
FABRICATION OF GRAPHENE OXIDE/TITANIUM 
DIOXIDE HYBRID MATERIAL FOR SOLAR 

CELL AND MEMBRANE APPLICATION 

MUQOYYANAH 

UNIVERSITI PENDIDIKAN SULTAN IDRIS 

2019 



FABRICATION OF GRAPHENE OXIDE/TITANIUM DIOXIDE HYBRID 
MATERIAL FOR SOLAR CELL AND MEMBRANE APPLICATION 

 
 
 
 
 
 
 
 

 
MUQOYYANAH 

 
 
 
 
 
 
 
 
 

THESIS SUBMITTED IN FULFILLMENT OF THE REQUIREMENT FOR THE 
DEGREE OF DOCTOR OF PHILOSOPHY  

(PHYSICS) 
 
 
 
 
 
 
 
 
 

FACULTY OF SCIENCE AND MATHEMATICS 
UNIVERSITI PENDIDIKAN SULTAN IDRIS 

2019 



I Irurvrnsrrr
$foun;r<5rv
Surrarq lDRtrs

UPSYIPS-3/BO 32
Pind : 00 m/s: 1/1

Please tick ({)

Proiect Paper

Maslers by Research
Master by Mixed Mode

PhD

INSTITUTE OF GRADUATE STUDIES

DECLARATION OF ORIGINAL WORK

l'his declaration is made on r t e .....1.?.........day of....9.Y.-L.Y.....20..1.?..,

I,

Studenfs Declaration:

Muop"aea.,,$ , ?"oszoozrrr , 4a",rU5 o+ Srris q.A l0al.\^crnafiicr [PLEASE

the workINDICATE STUDENT'S NAME, MATRIC NO. AND FACULTYI hereby declare that

entitled

is my

original work, I have not Lop ed from any other students'work or from any other sources except

where due reference or acl nowledgement is made explicitly in the text, nor has any part been

written for me by another p( rson.

1-_arLt

Signature of the student

Supervisor's Declaradon:

?.os . D.. S,ocior'.i Ab" Bato"
ISUPERVISOR'S NAME) hereby certifies that

the work entitled Sa\ocicaLton

ilole.ro.\ eo. So\qr Ct\\ *.A h0enLrq.rc Arp\icatro^

of Po"to" oF Pu\osop\ ( trq5s.t ) IPLEASE INDICATE

l'HE DEGREEJ, and the afore mentioned work, to the best of my knowledge, is the said student's

work.

ll.

rl JJ&-Y_:g_,9_

Date

o,1*z-zzzaff -----'-'---'--

/
Signature of the Supervisor

OR. SURIANI A;U IAXAR
prtfassor

Fhysics Demrtmcnt
Itqrtty cf Scirnc? I Mathcmatics
Universiti penliliken Sulten lOiis

So\orr Ce\\ qnA \Ae*l-q..e \ooleto\

Orc'At /'F+arnon Oto,adt \t



UPSI/IPS.3/BO 31

Pind.: 0'1 m/s.1/1

IJNrvrR5rrr
f l4Noro-rr5x
')LrLTlN lprus

,r.slJJ&i,&i{rf!ai*i 1,
sur.T^l{ rDRrs f l)Li{AT}t}N uNlv[*511v

INSTITUT PENGAJIAN SISI'YAZAH 
',NSTITUTE OF GRADUATE STUD'ES

BORANG PENGESAHAN PENYERAHAN TESIS'DISERTASI'LAPORAN KERTAS PROJEK
DECLARATION OF THESIS/DISSERTAflAN/PROJECT PAPER FORM

Tajuk I Title'. Tqbri.eloon E.q O;io\c I $t"r.,'"* O'o'fil.

No. Matrik lMatric No.'.

Saya I l:

Plbc'.A \0qtcrio^\ for Soloc Ce\ q.,A \qe$\o.o.,e AF?ti.qt\"n

? ,og;to222a

(Nama pelaiar / Studenf's Name)

mengaku membenarkan Tesis/{)isertasi/Laporan Kertas Projek (Kedoktoran/Sarjam). ini disimpan
di Universiti Pendidikan Sult.rn ldris (Perpustakaan Tuanku Bainun) dengan syarat-syarat
kegunaan seperti berikut:-
acknowledged that Universiti Pend dikan Sultan idns (Tuanku Bainun Library) reserves the right as foilows.-

1. TesislDisertasi/Laporan (ertas Projek ini adalah hak milik UPSI.
Ihe fhesis is the propefty i 'f lliiv"r"iti Pendidikan Sultan ldris

2. Perpustakaan Tuanku Bainun dibenarkan membuat salinan untuk tujuan rujukan dan
penyelidikan.
Tuanku Bainun Library hat the right to make copies for the purpose of reference and research.

3. Perpustakaan dibenark;rn membuat salinan Tesis/Disertasi ini sebagai bahan pertukaran
antara lnstitusi Pengajiar Tinggi.
The Library has the right k make copies of the thesis for academic exchange.

4. Sila tandakan ( { ) bagi lrilihan kategori di bawah / Please tick ( 't 1 from the categones betow;-

Mengandungi maklumat yang berdarjah keselamatan atau
kepentingan Malaysia seperti yang termaktub dalam Akta Rahsia
Rasmi 1972. I Contains confidential information under the Official
Secret Act 1972

Mengandungi maklumat terhad yang telah ditentukan oleh
organisasiibadan di mana penyelidikan ini dijalankan. I Contains

, ,;:r:ir::"information as specified by the orsanization where research

I I noeK TERHAD aPEN AccEss
g

=--atuta-
(Tandatangan Penyelia I Signature of Supervisor)
& (Nama tQm,BnEm,/d$ryfqf6Qfficiat Stam p)

Profassor
Phvsics DePertmtnt

Faculty of Science & Mathematics
Universiti Pendidikan Sultan ldris

Catatan: Jika Tesis/Disertasi ini St,LlT @ TERHAD, sila lampirkan surat daripada pihak berkuasaiorganisasi berkenaan
dengan menyatakan sekali sebab lan tempoh laporan ini perlu dikelaskan sebagai SULIT dan TERHAD.

Nofes: /f the thes,s ls CON/'IDENTAL or RESTRICTEa, please attach with the lefter from the related
authority/organization mentioning he period of confidentiality and reasons for the said confidentiality or restriction.

SULIT'COA'F'DENT'AL

TERHAD'RESTR'CTED

(Tandatangan Pelajar/ Signature)

Tarikh: t1 CquY 2or9



iv 
 

 

 

ACKNOWLEDGMENTS 

 

Foremost, praise to Allah SWT for giving me such a blessing to continue and finish my 
study. I would like to express my gratitude to my supervisor Prof. Dr. Suriani Abu 
Bakar for her support and patient guidance throughout my study as well as her 
motivation and experience sharing. Those are priceless and enlightened me to develop 
my skill. I would also like to thank my co-supervisor Assoc. Prof. Dr. Azmi Mohamed 
from Chemistry Department, UPSI and Dr. Mohamad Hafiz Mamat from Universiti 
Teknologi MARA (UiTM) for the advice, support, and kindness for giving me a 
permission to use their laboratory and equipments. 

 

Many thanks also to Assoc. Prof. Dr. Mohd. Khairul Ahmad from Microelectronic and 
Nanotechnology-Shamsuddin Research Centre (MiNT-SRC), Universiti Tun Hussein 
Onn Malaysia (UTHM) and Dr. Rosiah Rohani from Universiti Kebangsaan Malaysia 
(UKM) for letting me use the laboratory and equipments. Furthermore, many thanks to 
Dr. Mohd. Firdaus Malek from UiTM and Izzati Izni Yusoff, M.Sc. from UKM for the 
help and advice on my project. I would also like to express my appreciation to National 
Nanotechnology Directorate Division, Fundamental Research Grant Scheme, and 
TWAS-COMSTECH Join Research Grant for the financial support on my study. 

 

Many thanks to the staffs of Faculty Science and Mathematics, UPSI: Mr. Mohd. Faisal, 
Mr. Mohd. Hashimi, Mr. Ibrahim, Mr. Mohd. Zurin, and Mr. Bisyir Asfar for their help 
on my project. Special thanks to Dr. Hamdan Hadi Kusuma from Universitas Islam 
Negeri (UIN) Walisongo Semarang, Dr. Putut Marwoto and Dr. Siti Wahyuni from 
Universitas Negeri Semarang (UNNES) for their support on my study. Next, I would 
like to thanks to my lab mates in Nanotechnology Lab UPSI: Dr. Nordalila Abdul 
Rahman, Norhafizah Jusoh, M. Sc., Dr. Nurhafizah Md. Isa, Fatiatun, M. Sc., Khayri 
Zaid Z Al-Zalit, M. Sc., Ali Abdul Ameer Mohammed Al-Saadi, M. Sc., Tretya 
Ardyani, M. Sc., Nur Jannah Idris, ISMP, Rosmanisah Mohamat, ISMP, and Nur 
Amirah Jamaluddin, M. Sc. for the help, discussion, and kindness during my study. 

 

Last but not least, I dedicated this work to my Parents (paè and buè) and also my cousin 
Dr. Sulhadi, M. Si. who always supporting, encouraging, and convincing me to 
continue my study. Without their support and love, I am nothing and still stuck on the 
same level. May Allah bless us always. Aamiin. 

 

 



v 
 

  

 

ABSTRACT 

 

This study aimed to fabricate graphene oxide (GO)/titanium dioxide (TiO2) hybrid-
based material for dye-sensitized solar cells (DSSCs) and membrane separation 
applications. The electrochemical exfoliation assisted by customized triple-tail sodium 
1, 4-bis (neopentyloxy)-3-(neopentyloxycarbonyl)-1, 4-dioxobutane-2-sulphonate 
(TC14) and commercially available single-tail sodium dodecyl sulphate (SDS) 
surfactants were used to synthesize GO with water-based electrolyte and N, N-
dimethylacetamide (DMAc) as solvents. The chemical reduction process utilizing 
hydrazine hydrate was then performed to produce reduced GO (rGO) which further 
hybridized with multi-walled carbon nanotubes (MWCNTs). The fabrication of DSSCs 
counter electrode (CE) was done by spraying deposition method on fluorine-doped tin 
oxide (FTO) as substrate and also coated by thin platinum (Pt). Meanwhile, different 
variety of TiO2 nanostructures as DSSCs photoanode were synthesized by 
hydrothermal growth and squeegee methods with different recepi and synthesis time. 
On the other hand, the DMAc-based GO was used to fabricate nanofiltration (NF) 
membrane utilizing polyvinylidene fluoride (PVDF) as the main polymer material by 
using phase inversion method. The DSSCs and NF membrane samples were 
characterized using solar simulator and dye rejection test, respectively. The DSSCs 
finding showed that the highest energy conversion efficiency (1.559%) was achieved 
by TiO2 NRs-NFs/TC14-rGO/TiO2 NPs as photoanode and TC14-rGO_MWCNTs/Pt 
as CE with the value of open circuit voltage, short circuit density, and fill factor were 
0.747 V, 3.275 mA/cm2, and 53.5, respectively. Meanwhile, the NF membrane finding 
showed that PVDF/SDS-GO/TiO2 presents the highest dye flux (10.148 L/m2h) and 
high dye rejection efficiency (~92.76%). In conclusion, the synthesized GO showed a 
potential to be applied as electrode thin films and also membrane materials. Implication 
of this study is a novel, simpler, low-cost, and less harsh chemical for the GO synthesis 
to fabricate CE and photoanode film for DSSCs and also NF membrane.  
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FABRIKASI BAHAN HIBRID GRAFIN OKSIDA/TITANIUM DIOKSIDA 
UNTUK APLIKASI SEL SURIA DAN MEMBRAN 

 

ABSTRAK 
 

Kajian ini bertujuan memfabrikasi bahan hibrid berdasar kepada grafin oksida 
(GO)/titanium dioksida (TiO2) untuk aplikasi sel suria terpeka warna (SSTW) dan 
membran pemisahan. Pengelupasan elektrokimia yang dibantu oleh surfaktan buatan 
rantaian bercabang tiga sodium 1, 4-bis (neopentiloksi)-3-(neopentiloksikarbonil)-1, 4-
dioksobutana-2-sulfonat (TC14) dan komersial rantaian tunggal sodium dodesil sulfat 
(SDS) digunakan untuk mensintesiskan GO dengan elektrolit berasaskan air dan N, N-
dimetilasetamida (DMAs) sebagai pelarut. Proses pengurangan kimia menggunakan 
hidrazin hidrat kemudiannya dilakukan untuk menghasilkan penurunan GO (pGO) 
yang selanjutnya dihibrid dengan nanotiub karbon berbilang dinding (NTK). Fabrikasi 
elektrod kaunter (EK) SSTW dilakukan menggunakan kaedah pemendapan semburan 
di atas timah oksida didop fluorin sebagai substrat dan juga disalut menggunakan 
platinum (Pt) tipis. Sementara itu, pelbagai TiO2 struktur nano yang berbeza sebagai 
fotoanod SSTW disintesis menggunakan penumbuhan hidroterma dan kaedah squeegee 
dengan pelbagai resepi dan waktu sintesis. Selain itu, GO berdasar DMAs digunakan 
untuk memfabrikasi membran penapisannano (PN) menggunakan polivinilidin florida 
(PVDF) sebagai bahan polimer utama dengan menggunakan kaedah fasa 
penyongsangan. Sampel-sampel SSTW dan membran PN masing-masing dicirikan 
menggunakan solar simulator dan percubaan penyingkiran warna. Hasil kajian SSTW 
menunjukkan bahawa kecekapan penukaran tenaga yang paling tinggi (1.559%) 
dihasilkan dengan TiO2 BtN-BgN/TC14-pGO/TiO2 PtN sebagai fotoanod dan TC14-
pGO_NTK/Pt sebagai EK dengan nilai dari voltan litar terbuka, kepadatan litar pintas, 
dan faktor pengisi masing-masing adalah 0.747 V, 3.275 mA/cm2 dan 53.5. Sementara 
itu, dapatan kajian membran PN menunjukkan bahawa PVDF/SDS-GO/TiO2 
menunjukkan fluks warna yang paling tinggi (10.1478 L/m2h) dan kecekapan 
penyingkiran warna yang tinggi (~92.76%). Kesimpulannya, GO yang telah disintesis 
menunjukkan potensi untuk diterapkan sebagai elektrod filem tipis dan juga bahan 
membran. Implikasi kajian ini adalah sebuah pendekatan baharu, lebih mudah, kos 
rendah, dan kurangnya bahan kimia untuk sintesis GO untuk hasilkan filem EK dan 
fotoanod untuk SSTW dan juga membran PN. 
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INTRODUCTION 

 

 

 

 

 

1.1 Introduction 

 

In this chapter, the research background of graphene oxide (GO)-based thin film and 

titanium dioxide (TiO2) nanostructures with their hybridization as counter electrode 

(CE) and photoanode films for dye-sensitized solar cells (DSSCs) application are 

explained. In addition, the utilization of GO in the fabrication of nanofiltration (NF) 

membrane for membrane separation application (dye rejection) is also described 

clearly. Research problem, objectives, scope and limitations of this study are also 

presented in this chapter and ended by the thesis organization.  
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1.2 Research Background 

 

Two of major problems faced by the world nowadays are high demand of electricity 

and lack of clean water. These become a crucial problems to be solved due to the rare 

and non-renewable plant or animal fossils as the major source of coal and oil for 

electricity. In addition, the rapid industrial factory growth caused another big problem 

such as polluted air and water from its waste product. These are mainly caused by high 

amount of dangerous heavy metal and dye waste which dissolved in the air and water, 

respectively.  

 

The first major problem of high electricity demand which leads to the 

dependency on the non-renewable power source, such as coal, oil, and gas for electricity 

can be reduced by the effort of utilizing solar energy. The basic principle of solar energy 

is converting the sunlight into electricity. The development of that solar cell technology 

has gained a lot of interest since the invention of first generation silicon wafers solar 

cells in the 20th century by Russell Ohl and the next second generation solar cells based 

on amorphous silicon, copper indium gallium selenide (CIGS), and cadmium telluride 

(CdTe) (Bokalič & Topič, 2015). Good performance and high efficiency () of around 

20% (Green, Emery, Hishikawa, Warta, & Dunlop, 2014) was achieved and became a 

potential candidate for reducing and slowly replacing the usage of the non-renewable 

power source. However, the scarcity of source element, high vacuum processes, and 

high temperature treatment induced high production costs, thereby limiting the 

fabrication of such solar cells at industrial scales (Bokalič & Topič, 2015).  
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DSSCs as third generation solar cells becomes a remarkable and promising 

subject since its invention by O’Regan and Grätzel in 1991 to replace both previous 

generation solar cells by adopting photosynthesis effect of plant leaves (O’Regan & 

Grätzel, 1991). DSSCs offers a simple fabrication, flexibility and design opportunities, 

low-cost material, light weight, and relatively high  (Bokalič & Topič, 2015; Demir, 

Sen, & Sen, 2017; O’Regan & Grätzel, 1991; Qin et al., 2015; M. Zhu, Li, Liu, & Cui, 

2014). Basically, DSSCs consists of four parts; an anode electrode (photoanode) coated 

of semiconductor layer, a photo sensitizer (dye), an electrolyte containing redox couple, 

and cathode electrode (CE). Although up to 14.7% efficiency was achieved by Kakiage 

et al. (2015) and presents a possibility to chase the CIGS and CdTe solar cells, the 

investigation of DSSCs performance improvement are still wide open such as the 

improvement of photoanode and CE, and the replacement of dye or electrolyte.  

 

CE has an important role in DSSCs for facilitating electron transfer from 

photoanode to complete the current cycle. Platinum (Pt) nanoparticles (NPs) is a 

common material used as CE due to its high electrocatalytic activity and electrical 

conductivity (Mehmood, Malaibari, et al., 2016; Popoola, Gondal, Alghamdi, & 

Qahtan, 2018; M. Y. Song et al., 2012). High  of 13.8% was achieved by using Pt 

material as CE (Kakiage et al., 2015). As an expensive due to its scarcity and easily 

corroded material, the utilization of Pt as CE need to be reduced and finally replaced 

by other materials with high transparency, low-cost and high conductivity (Cruz, 

Pacheco, & Mendes, 2012; Kong, 2013; Wan, Zhang, et al., 2015).  

 

Several carbon-based material such as activated carbon, single- or multi-walled 

carbon nanotubes (S- or MWCNTs) (Chang et al., 2013; Ramasamy, Lee, Lee, & Song, 
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2008; Yun et al., 2018), and graphene (Bi et al., 2013) were investigated to reduce and 

slowly replace Pt due to its low-cost, relatively good electrocatalytic activity, and 

resistant to the corrosion (Cruz et al., 2012). As high conductive material, MWCNTs 

CE film fabricated by spin and spray coating methods yield high  of 5.97% 

(Dobrzański et al., 2017) and 7.59% (Ramasamy et al., 2008), respectively.   

 

Graphene, a 2-D new carbon nanomaterial built of sp2 carbon arranged in 

honeycomb lattice, becomes another promising alternative replacement for Pt (Kavan, 

Yum, & Grätzel, 2011; Kavan, Yum, Nazeeruddin, & Grätzel, 2011; Z.-Y. Li, Akhtar, 

Kuk, Kong, & Yang, 2012) due to its outstanding electrical and optical properties (Gee 

et al., 2013; Pan, Hou, Yang, & Liu, 2015; L.-J. Wang et al., 2014; Y. Zhang, Xu, Sun, 

Li, & Pan, 2011). Chemical vapor deposition (CVD) is the most popular method to 

produce high purity and controllable thickness of produced graphene. Unfortunately, 

this method involves an explosive precursor with high synthesis temperature of 

approximately 1000°C (Mikhailov, 2011).  

 

GO as a graphene derivative becomes an alternative approach and can be 

chemically synthesized based on Hummers’ method. High-quality GO is also produced 

by using this method, but the utilization of strong acid, poisonous chemicals, and the 

complex synthesis procedures restrict and make this method complicated (Kang et al., 

2016). The transfer process to fabricate thin film is also a challenge due to the powder 

form of produced graphene and GO based on both methods (CVD and Hummers’). A 

dispersing agent, such as tetrahydrofuran (THF) (T.-T. Wu & Ting, 2013), alcohol (K. 

Xu et al., 2016), carbonated water (J. Kim et al., 2010), N-methylpyrrolidone (NMP) 

(Ekanayaka, Hong, Shen, & Song, 2017; N. Liu et al., 2008), and N,N-
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dimethylformamide (DMF) (Ambrosi & Pumera, 2016), iso-propanol (Nagavolu et al., 

2016), and also water (Johra, Lee, & Jung, 2014) is strongly required to disperse GO 

powder into the solution form, thereby making it easily transferrable.  

 

A simple and low-cost method known as electrochemical exfoliation can be a 

promising method to produce GO in the solution form, which can be easily transferred 

onto desired substrate. Furthermore, electrochemical exfoliation offers a considerable 

potential in large-scale production due to the high volume of produced solution from a 

single-synthesis process (Yu, Lowe, Simon, & Zhong, 2015). Various solvents usually 

used as electrolytes in the electrochemical process include acetonitrile, DMF, 

dimethylsulfoxide (DMSO), propylene carbonate, nitric and sulfuric acid (Ambrosi & 

Pumera, 2016; J. Liu, Poh, et al., 2013; Parvez, Li, et al., 2013; M. Zhou et al., 2013). 

Water-based exfoliation, which utilizes surfactant, offers a more environment-friendly 

approach compared to the chemical, acid, or sulfuric electrolytes.  

 

The hydrophobic nature of surfactant chains attached to the carbon (C) bonds 

and hydrophilic heads of the surfactant stabilize the GO dispersion in the solution. 

Therefore, the surfactant chain (tail) number is important in the exfoliation process 

because it determines the quality of the synthesized GO. The intercalation process 

during electrochemical exfoliation can be increased by increasing the number of 

surfactant tail groups. Mohamed et al. (2015, 2014, 2016) investigated the single-, 

double- and triple-tail surfactants and showed that the customized triple-tail surfactant, 

namely sodium 1 ,4-bis(neopentyloxy)-3-(neopentyloxycarbonyl)-1 ,4-dioxobutane-2-

sulphonate (TC14), improves the MWCNTs dispersion in latex nanocomposites.  
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Additionally, different surfactant tail groups in one-step electrochemical 

exfoliation intermixed with natural rubber latex (NRL) nanocomposite are successfully 

utilized by Suriani, Nurhafizah, Mohamed, Zainol, & Masrom (2015). The fabricated 

electrode utilizing TC14 surfactant also yields higher conductivity and capacitance 

value as compared to the commercially available single-tail sodium dodecyl sulphate 

(SDS) surfactant used in supercapacitor application. The high interaction of GO/NRL 

due to the triple interactions of TC14 surfactant results in wrinkled and crumpled tissue-

like sheets with low agglomeration (Suriani, Nurhafizah, Mohamed, Masrom, 

Sahajwala, et al., 2016). The further reduction process of the synthesized GO assisted 

with customized triple-tail TC14 surfactant and subsequently mixed with the radiation 

vulcanization NRL provides higher conductivity and capacitance values compared to 

the pristine GO (Suriani, Nurhafizah, Mohamed, Masrom, Mamat, et al., 2017).  

 

Overall, the usage of GO and reduced GO (rGO) as CE material either by 

Hummers’ or exfoliation method were also presents relatively high  (Z.-Y. Li et al., 

2012; Qiu, Zhang, Wang, Chen, & Wang, 2014; Suriani, Nurhafizah, Mohamed, 

Mamat, et al., 2017). Recently,  of 4.72% was achieved by using rGO as CE (K. Xu 

et al., 2016), while GO exhibits lower  (1.59%) (Z.-Y. Li et al., 2012) due to its higher 

oxygen-functional groups which resulted higher electron transfer resistance and 

decreased DSSCs performance. However, the DSSCs  based on GO or rGO CE thin 

films was found relatively lower as compared to the utilization of Pt as CE. In order to 

improve its performance, the hybridization between carbon-based materials were 

widely investigated such as GO- or rGO-MWCNTs. By hybridizing them, higher  

(6.91%) was achieved as compared to the pristine rGO or MWCNTs film due to the 

larger surface area and higher electrical conductivity (Yeh et al., 2014). Nonetheless, 
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its  was still lower as compared to the conventional Pt CE film (13.8%) (Kakiage et 

al., 2015). 

 

On the other hand, several Pt improvement such as fabrication method, 

materials modification, and hybridization with other materials were also done in order 

to achieve higher DSSCs efficiency (Demir, Savk, Sen, & Sen, 2017; Demir, Sen, et 

al., 2017). M. Y. Song et al. (2012) combined urea in the Pt fabrication using 

homogeneous deposition method followed by reduction using ethylene glycol and 

achieved 9.34% DSSCs . They also found that smaller Pt particles was better to 

increase catalytic activity due to the larger surface area (M. Y. Song et al., 2012). 

Meanwhile, Bajpai et al., (2011) showed that ~27% Pt loading combined with graphene 

yields higher efficiency (2.91%) as compared to ~34% Pt loading (~2.79%). Therefore, 

less Pt loading results in increased DSSCs performance when it is hybridized with GO 

or rGO. The hybridization of Pt with carbon-based material is still an object of 

investigation to obtain higher .  

 

In this present work, both customized triple-tail TC14 and commercially 

available single-tail SDS surfactants are used in the water-based electrolyte preparation 

to assist the exfoliation process and investigate their effects on GO production. 

Chemical reduction process is carried out to produce rGO due to a water-based solution 

that requires low temperature during reduction. Among several reducing agents, such 

as chemicals, plant extracts, microorganisms, proteins and hormones, hydrazine 

hydrate was selected due to its effectiveness in thin and fine rGO production (Chua & 

Pumera, 2014). The spraying deposition method is chosen among various transfer 

methods, such as chemical etching, roll-to-roll process, drop casting, and spin and dip 
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coating to transfer GO and rGO solutions. This method is used due to its simple process, 

easy control, potential for large-scale production and suitability for various substrates 

(Pham et al., 2010). Fluorine-doped tin oxide (FTO) is selected as a substrate with better 

performance as compared to indium-doped tin oxide (ITO). ITO displayed thermal 

instability and two times higher sheet resistance compared to FTO after sintering 

process. In addition, higher  was achieved by using FTO thus this substrate is 

recommended for DSSC application (Sima, Grigoriu, & Antohe, 2010).  

 

Furthermore, the hybridization of rGO and MWCNTs which then coated by thin 

Pt NPs (10 nm) are also done in this work in order to investigate its performance as 

compared to the pristine rGO, MWCNTs, and Pt NPs CE thin films. In addition, its also 

done to improve the rGO conductivity and catalytic activity. The MWCNTs was 

produced from waste cooking palm oil (WCPO) as precursor by modified thermal CVD 

(TCVD) method (Azmina, Suriani, Falina, Salina, Rosly, et al., 2012; Azmina, Suriani, 

Falina, Salina, & Rusop, 2012; Suriani, Muhamad, et al., 2011; Suriani, Nor, & Rusop, 

2010). To the best of our knowledge, this is the first report which utilized MWCNTs 

from WCPO and its hybridization with TC14-rGO before coating with thin Pt NPs as 

CE thin film and combined it with TiO2 as photoanode for DSSCs application. 

 

The morphology structure of photoanode material also plays a key role in the 

DSSCs photovoltaic performance. This is due to their role on providing surface area for 

dye molecules adsorption, light absorption, and also transferring the excited electrons 

to the substrate. Several semiconductor oxide layers that have been used as photoanodes 

for DSSCs are zinc oxide (ZnO) (Jiang, Sun, Lo, Kwong, & Wang, 2007; D. Wang et 

al., 2017; Xie et al., 2018), stannic oxide (SnO2) (Kavan, Yum, & Grätzel, 2011; 
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Ramasamy et al., 2008), zinc stannate (Zn2SnO4) (J. Gong, Liang, & Sumathy, 2012), 

strontium titanate (SrTiO3) (C. W. Kim, Suh, Choi, Kang, & Kang, 2013) and TiO2 (M. 

K. Ahmad, Mohan, & Murakami, 2015; M. K. Ahmad, Mokhtar, et al., 2016; M. K. 

Ahmad, Soon, et al., 2016; Fazli et al., 2017; Ullattil & Periyat, 2017; Ullattil, 

Thelappurath, et al., 2017; J.-F. Wang, Zhang, & He, 2018; D. Zhang, Yoshida, 

Oekermann, Furuta, & Minoura, 2006). Among all, ZnO and TiO2 are the most popular 

semiconductor materials investigated in the DSSCs application. This is due to their 

nontoxicity, wide band gap energy, and good carrier mobility (Y. J. Hwang, Hahn, Liu, 

& Yang, 2012; Lei, Li, Zhang, & Anpo, 2016; Qin et al., 2015; Tamilselvan, Yuvaraj, 

Kumar, & Rao, 2012).  

 

ZnO presents better carrier mobility, lower electron recombination, and flexible 

synthesis process as compared to TiO2 (Quintana, Edvinsson, Hagfeldt, & Boschloo, 

2007). Recently, high DSSCs  of 8.22% was achieved when ZnO was treated by 

1H,1H,2H,2H-perfluorodecyltriethoxysilane (PFDTES) hexane solution after dye 

immersion (Xie et al., 2018). However, less chemical stability of ZnO yields the 

precipitation after dye immersion thus resulted less dye loading, poor electron injection, 

and lower efficiency (Quintana et al., 2007). TiO2 offers better chemical and physical 

stabilities (Lei et al., 2016; Qin et al., 2015; Tamilselvan et al., 2012), large surface area 

(Tamilselvan et al., 2012), and presents higher DSSCs efficiency as compared to ZnO 

thus suitable to be applied as a photoanode material (Quintana et al., 2007; Tiwana, 

Docampo, Johnston, Snaith, & Herz, 2011). 

 

TiO2 has three crystallite forms (phases) which are commonly known as anatase, 

rutile, and brookite. Brookite is not beneficial for several applications due to its unstable 
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form at room temperature. Anatase is a metastable form which can transformed into 

rutile by high temperature, while rutile is the most stable form. Both anatase and rutile 

forms are commonly utilized for DSSCs application due to their high photocatalytic 

activity (Lei et al., 2016). However, the drawback of TiO2 as compared to ZnO as 

photoanodeis its lower electron mobility and higher electron recombination thus 

requiring improvement (Quintana et al., 2007). It is known that TiO2 morphology can 

critically affect the TiO2 performance, thereby its improvement and modification (J.-Y. 

Liao, He, Xu, Kuang, & Su, 2012) were widely investigated to solve this problem. 

These include varying layer numbers (Z.-S. Wang, Yanagida, Sayama, & Sugihara, 

2006), addition of different haze (Chiba, Islam, Komiya, Koide, & Han, 2006) and other 

metal oxide coatings or dopings (Dahlan, Md Saad, Berli, Bajili, & Umar, 2017; Kroon 

et al., 2007), utilization of other nanostructures and mixing the TiO2 phase (Yasin, Guo, 

& Demopoulos, 2016; W. Zhou et al., 2011). Combination of the crystallinity phase 

may yield high photocatalytic activity and consequently improve the  value (Fazli et 

al., 2017; L.-J. Wang et al., 2014; J. Zhao, Wu, Zheng, Huo, & Tu, 2015). 

 

The zero-dimensional (0-D) TiO2 NPs provide a large specific area for effective 

dye adsorption, which may increase DSSCs  thus highly recommended. Recently, 

one-dimensional (1-D) TiO2 nanostructures such as nanorods (NRs) (M. K. Ahmad, 

Soon, et al., 2016; Qin et al., 2015), nanotubes (J. Hu et al., 2016), and nanowires (NWs) 

(Faisal, 2015; W. Wu et al., 2012) gain a lot of interest to be applied as DSSCs 

photoanode due to its better light harvesting, less grain boundary, slow electron 

recombination, and faster electron transport (Sadhu & Poddar, 2014; W. Wu et al., 

2012). The combination of both morphologies and phases was proven to give better 

DSSCs performance as compared to the pure phase. Hafez, Lan, Li, & Wu (2010) 
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showed that the pure TiO2 NRs and TiO2 NPs give lower η (4.4 and 5.8%, respectively) 

as compared to the TiO2 NRs/NPs bilayer photoanode (7.1%). Y. Cao et al. (2016) also 

achieved higher η of 7.39% by utilizing bilayered photoanode consisting of TiO2 NRs 

and TiO2 NPs as compared to pure film (0.54 and 4.63% of TiO2 NRs and TiO2 NPs, 

respectively). Moreover, W. Wu et al. (2012) also showed that two layers photoanode 

consists of TiO2 NWs/NPs presents 7.92% efficiency as compared to the pure film. 

These results were also in a good agreement with several works done by utilizing both 

different morphologies and phases (M. K. Ahmad & Kenji, 2013; Rezvani, Parvazian, 

& Hosseini, 2016; J. Wang et al., 2014; W. Wu et al., 2012). 

 

Post-treatment of TiO2 nanostructures, such as annealing, also critically affects 

the optical and electrical properties of fabricated films. Ahn et al. (2011) showed that 

post-annealing of TiO2 nanobarbed fibres resulted in higher crystallinity and higher 

conductivity as indicated by a lower band gap energy (Eg). Hasan, Haseeb, Saidur, & 

Masjuki (2008) reported that the TiO2 morphology structure remains unchanged as the 

annealing temperature increases (300‒600°C), while its transmittance decreases due to 

surface roughness. Meanwhile, D. Zhao et al. (2008) showed that the surface roughness 

factor for TiO2 NPs increases with the annealing temperature (350‒600°C). A low 

annealing temperature (350°C) yielded small-sized crystallites, while a higher 

temperature (600°C) improved the crystallinity, thus decreasing the internal surface 

area and impending the dye adsorption. Moreover, L. Meng, Li, and Santos (2011) 

found that the top ends of TiO2 NRs sharpen as the annealing temperature increases 

(200‒500°C). They also showed that higher DSSCs η was achieved by the annealed 

films as compared to the as-deposited films without annealing. This is also in a good 
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agreement with results from M. K. Ahmad, Soon, et al. (2016), who obtained the 

highest dye adsorption and DSSCs η by annealing TiO2 NRs at 450°C for 30 minutes.   

 

Besides post-annealing treatment, the hybridization of TiO2 nanostructures with 

carbonaceous material, such as CNTs, graphene, GO, or rGO was also done in order to 

improve the TiO2 electrical properties (Ilyas, Gondal, Baig, Akhtar, & Yamani, 2016; 

S.-B. Kim et al., 2015; J. Liu, Fu, et al., 2015; L. Liu, Zhang, Zhang, & Feng, 2017; 

Mehmood, Malaibari, et al., 2016; J. Song et al., 2011; J. Wang et al., 2014; J. Zhao, 

Wu, et al., 2015). This is due to the high conductivity of the carbonaceous material, 

which increases the electron transfer through TiO2, decreases the electron 

recombination, and yields higher short circuit current density (Jsc). Higher η of 7.52% 

was achieved by J. Zhao, Wu, et al. (2015) when utilizing TiO2-rGO nanocomposite 

via one-step hydrothermal method as compared to pure TiO2 NPs film (6.39%). 

Meanwhile, L. Liu et al. (2017) achieved 6.85% efficiency when immersing the 

prepared TiO2 NPs in the GO solution and then reducing them via thermal reduction 

process. However, they also found that less dye adsorption occurred in the sample with 

excessive rGO amount. Therefore, high amount of rGO must be avoided.  

 

The configuration of the photoanode film also gives different effects in DSSCs 

performance. J. Song et al. (2011) sprayed a rGO layer on TiO2 NPs and achieved 

6.06% efficiency. They also found that a thicker rGO layer was not beneficial for dye 

adsorption, which decreased η. In contrast, J. Liu, Fu, et al. (2015) deposited the rGO 

layer between TiO2 NPs films by the electrospray method. By spraying 1 layer of rGO 

(40 nm) between two TiO2 NPs films, a higher efficiency (7.8%) was obtained as 

compared to pure TiO2 NPs films (7.1%) and thicker (120 nm) rGO layers (7.3%). 
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Furthermore, when they investigated multiple rGO layers between the TiO2 NPs films, 

the highest η (8.9%) was achieved by three rGO layers as compared to five layers rGO 

(6.1%). 

 

In this work, the novel combination of rutile 1-D TiO2 nanostructures (NRs and 

NWs) synthesized by hydrothermal growth method (M. K. Ahmad, Mohan, et al., 2015; 

M. K. Ahmad & Murakami, 2015; Faisal, 2015) and anatase 0-D TiO2 NPs applied by 

squeegee method (D. Zhang et al., 2006) are used as bottom and upper layer of 

photoanode layer, respectively. Both methods are chosen due to its low-cost with 

simple preparation and fabrication. The three-dimensional (3-D) TiO2 nanoflowers 

(NFs), nanotrees (NTs), and nanocauliflowers (NCFs) are also produced during 

hydrothermal synthesis. In addition, the novel hybridization of TiO2 NRs-NFs with 

rGO based on customized triple-tail TC14 surfactant (TC14-rGO) and TC14-

rGO_MWCNTs hybrid solution are also done by the simple spraying deposition 

method before applying TiO2 NPs. In addition, the post-annealing treatment of TiO2 

NRs-NFs after hydrothermal growth is also done in order to investigate its effect in the 

DSSCs performance. 

  

The second major problem of clean water can comes from high amount of 

dangerous heavy metal and dye waste which dissolved in the air and water, respectively. 

This contamination results from the rapid industrial factory growth, such as textile 

industries, pharmaceuticals, metal plating, and printing industries which causes the lack 

of clean water. The difficulty in treating dye wastewater which contains toxic 

substances and are non-degradable substances, becomes an important issue that needs 

to be solved (Z. Zhu et al., 2017). Several methods that are generally used to remove 
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dye from contaminated water are chemical and physical sorption, evaporation, 

biological degradation, chemical oxidation, flocculation-coagulation, photocatalytic 

system, electrodeposition, and membrane separation/filtration (Makertihartha, Rizki, 

Zunita, & Dharmawijaya, 2017; Z. Zhu et al., 2017). Among these methods, membrane 

filtration gains considerable interest due to its several advantages, such as simple 

operation, minimal chemical used, low energy, good separation, easy automation, low 

pollution, and high recovery rate (Méricq, Mendret, Brosillon, & Faur, 2015; Z. Zhu et 

al., 2017).  

 

The pollutant filtration efficiency is strongly affected by the membrane type. 

The membrane can be divided into microfiltration, ultrafiltration, NF, and reverse 

osmosis (RO) based on its pore size (Shon, Phuntsho, Chaudhary, Vigneswaran, & Cho, 

2013). NF membrane offers some advantages for textile wastewater, such as relatively 

high water flux and permeability compared with RO, low operating pressure, low 

energy consumption, small pore size (1–5 nm), and high efficiency to remove the dye 

(Safarpour, Vatanpour, Khataee, & Esmaeili, 2015; Shon et al., 2013; Z. Zhu et al., 

2017). Several methods that are generally used to prepare the membrane include 

interfacial polymerization, stretching, sintering, track-etching, electrospinning, and 

phase inversion method (Lalia, Kochkodan, Hashaikeh, & Hilal, 2013). 

 

Phase inversion method is commonly used due to its simple and easy 

preparation. Then, the morphology of the fabricated membrane is strongly affected by 

several factors, including polymer concentration, solvent (Madaeni & Taheri, 2011; 

Nasib, Hatim, Jullok, & Alamery, 2017), non-solvent (Thürmer, Poletto, Marcolin, 

Duarte, & Zeni, 2012), composition, coagulant temperature (X. Wang, Zhang, Sun, An, 
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& Chen, 2008), precipitation time, temperature and evaporation time before immersion, 

additive (N. M. Mokhtar, Lau, Ng, Ismail, & Veerasamy, 2015; Ngang, Ooi, Ahmad, 

& Lai, 2012), and casting thickness (Madaeni & Taheri, 2011). Various polymer 

materials that are generally used for membrane fabrication include polysulfone (PSf), 

polyacrylonitrile (PAN), polyaniline (PANI) (Yusoff et al., 2018), polystyrenesulfonate 

(PSS), polyethersulfone (PES) (Zinadini, Zinatizadeh, Rahimi, Vatanpour, & 

Zangeneh, 2014), polymethylmethacrylate (PMMA), polyethyleneimine (PEI), 

polyvinylpyrrolidone (PVP), and polyvinylidene fluoride (PVDF) (X. Cao, Ma, Shi, & 

Ren, 2006; Kumaran, Alagar, Kumar, Subramanian, & Dinakaran, 2015; Ngang et al., 

2012; Z. Zhu et al., 2017). The formation of membrane pores with either finger- or 

sponge-like structure is also affected by the membrane solution viscosity (Nasib et al., 

2017). These properties are strongly affected by the polymer material and solvent types. 

An extremely low polymer molecular weight results in exceedingly weak membrane, 

whereas an excessively high value makes the membrane difficult to process due to the 

highly viscous solution (J. F. Kim, Jung, Wang, Drioli, & Lee, 2017).  

 

PVDF presents excellent properties, including chemical, alkali, and corrosion 

resistance; thermal, chemical, and UV stability; good membrane-forming properties; 

high mechanical strength; and good solubility in many organic solvent, thereby making 

it applicable for water treatment (Ngang et al., 2012; Nikooe & Saljoughi, 2017; Z. 

Wang, Yu, et al., 2012; Z. Zhu et al., 2017). Meanwhile, the generally used organic 

solvents include NMP (Nasib et al., 2017; Thuyavan, Anantharaman, 

Arthanareeswaran, & Ismail, 2016), DMF (Thürmer et al., 2012), DMSO (Thuyavan et 

al., 2016), and N,N-dimethylacetamide (DMAc) (Madaeni & Taheri, 2011; Nasib et al., 

2017; Thuyavan et al., 2016).  
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Madaeni and Taheri (2011) investigated the effect of polymer concentration, 

casting thickness, and solvent type on the morphology of the fabricated membrane. The 

result showed that 20 wt% of PVDF presents wider and longer finger-like pore 

morphology as compared to lower PVDF content. They also found that 200 μm casting 

thickness results in the highest flux and permeability. The utilization of DMAc in the 

membrane solution preparation results in high porosity and flux compared with NMP 

and DMF (Madaeni & Taheri, 2011; Nasib et al., 2017; Thuyavan et al., 2016; X. Wang, 

Zhang, et al., 2008). Meanwhile, Buonomenna, Macchi, Davoli, and Drioli (2007) 

showed that the direct immersion in the coagulant after casting process results in higher 

porosity as compared to the delayed immersion. Membrane solution heating during 

stirring process also resulted higher porosity membrane than the room temperature 

stirring process. Thürmer et al. (2012) also found that the use of pure water as coagulant 

results in an asymmetric pore membrane with higher hidrophilicity than ethanol, 

followed by a water coagulant. 

 

However, PVDF is well-known as high hydrophobic material which reduces the 

flux and permeability, hence requiring modification, either through physical or 

chemical means (X. Cao et al., 2006). In improving PVDF hydrophilicity, hydrophilic 

inorganic NPs additive, such as aluminium oxide (Al2O3), black iron oxide (Fe3O4), 

cadmium sulfide (CdS), silica, carbon-based and semiconductor materials are clearly 

needed. Carbon nanotubes, graphene, GO, and rGO which are carbon-based materials 

are widely investigated for PVDF modification. Among these materials, GO gained 

considerable interest due to its large surface area and high amount of oxygen-functional 

groups (Z. Zhu et al., 2017). Z. Zhu et al. (2017) obtained higher hidrophilicity and 

water flux than pure PVDF membrane by adding GO. GO addition also alters the 
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membrane morphology of the finger-like structure. Y. Zhao et al. (2013) showed that 

PVDF/GO blend membrane presents higher rejection as compared to pure PVDF 

membrane. This result also agreed with the findings of other studies (M. Hu & Mi, 

2013; Z. Xu, Zhang, et al., 2014; P. Zhang et al., 2017). 

 

Most studies reported the use of the powder form of GO that resulted from 

Hummers’ method as additives in membrane solution preparation (M. Hu & Mi, 2013; 

Z. Wang, Yu, et al., 2012; Y. Zhao et al., 2013). As mentioned before, the synthesized 

GO by Hummers’ or modified Hummers’ methods produced good quality GO. 

However, it presents unsafe and inefficient synthesis method due to the usage of strong 

acid and highly toxic material and its complex synthesis steps, respectively (Kang et 

al., 2016). Electrochemical exfoliation method then becomes a promising solution due 

to its simple, low-cost, and low chemical consumption (Yu et al., 2015). On the other 

hand, several metal oxides such as ZnO, zirconium oxide (ZrO2), and TiO2 were widely 

developed as an additive due to their good properties such as stability, availability, 

antibacterial activity, and the presence of abundant hydroxyl groups. The abundance of 

hydroxyl groups improves the hydrophilicity of the material, thus increasing the flux 

and permeability (X. Cao et al., 2006). Ngang et al. (2012) shows that PVDF-TiO2 

mixed-matrix membrane enhances the water permeability and increases the methylene 

blue (MB) rejection.  

 

Hence, in this work, the directly synthesized DMAc-based GO assisted by 

commercially available single-tail SDS surfactant is used as a solvent before mixing it 

with TiO2 as an additive to fabricate modified PVDF-based NF membrane. TiO2 is 

utilized to further improve the membrane’s hydrophilicity. Then, pristine PVDF 
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membrane fabricated by DMAc and also PVDF/SDS–GO fabricated using the directly 

synthesized DMAc-based GO are used for comparison. Afterward, the three fabricated 

membranes are used to investigate their effectiveness for MB rejection application. To 

the best of our knowledge, this work presents a novel and simple GO synthesis through 

electrochemical exfoliation assisted by SDS surfactant by utilizing DMAc as the 

solvent for PVDF-based membrane fabrication. 

 

 

1.3 Problem Statement 

 

Pristine Pt is known as an outstanding material utilized as CE film for DSSCs 

application. However, high cost of Pt due its scarcity increases the DSSCs production 

cost thus limits its application. The utilization of GO and rGO as a derivative of 

graphene material which offers a low-cost, relatively high electrical and physical 

properties is a promising method to reduce and further slowly replaced the utilization 

of Pt. The electrochemical exfoliation method presents simpler synthesis process of GO 

as compared to Hummers’ method which utilizing strong acids and hazardous 

chemicals. The utilization of customized triple-tail TC14 surfactant as dispersing and 

stabilizing agent in the electrochemical exfoliation offers better exfoliation as compared 

to the commercially available single-tail SDS surfactant.  

 

Further chemical reduction process utilizing hydrazine hydrate instead of 

several reducing agents resulted thin and fine rGO with low oxygen (O) content thus 

increase the films conductivity. The produced solution form from electrochemical 

exfoliation and chemical reduction process gives an advantage in the transfer process 
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in order to fabricate thin film. More fabrication steps and the usage of solvent to 

disperse GO powder which absolutely needed in Hummers’ method can be hindered. 

Spraying deposition method offers simpler and easier to control the film fabrication. In 

order to improve the electrical properties of CE film, the hybridization of TC14-rGO 

and MWCNTs from WCPO is carried out. Thin Pt coating is also carried out in order 

to increase the electrocatalytic activity of the fabricated CE thin film. 

 

 Meanwhile, the bilayered photoanode film consists of different TiO2 

nanostructures morphology and crystalline phases is also fabricated to achieve higher 

dye adsorption and faster electron transport. The hybridization of TiO2 nanostructures 

with the produced TC14-rGO and TC14-rGO_MWCNTs are also carried out in order 

to achieve higher conductivity thus decrease the electron recombination during DSSCs 

process. Hydrothermal growth and squeegee method are selected for TiO2 

nanostructures synthesis method due to its simpler preparation and synthesis process. 

On the other hand, more fabrication steps of GO as the additive for membrane 

fabrication can be reduced by performing the direct electrochemical exfoliation. Direct 

DMAc-based GO in the solution form can be obtained from single step. The hazardous 

and complex step of Hummers’ method can be avoided thus presents a simpler and 

safer synthesis method for membrane fabrication.  

 

Therefore, in this work, GO-based material synthesized from the simple 

electrochemical exfoliation assisted by customized triple-tail TC14 and commercially 

available single-tail SDS surfactants are used for DSSCs and membrane application. 

The water-based GO is used to fabricate various CE thin films and also photoanode 
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hybrid film for DSSCs. Meanwhile, DMAc-based GO is used to fabricate PVDF-based 

NF membrane for dye rejection application. 

 

 

1.4 Research Objectives 

 

The goals of this study are: 

i. To improve the DSSCs photovoltaic performance by utilizing various kind of GO- 

and rGO-based CE thin films and its hybridization. 

ii. To enhance the DSSCs photovoltaic performance by utilizing various kind of TiO2 

nanostructures and its hybridization as photoanode film. 

iii. To investigate the novel direct DMAc-based GO synthesized from electrochemical 

exfoliation for membrane separation application.  

iv. To improve the NF membrane performance by utilizing the synthesized DMAc-

based GO and TiO2 nanostructures.  

 

 

1.5 Scope and Limitations of Study 

 

The utilized surfactant in the synthesis of GO is limited to the customized triple-tail 

TC14 and commercially available single-tail SDS surfactants. Next, the production of 

rGO is carried out by chemical reduction process utilizing hydrazine hydrate instead of 

thermal reduction process due to the water-based solvent. Its hybridization to fabricate 

CE hybrid thin film is only focused with MWCNTs based on WCPO. The thin Pt NPs 

is only coated for TC14-rGO and TC14-rGO_MWCNTs film.  
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Meanwhile, 0-, 1-, and 3-D TiO2 nanostructures are utilized as photoanode film 

instead of ZnO. The TiO2 crystalline phase is only focused on rutile and mixed of 

anatase and rutile. The 0-D TiO2 nanostructures is limited to TiO2 NPs, while the 1-D 

nanostructures is limited to TiO2 NRs and NWs. TiO2 NFs, NTs, and NCFs are the 3-

D TiO2 nanostructures which simultaneously produced during hydrothermal method of 

1-D TiO2 NRs. The hybridization of photoanode film is done for only TiO2 NRs-NFs 

film utilizing TC14-rGO and TC14-rGO_MWCNTs hybrid solutions. Meanwhile, the 

utilization of carbonaceous and semiconductor material as additive for the membrane 

fabrication are limited for the GO and TiO2, respectively. In addition, the investigation 

of dye rejection application is limited for MB dye with low concentration (10 ppm). 

 

 The fabricated GO- and rGO-based CE thin films and its hybridization, and also 

the NF membrane are characterized using several instrumentations. FESEM and EDX 

are used to investigate the morphology and element compound of various fabricated 

photoanode, CE thin films, and NF membrane. Meanwhile, HRTEM, XRD, micro-

Raman spectroscopy are used to investigate the structural properties. Diffrac.eva V4.0 

software is used to determine the phase, crystallite size, and crystallite percentage from 

XRD data. The integral breadth (I breadth) measurement is preferred instead of full 

width at half maximum (FWHM) due to its accuracy. The optical and electrical 

properties of fabricated film are measured by UV-Vis, four-point probe equipment with 

Keithley as sourcemeter and Leios TMXpert software as data analysis. Moreover, UV-

Vis is also used to measure the absorption of the treated water after dye rejection test 

was performed. The contact angle measurement is used to measure the hydrophilicity 

of fabricated NF membrane utilizing drop shape analysis. Solar simulator under 1M 
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solar illumination is used for DSSCs efficiency measurement, while dead-end stirred 

cell is used for the flux and dye rejection measurement. 

 

 

1.6 Thesis Organization 

 

This work is focused on two applications based on GO- or rGO-based material. The 

improvement of DSSCs efficiency by utilizing various type of CE thin films and various 

type of TiO2 nanostructures are done for DSSCs application. Meanwhile, the 

investigation of DMAc-based GO using NF membrane tested for MB is done for dye 

rejection application. This thesis consists of 5 chapters which presents the details work 

regarding DSSCs and dye rejection applications. Chapter 1 explains the research 

background, problem statement, research objectives, and scope and limitations of the 

study. The fundamental theories and previous studies related to DSSCs and NF 

membrane applications are intensively describes in Chapter 2. It is divided into two 

main parts, and each part of applications is explained clearly. The synthesis and 

fabrication process, and also characterization technique of various CE thin films, TiO2 

nanostructures, and NF membrane are clearly explained in Chapter 3. Next, Chapter 4 

explains the results of each application including the morphology, structural, optical, 

electrical, and performance of fabricated CE and photoanode films and also NF 

membrane. The last chapter (Chapter 5) summarizes the results of both applications and 

cover the suggestion for the future work.
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