (i, :));
Lerrout3 (i)=norm(errout3 (i, :));
end

figure (1)

loglog (LTol,LELl, 'bx-");

hold on

loglog (LTol,LE2, 'ro-");

hold on

loglog (LTol,LE3, 'mv-");

legend ('GMR scheme', "HW scheme', '"Modified HW scheme');
xlabel ('\fontsize{l4}Tolerance');

ylabel ('"\fontsize{14}||Global Error||"');
title('\fontsize{14}ROBERTSON")

grid on

figure (2)

loglog (LC1,LEL, 'bx-");
hold on
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loglog (LC2,LE2, 'ro-");

hold on

loglog (LC3,LE3, 'mv-");

legend ('GMR scheme', 'HW scheme', '"Modified HW scheme');
xlabel ('\fontsize{14}CPU Time"') ;

ylabel ('"\fontsize{14}||Global Error||"');
title('\fontsize{14}ROBERTSON")

grid on

figure (3)

loglog (LTol,Lerroutl, 'bx-");

hold on

loglog (LTol, Lerrout2, 'ro-");

hold on

loglog (LTol, Lerrout3, 'mv-");

legend ('GMR scheme', 'HW scheme', '"Modified HW scheme');
xlabel ('\fontsize{l4}Tolerance');

ylabel ('"\fontsize{14}||Error Estimation]||");
title('"\fontsize{14}ROBERTSON")

grid on





