

FABRICATION OF GRAPHENE OXIDE/TITANIUM DIOXIDE HYBRID MATERIAL FOR SOLAR CELL AND MEMBRANE APPLICATION

UNIVERSITI PENDIDIKAN SULTAN IDRIS

2019

FABRICATION OF GRAPHENE OXIDE/TITANIUM DIOXIDE HYBRID MATERIAL FOR SOLAR CELL AND MEMBRANE APPLICATION

MUQOYYANAH

05-4506832 Vertaka.upsi.edu.my

9 PustakaTBainun

ptbupsi

THESIS SUBMITTED IN FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY (PHYSICS)

FACULTY OF SCIENCE AND MATHEMATICS UNIVERSITI PENDIDIKAN SULTAN IDRIS 2019

Please tick ($\sqrt{}$) Project Paper Masters by Research Master by Mixed Mode PhD

I		
ł	-	1
1		4
1	-	-

INSTITUTE OF GRADUATE STUDIES

DECLARATION OF ORIGINAL WORK

i. Student's Declaration:

I, <u>Mugay</u> INDICATE STI	parah, P20152002222, Faculty of Sams and Mathematics	(PLEASE at the work
entitled	Fabrication of Graphene Oxide / Titanium Dioxide Hybrid M	noterial
for Solar	Cell and Membrane Material	is my
original work. where due re- written for me	have not copled from any other students' work or from any other so ference or acknowledgement is made explicitly in the text, nor has a by another person.	ources except ny part been

Signature of the student

ii. Supervisor's Declaration:

1 Prof. Dr. Suriani Abu Bakar (SUPERVISOR'S NAME) hereby certifies that the work entitled <u>Fabrication of Graphene Oxide / Titanum Dioxide Hybrid</u> Moderial For Solar Cell and Membrane Application

(TITLE) was prepared by the above named student, and was submitted to the Institute of Graduate Studies as a * partial/full fulfillment for the conferment of <u>Poctor of Philosophy</u> (Physics) (PLEASE INDICATE THE DEGREE), and the aforementioned work, to the best of my knowledge, is the said student's work.

17 JULY 2019

am

Signature of the Supervisor

DR. SURIANI ABU BAKAR Professor Physics Department Faculty of Science & Mathematics Universiti Pendidikan Sultan Idris

Date

INSTITUT PENGAJIAN SISWAZAH / INSTITUTE OF GRADUATE STUDIES

BORANG PENGESAHAN PENYERAHAN TESIS/DISERTASI/LAPORAN KERTAS PROJEK DECLARATION OF THESIS/DISSERTATION/PROJECT PAPER FORM

Tajuk / Title:

Fabrication of Graphene Oxide / Titanium Dioxide

Hybrid Material for Solar Cell and Membrane Application

No. Matrik /Matric No .:

P20152002222

Saya / 1:

lugoyyarah

(Nama pelajar / Student's Name)

mengaku membenarkan Tesis/Disertasi/Laporan Kertas Projek (Kedoktoran/Sarjana)* ini disimpan di Universiti Pendidikan Sultan Idris (Perpustakaan Tuanku Bainun) dengan syarat-syarat kegunaan seperti berikut:-

acknowledged that Universiti Pendidikan Sultan Idris (Tuanku Bainun Library) reserves the right as follows:-

- 1. Tesis/Disertasi/Laporan Kertas Projek ini adalah hak milik UPSI. The thesis is the property of Universiti Pendidikan Sultan Idris
- 2. Perpustakaan Tuanku Bainun dibenarkan membuat salinan untuk tujuan rujukan dan penyelidikan.

Tuanku Bainun Library has the right to make copies for the purpose of reference and research.

3. Perpustakaan dibenarkan membuat salinan Tesis/Disertasi ini sebagai bahan pertukaran antara Institusi Pengajian Tinggi. The Library has the right to make copies of the thesis for academic exchange.

Secret Act 1972

4. Sila tandakan ($\sqrt{}$) bagi pilihan kategori di bawah / Please tick ($\sqrt{}$) from the categories below:-

SULIT/CONFIDENTIAL

TERHAD/RESTRICTED

TIDAK TERHAD / OPEN ACCESS

auus

Tarikh: 17 JULY 2019

(Tandatangan Pelajar/ Signature)

(Tandatangan Penyelia / Signature of Supervisor) & (Nama & Cop Rasmi / Name & Official Stamp)

Mengandungi maklumat yang berdarjah keselamatan atau

Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan ini dijalankan. / Contains restricted information as specified by the organization where research

kepentingan Malaysia seperti yang termaktub dalam Akta Rahsia Rasmi 1972. / Contains confidential information under the Official

> Professor Physics Department Faculty of Science & Mathematics Universiti Pendidikan Sultan Idris

Catatan: Jika Tesis/Disertasi ini SULIT @ TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan ini perlu dikelaskan sebagai SULIT dan TERHAD.

Notes: If the thesis is CONFIDENTAL or RESTRICTED, please attach with the letter from the related authority/organization mentioning the period of confidentiality and reasons for the said confidentiality or restriction.

:---

iv

ACKNOWLEDGMENTS

Foremost, praise to Allah SWT for giving me such a blessing to continue and finish my study. I would like to express my gratitude to my supervisor Prof. Dr. Suriani Abu Bakar for her support and patient guidance throughout my study as well as her motivation and experience sharing. Those are priceless and enlightened me to develop my skill. I would also like to thank my co-supervisor Assoc. Prof. Dr. Azmi Mohamed from Chemistry Department, UPSI and Dr. Mohamad Hafiz Mamat from Universiti Teknologi MARA (UiTM) for the advice, support, and kindness for giving me a permission to use their laboratory and equipments.

Many thanks also to Assoc. Prof. Dr. Mohd. Khairul Ahmad from Microelectronic and Nanotechnology-Shamsuddin Research Centre (MiNT-SRC), Universiti Tun Hussein Onn Malaysia (UTHM) and Dr. Rosiah Rohani from Universiti Kebangsaan Malaysia (UKM) for letting me use the laboratory and equipments. Furthermore, many thanks to Dr. Mohd. Firdaus Malek from UiTM and Izzati Izni Yusoff, M.Sc. from UKM for the help and advice on my project. I would also like to express my appreciation to National Nanotechnology Directorate Division, Fundamental Research Grant Scheme, and TWAS-COMSTECH Join Research Grant for the financial support on my study.

Many thanks to the staffs of Faculty Science and Mathematics, UPSI: Mr. Mohd. Faisal, Mr. Mohd. Hashimi, Mr. Ibrahim, Mr. Mohd. Zurin, and Mr. Bisyir Asfar for their help on my project. Special thanks to Dr. Hamdan Hadi Kusuma from Universitas Islam Negeri (UIN) Walisongo Semarang, Dr. Putut Marwoto and Dr. Siti Wahyuni from Universitas Negeri Semarang (UNNES) for their support on my study. Next, I would like to thanks to my lab mates in Nanotechnology Lab UPSI: Dr. Nordalila Abdul Rahman, Norhafizah Jusoh, M. Sc., Dr. Nurhafizah Md. Isa, Fatiatun, M. Sc., Khayri Zaid Z Al-Zalit, M. Sc., Ali Abdul Ameer Mohammed Al-Saadi, M. Sc., Tretya Ardyani, M. Sc., Nur Jannah Idris, ISMP, Rosmanisah Mohamat, ISMP, and Nur Amirah Jamaluddin, M. Sc. for the help, discussion, and kindness during my study.

Last but not least, I dedicated this work to my Parents (paè and buè) and also my cousin Dr. Sulhadi, M. Si. who always supporting, encouraging, and convincing me to continue my study. Without their support and love, I am nothing and still stuck on the same level. May Allah bless us always. Aamiin.

V

ABSTRACT

This study aimed to fabricate graphene oxide (GO)/titanium dioxide (TiO₂) hybridbased material for dye-sensitized solar cells (DSSCs) and membrane separation applications. The electrochemical exfoliation assisted by customized triple-tail sodium 1, 4-bis (neopentyloxy)-3-(neopentyloxycarbonyl)-1, 4-dioxobutane-2-sulphonate (TC14) and commercially available single-tail sodium dodecyl sulphate (SDS) surfactants were used to synthesize GO with water-based electrolyte and N, Ndimethylacetamide (DMAc) as solvents. The chemical reduction process utilizing hydrazine hydrate was then performed to produce reduced GO (rGO) which further hybridized with multi-walled carbon nanotubes (MWCNTs). The fabrication of DSSCs counter electrode (CE) was done by spraying deposition method on fluorine-doped tin oxide (FTO) as substrate and also coated by thin platinum (Pt). Meanwhile, different variety of TiO₂ nanostructures as DSSCs photoanode were synthesized by hydrothermal growth and squeegee methods with different recepi and synthesis time. On the other hand, the DMAc-based GO was used to fabricate nanofiltration (NF) membrane utilizing polyvinylidene fluoride (PVDF) as the main polymer material by using phase inversion method. The DSSCs and NF membrane samples were characterized using solar simulator and dye rejection test, respectively. The DSSCs finding showed that the highest energy conversion efficiency (1.559%) was achieved by TiO₂ NRs-NFs/TC14-rGO/TiO₂ NPs as photoanode and TC14-rGO MWCNTs/Pt as CE with the value of open circuit voltage, short circuit density, and fill factor were 0.747 V, 3.275 mA/cm², and 53.5, respectively. Meanwhile, the NF membrane finding showed that PVDF/SDS-GO/TiO₂ presents the highest dye flux (10.148 L/m²h) and high dye rejection efficiency (~92.76%). In conclusion, the synthesized GO showed a potential to be applied as electrode thin films and also membrane materials. Implication of this study is a novel, simpler, low-cost, and less harsh chemical for the GO synthesis to fabricate CE and photoanode film for DSSCs and also NF membrane.

vi

FABRIKASI BAHAN HIBRID GRAFIN OKSIDA/TITANIUM DIOKSIDA UNTUK APLIKASI SEL SURIA DAN MEMBRAN

ABSTRAK

Kajian ini bertujuan memfabrikasi bahan hibrid berdasar kepada grafin oksida (GO)/titanium dioksida (TiO₂) untuk aplikasi sel suria terpeka warna (SSTW) dan membran pemisahan. Pengelupasan elektrokimia yang dibantu oleh surfaktan buatan rantaian bercabang tiga sodium 1, 4-bis (neopentiloksi)-3-(neopentiloksikarbonil)-1, 4dioksobutana-2-sulfonat (TC14) dan komersial rantaian tunggal sodium dodesil sulfat (SDS) digunakan untuk mensintesiskan GO dengan elektrolit berasaskan air dan N, Ndimetilasetamida (DMAs) sebagai pelarut. Proses pengurangan kimia menggunakan hidrazin hidrat kemudiannya dilakukan untuk menghasilkan penurunan GO (pGO) yang selanjutnya dihibrid dengan nanotiub karbon berbilang dinding (NTK). Fabrikasi elektrod kaunter (EK) SSTW dilakukan menggunakan kaedah pemendapan semburan di atas timah oksida didop fluorin sebagai substrat dan juga disalut menggunakan platinum (Pt) tipis. Sementara itu, pelbagai TiO₂ struktur nano yang berbeza sebagai fotoanod SSTW disintesis menggunakan penumbuhan hidroterma dan kaedah squeegee dengan pelbagai resepi dan waktu sintesis. Selain itu, GO berdasar DMAs digunakan untuk memfabrikasi membran penapisannano (PN) menggunakan polivinilidin florida (PVDF) sebagai bahan polimer utama dengan menggunakan kaedah fasa penyongsangan. Sampel-sampel SSTW dan membran PN masing-masing dicirikan menggunakan solar simulator dan percubaan penyingkiran warna. Hasil kajian SSTW menunjukkan bahawa kecekapan penukaran tenaga yang paling tinggi (1.559%) dihasilkan dengan TiO₂ BtN-BgN/TC14-pGO/TiO₂ PtN sebagai fotoanod dan TC14pGO NTK/Pt sebagai EK dengan nilai dari voltan litar terbuka, kepadatan litar pintas, dan faktor pengisi masing-masing adalah 0.747 V, 3.275 mA/cm² dan 53.5. Sementara itu, dapatan kajian membran PN menunjukkan bahawa PVDF/SDS-GO/TiO₂ menunjukkan fluks warna yang paling tinggi (10.1478 L/m²h) dan kecekapan penyingkiran warna yang tinggi (~92.76%). Kesimpulannya, GO yang telah disintesis menunjukkan potensi untuk diterapkan sebagai elektrod filem tipis dan juga bahan membran. Implikasi kajian ini adalah sebuah pendekatan baharu, lebih mudah, kos rendah, dan kurangnya bahan kimia untuk sintesis GO untuk hasilkan filem EK dan fotoanod untuk SSTW dan juga membran PN.

vii

TABLE OF CONTENTS

					Page
	DECLARATI	ON C	OF ORIGINAL WORK		ii
	DECLARATI	ON C	OF THESIS		iii
	ACKNOWLE	DGE	MENTS		iv
	ABSTRACT				V
	ABSTRAK				vi
	TABLE OF C	ONT	ENTS		vii
05-450	LIST OF TAE	BLES	edu.my Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah	PustakaTBainun	X vptbupsi
	LIST OF FIG	URES	8		xviii
	LIST OF ABB	BREV	TATIONS		xxvi
	LIST OF APP	END	ICES		xxxi
	CHAPTER 1	INT	RODUCTION		
		1.1	Introduction		1
		1.2	Research Background		2
		1.3	Problem Statement		18
		1.4	Research Objectives		20
		1.5	Scope and Limitations of Study		20
		1.6	Thesis Organization		22

ptbupsi viii

CHAPTER 2 LITERATURE REVIEW

2.1	Introd	uction	23
2.2	The S	ynthesis Method of Graphene Oxide	24
	2.2.1	Electrochemical Exfoliation for the Simpler Graphene Oxide Synthesis	28
	2.2.2	Chemical Reduction Process to Produce Reduced Graphene Oxide	31
	2.2.3	Spraying Deposition Method as Transfer Process of Graphene Oxide-based Materials	33
2.3	The P	roperties of Titanium Dioxide	35
	2.3.1	Hydrothermal Growth Method in the Synthesis of Titanium Dioxide Nanostructures	39
		2.3.1.1 Initial Hydrothermal Solution	39
pustaka.upsi.o		2.3.1.2 Internal Pressure	
		2.3.1.3 Synthesis Temperature	41
		2.3.1.4 Synthesis Time	41
		2.3.1.5 Substrate Positioning	42
	2.3.2	Squeegee Method in the Fabrication of TiO_2 Film	43
2.4	Dye-s	ensitized Solar Cells Application	43
	2.4.1	Components of Dye-sensitized Solar Cells	44
		2.4.1.1 Transparent Conductive Electrode	44
		2.4.1.2 Photoanode	45
		2.4.1.3 Counter Electrode	46

O5-4506832 V pustaka.upsi.edu.my Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

	2.4.1.4 Sensitizer (Dye)	46
	2.4.1.5 Electrolyte	48
2.	4.2 Working Principle of Dye-sensitized Solar Cells	49
2.	4.3 Graphene Oxide-based Material as Counter Electrode	50
2.	4.4 Titanium Dioxide-based Material as Photoanode	55
2.5 M R	lembrane-based Separation/Filtration for Dye ejection	60
2.	5.1 Dye Contamination and Its Removal Methods	60
2.	5.2 Phase Inversion Method to Fabricate Membrane	62
	2.5.2.1 Effect of Polymer Concentration	64
05-4506832 😯 pustaka.upsi.edu	2.5.2.2 Effect of Solvent Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah 2.5.2.3 Effect of Coagulant	65 ptbup 66
	2.5.2.4 Effect of Casting Condition	67
2.	5.3 Performance of Modified PVDF-based Membrane	67
2.6 S	ummary	70

CHAPTER 3 METHODOLOGY

3.1	Introd	uction	71
3.2	Fabric sensit	cation of Counter Electrode Thin Films for Dye- ized Solar Cells Application	72
	3.2.1	Synthesis and Production of Graphene Oxide and Reduced Graphene Oxide Solutions	72

ptbupsi

х

		3.2.1.1 Surfactant	72
		3.2.1.2 Synthesis of Graphene Oxide via Electrochemical Exfoliation	73
		3.2.1.3 Production of Reduced Graphene Oxide	74
	3.2.2	Production of Pristine and Hybrid Multi-walled Carbon Nanotubes Solutions	75
	3.2.3	Substrate Preparation	76
	3.2.4	Spraying Deposition Method	78
	3.2.5	Sputtering Deposition	79
3	3.3 Fabri as Appl	ication of Different Variety of TiO ₂ Nanostructures Photoanode for Dye-sensitized Solar Cells lication	80
05-4506832 🜍 pustaka.	3.3.1 upsi.edu.my	Precursor Kampus Sultan Abdul Jalil Shah	80 Optbups
	3.3.2	Hydrothermal Growth Method	81
		3.3.2.1 TiO ₂ Nanorods-nanoflowers and TiO ₂ Nanorods-nanotrees Synthesis	82
		3.3.2.2 TiO ₂ Nanorods-nanocauliflowers-like Synthesis	85
		3.3.2.3 TiO ₂ Nanowires Synthesis	85
	3.3.3	Squeegee Method	87
	3.3.4	Fabrication of Photoanode Hybrid Films	88
3	3.4 Fabri	ication of Dye-sensitized Solar Cells	89
2	3.5 Fabri Rejec	ication of Nanofiltration Membrane for Dye ction Application	91
2	3.6 Synth	hesis Parameters	93

xi

	3.7	Sample	s Characterizations	97
		3.7.1	Field Emission Scanning Electron Microscopy and Energy Dispersive X-ray Analysis	97
		3.7.2	High Resolution Transmission Electron Microscopy	99
		3.7.3	Micro-Raman Spectroscopy	99
		3.7.4	Ultraviolet-Visible Spectroscopy	101
		3.7.5	X-ray Diffraction	102
		3.7.6	Current-voltage Measurement	103
		3.7.7	Electrochemical Impedance Spectra	104
		3.7.8	Solar Simulator Measurement	104
O5-4506832		3.7.9 du.my 3.7.10	Contact Angle Measurement Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah Porosity Measurement	106 ptbupsi 106
		3.7.11	Water Flux and Dye Rejection	107
	3.8	Summa	ıry	108

CHAPTER 4 RESULTS AND DISCUSSION

4.1	Introd	uction	110
4.2	The H Films	Properties of Fabricated Counter Electrode Thin for Dye-sensitized Solar Cells Application	111
	4.2.1	Morphological Properties	111
	4.2.2	Structural Properties	118
	4.2.3	Optical Properties	125

129

4	.2.4 Elect	trical Properties	129
4.3 T N A	The Propert lanostructu	ties of Different Variety of Pure Phase TiO ₂ ares for Dye-sensitized Solar Cells	132
4	.3.1 Morj	phological Properties	132
	4.3.1	1.1 TiO ₂ Nanorods-nanoflowers	132
	4.3.1	1.2 TiO ₂ Nanorods-nanotrees	135
	4.3.1	1.3 TiO ₂ Nanorods-nanocauliflowers-like	138
	4.3.1	1.4 TiO ₂ Nanowires	140
4	.3.2 Struc	ctural Properties	143
4	.3.3 Optio	cal Properties	151
4.4 T 92 votaka.upsi.eN S	The Proper lanostructu olar Cells	rties of Hybrid and Mixed-phase TiO ₂ ares as Photoanode Film for Dye-sensitized Application	155
4	.4.1 Morj Nano	phological Properties of Hybrid TiO ₂ ostructures Film	155
	4.4.1	1.1 TiO ₂ Nanorods-nanoflowers/TC14- rGO	155
	4.4.1	1.2 TiO ₂ Nanorods-nanoflowers/TC14- rGO_MWCNTs	156
4	.4.2 Strue Nano	ctural Properties of Hybrid TiO ₂ ostructures Film	158
4	.4.3 Option Nano	cal Properties of Hybrid TiO ₂ ostructures Film	161
4	.4.4 Morj Phot	phological Properties of Fabricated coanode Film	163
4	.4.5 Struc Film	ctural Properties of Fabricated Photoanode	168

	٠	٠	٠
Х	1	1	1

		4.4.6	Optical Properties of Fabricated Photoanode Film	180
	4.5	Photo Solar	voltaic Performance of Fabricated Dye-sensitized Cells	183
		4.5.1	The Utilization of Different Counter Electrode Thin Films	184
		4.5.2	The Utilization of Different Variety of Photoanode Films	190
			4.5.2.1 Effect of Different Hydrothermal Synthesis Time	190
			4.5.2.2 Effect of Post-annealing Treatment	192
			4.5.2.3 Effect of Hybrid Photoanode Films and Its Different Configuration	197
			4.5.2.4 Effect of Other Variety of TiO ₂ Nanostructures	204
05-4506832	pustaka.upsi.v 4.6	edu.my Electr NPs	on Transfer Mechanism Based on TiO ₂ NWs/TiO ₂	O ptbups 207
	4.7	Electr	ochemical Impedance Spectra Analysis	209
	4.8	The P for Dy	roperties of Fabricated Nanofiltration Membrane re Rejection Application	213
		4.8.1	Morphological Properties	214
		4.8.2	Micro-Raman Spectroscopy	218
		4.8.3	Contact Angle Analysis and Porosity Measurement	220
		4.8.4	Water Flux Based on Different Operating Pressure	222
	4.9	The	Dye Rejection Performance of Fabricated	224

CHAPTER 5 CONCLUSIONS AND FUTURE WORK

5.1	Conclusions 227
5.2	Future Work232
	222
REFERENCES	
APPENDICES	258

O5-4506832 V pustaka.upsi.edu.my Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

PustakaTBainun ptbupsi

xv

LIST OF TABLES

Table N	0.	Page
2.1	Several Methods to Synthesize Graphene with Its Advantage and Drawback (Choi et al., 2010; Mikhailov, 2011)	25
2.2	The Properties of Anatase, Rutile, and Brookite Crystalline Forms of TiO ₂ (Balachandran & Eror, 1982; Lei et al., 2016)	37
2.3	The Comparison Between FTO and ITO (Aouaj et al., 2009; Sima et al., 2010)	45
2.4	Several GO-based Electrode and Its Comparison with the Standard Pt as CE for DSSCs	53
05-4506832.5	Several TiO ₂ Nanostructures Used as Photoanode Film for DSSCs	57tbupsi
2.6	Various Methods to Remove Dye with Its Advantage and Drawback (Dawood & Sen, 2014; Homem et al., 2017; Parvathi et al., 2011; Thamaraiselvan & Noel, 2014; Z. Zhu et al., 2017)	61
2.7	The Membrane Classification Based on Its Morphology, Pore Size, and Base Material (Ladewig & Al-Shaeli, 2017)	62
3.1	Surfactant's Molecular Structure Used in This Study	72
3.2	Study Parameters of DSSCs Application Based on Different Photoanode and CE Configurations	94
4.1	Micro-Raman Spectra of GO-based CE Thin Films and Its Hybridization	124
4.2	Transmittance and E_g Values of Various CE Thin Films	129
4.3	Resistivity Value of Various CE Thin Films	131
4.4	Micro-Raman Band Peaks of the Synthesized Pure Rutile TiO ₂ Nanostructures	147

xvi

4.5	Crystallite Size and Its Percentage of the Selected Peaks of Pure Rutile TiO ₂ Nanostructures	150
4.6	Transmittance and E_g Value of Pure Rutile TiO ₂ Nanostructures	154
4.7	Micro-Raman Band Peaks of Hybrid TiO2 Nanostructures	160
4.8	Transmittance and E_g Value of Hybrid TiO ₂ Nanostructures	162
4.9	Crystallite Sizes and Percentages of Selected Peaks of Non-, G-, and D-ann TiO ₂ NRs-NFs/TiO ₂ NPs Photoanode Films (A: Anatase, R: Rutile)	172
4.10	Crystallite Sizes and Percentages of Selected Peaks of Non-ann TiO ₂ NRs-NTs/TiO ₂ NPs and TiO ₂ NWs/TiO ₂ NPs Photoanode Films (A: Anatase, R: Rutile)	175
4.11	Crystallite Sizes and Percentages of Selected Peaks of TiO ₂ NRs-NFs/TC14-rGO/TiO ₂ NPs and TiO ₂ NRs-NFs/TC14-rGO_MWCNTs/TiO ₂ NPs Photoanode Films (A: Anatase, R: Rutile)	178
05-4506834.12	Transmittance and E_g Value of Fabricated Mixed-phase TiO ₂ Nanostructures	183 toup
4.13	The DSSCs Photovoltaic Performance Based on Different Variety of CE Thin Films and Non-ann TiO ₂ NRs-NFs/TiO ₂ NPs as Photoanode	189
4.14	The DSSCs Photovoltaic Performance Based on Non-ann TiO_2 NRs-NTs/TiO ₂ NPs as Photoanode	191
4.15	The DSSCs Photovoltaic Performance Based on G- and D-ann TiO ₂ NRs-NFs/TiO ₂ NPs as Photoanode	195
4.16	The DSSCs Photovoltaic Performance Based on D-ann TiO ₂ NRs- NTs/TiO ₂ NPs as Photoanode	197
4.17	The DSSCs Photovoltaic Performance Based on Different Configuration of Hybrid Photoanode Film	201
4.18	The DSSCs Photovoltaic Performance Based on Different Variety of TiO ₂ Nanostructures as Photoanode	206
4.19	EIS Analysis Based on TiO ₂ NWs/TiO ₂ NPs as Photoanode and Different Variety of CE Thin Films	211

ptbupsi xvii

4.20	EIS Analysis Based on TiO ₂ NRs-NFs-based Photoanodes and TC14-rGO_MWCNTs/Pt CE Thin Film	213
4.21	The Contact Angle and Porosity Values of the Fabricated PVDF- based NF Membranes	222
4.22	The Water Flux Details Based on Different Driving Pressure and Water Permeability of the Fabricated PVDF-based NF Membranes	224
4.23	The Performance Details of the Fabricated PVDF-based NF Membranes Measured at 2 Bar Pressure	226

O5-4506832 Bustaka.upsi.edu.my Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

PustakaTBainun Dtbupsi

LIST OF FIGURES

No. Fig	ures	Page
2.1	Several Proposed GO Structure (Chua & Pumera, 2014)	27
2.2	Several Solvents Used to Disperse the Synthesized GO Powder (Paredes, Villar-Rodil, Martínez-Alonso, & Tascon, 2008)	28
2.3	The Illustration of; (a) Electrochemical Exfoliation Experimental Setup (CY. Su et al., 2011), (b) and (c) Intercalation and Oxidation Process during Electrochemical Exfoliation (Coros et al., 2016; Parvez, Wu, et al., 2014)	29
2.4	(a) Optical Band Gap Energy (Sarkar, Mondal, Dey, & Ray, 2016) and (b) Raman Spectra (K. H. Lee et al., 2014) of GO and rGO	32
O 05-4506832.5	(a) FESEM (Muruganandi, Saravanan, Vinitha, Raj, & Girisun, 2018) and (b) HRTEM Images (Stobinski et al., 2014) of GO and rGO	33 ^{tbupsi}
2.6	TiO ₂ Molecular Structure of; (a) Anatase, (b) Rutile, and (c) Brookite (Esch, Gadaczek, & Bredow, 2014)	36
2.7	Various Successfully Synthesized TiO ₂ Nanostructures; (a) Nanoparticles (Karthick, Hemalatha, Raj, Kim, & Yi, 2012), (b) Nanobranched (H. Wang, Bai, et al., 2011), (c) Microtablet (Umar et al., 2014), (d) Nanorods (Gu, Zhao, & Qiang, 2012), (e) Nanowires (Sun et al., 2013), (f) Nanotubes (J. Hu et al., 2016), (g) Nanotrees (W. Zhou et al., 2011), (h) Nanofiber (X. Meng, Shin, Yu, Jung, et al., 2011), (i) Nanoflowers (Ye, Liu, Lin, & Lin, 2013), (j) Yolk-Shell (ZQ. Li et al., 2015), (k) Hollow Hemisphere (Yang et al., 2008), and (l) Microspheres (W. Zhou et al., 2011)	38
2.8	Several Natural Dyes Used for DSSCs (Calogero et al., 2015)	47
2.9	Chemical Structure of Ruthenium-based Dye Used for DSSCs (Mao, Wang, Xiao, Dai, & Song, 2012)	48
2.10	Working Principle of DSSCs (Calogero et al., 2015)	50

- xix
- 2.11 (a) FESEM Images (H. H. Gong, Park, Lee, & Hong, 2014; Zheng, 52 Neo, & Ouyang, 2013), (b) EIS Analysis, and (c) DSSCs Photovoltaic Performance by Several GO-based CE Thin Films (Velten et al., 2012) 2.12 Various TiO₂-based Photoanode Films; (a) TiO₂ NPs (Dobrzański 56 et al., 2017), (b) TiO_2 NRs (J. Wang et al., 2014), (c) TiO_2 NRs/TiO₂ NFs (P. Zhao et al., 2014), (d) TiO₂ NRs/TiO₂ NPs (Y. Cao et al., 2016), (e) TiO₂ NPs/rGO (L. Liu et al., 2017), and (f) TiO₂ NPs/Graphene/TiO₂ NPs (L.-C. Chen, Hsu, Chan, Zhang, & Huang, 2014) 63 2.13 Cross Section View of: (a) Symmetric and (b) Asymmetric Membrane (Buonomenna, Macchi, et al., 2007) 3.1 (a) The Schematic Diagram and (b) Experimental Procedures of 74 Electrochemical Exfoliation Method to Synthesize GO 3.2 75 (a) The Schematic Diagram and (b) Experimental Procedure of Chemical Reduction Process Utilizing Hydrazine Hydrate as Reducing Agent 76 3.3 The Schematic Diagram to Produce TC14-rGO MWCNTs Hybrid Solution si.edu.my 77 3.4 Ultrasonic Cleaner Used in This Study 3.5 78 (a) The Schematic Diagram and (b) Typical Tubular Furnace Used in This Study 79 3.6 (a) The Schematic Diagram and (b) Experimental Procedure of Spraying Deposition Method to Fabricate GO- and rGO-based Thin Films 3.7 80 Coater Sputter Quorum Q150R S for Pt Coating 81 3.8 (a) Teflon-lined Stainless Steel Autoclave, (b) Electric Oven, and (c) Box Furnace Used in This Study 3.9 (a) The Schematic Diagram and (b) Experimental Procedures to 83 Synthesize Rutile TiO₂ NRs-NFs and TiO₂ NRs-NTs 3.10 The Schematic Diagram of FTO Positioning during TiO₂ NWs 86 Synthesis 3.11 (a) The Schematic Diagram and (b) Experimental Procedures to 87 Synthesize Mixed-phase TiO₂ Nanostructures

X	X	

90	(a) The Schematic Diagram and (b) Experimental Procedures of DSSCs Fabrication	3.12
91	MAGNAV-CMC15 Mini Coater Used in This Study	3.13
92	Experimental Procedures to Prepare NF Membrane Using Phase Inversion Method	3.14
96	Illustration of Different DSSCs Configurations; (a) TiO ₂ Nanostructures/TiO ₂ NPs, (b) TiO ₂ NRs-NFs/TiO ₂ NPs/TC14- rGO, (c) TiO ₂ NRs-NFs/TC14-rGO or TC14- rGO_MWCNTs/TiO ₂ NPs, and (d) TiO ₂ NRs-NCFs	3.15
98	(a) The Schematic Diagram (Jusman, Ng, & Osman, 2014) and (b) Typical FESEM (Hitachi SU8020) and EDX (Horiba EMAX) Instrument Used In This Study	3.16
99	(a) The Schematic Diagram (HM. Kim et al., 2009) and (b) Typical JEOL JEM-2100 Instrument Used In This Study	3.17
100	Micro-Raman Spectroscopy: (a) Renishaw InVia microRaman System and (b) Horiba Xplora Plus Instruments Used In This Study	3.18
101 ptbups	(a) Standard Curve of Dye Concentration-absorbance and (b) UV- Vis Spectroscopy (Agilent Technologies Cary 60 UV-Vis) Used in This Study	C 05-4506832 3.19
102	(a) The Schematic Diagram of Bragg's Law (Waeselmann, 2012) and (b) Typical Bruker D8 Advance Instrument Used in This Study	3.20
103	(a) The Schematic Diagram and (b) Typical Four-point Probe– Keithley 2636A Equipment for <i>I-V</i> Measurement	3.21
104	Potentiostat Galvanostat (Auto Lab), PGSTAT12/30/302 for EIS Measurements Used in This Study	3.22
105	Oriel Sol 1A–Keithley 2420 Equipment for Solar Simulator Measurement Used In This Study	3.23
108	(a) The Schematic Diagram and (b) Typical Sterlitech HP4750 Stirred Cell for Water Flux and Dye Rejection Measurement Used in This Study	3.24
109	The Flow Chart of the Research Methodology in This Study	3.25

xxi

	4.1	FESEM Images and EDX Analysis of GO- and rGO-based CE Thin Films; (a)–(b) TC14-rGO, (c)–(d) SDS-rGO, and (e)–(f) TC14-GO	112
	4.2	HRTEM Images of GO- and rGO-based CE Thin Films; (a)–(b) SDS-rGO, (c)–(d) TC14-GO, and (e)–(f) TC14-rGO	114
	4.3	FESEM Images and EDX Analysis of; (a)–(b) Pristine Pt NPs, (c)– (d) TC14-rGO/Pt, (e) Pt NPs Diameter	116
	4.4	FESEM Images and EDX Analysis of; (a) Pristine MWCNTs, (b)– (c) TC14-rGO_MWCNTs, and (d)–(e) TC14-rGO_MWCNTs/Pt as CE Thin Films	117
	4.5	Micro-Raman Spectra of GO- and rGO-based Thin Films Assisted by Commercially Available and Customized Surfactants; (a) SDS- rGO, (b) TC14-GO, and (c) TC14-rGO	120
	4.6	Micro-Raman Spectra of Pristine Pt and TC14-rGO/Pt Thin Films	121
	4.7	Micro-Raman Spectra of Pristine MWCNTs and Its Hybridizations (TC14-rGO_MWCNTs and TC14-rGO_MWCNTs/Pt) as CE Thin Films	123
05-4506	⁸³² 4.8	pustaka.upsi.edu.my f Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah PustakaTBainun Transmittance Value of Various Fabricated GO- and rGO-based CE Thin Films and Its Hybridization	126 ptbu
	4.9	Optical Band Gap Energy (E_g) of Pristine CE Thin Films; (a) TC14-GO and SDS-rGO and (b) TC14-rGO and MWCNTs	127
	4.10	E_g of Hybrid CE Thin Films; (a) TC14-rGO_MWCNTs and (b) TC14-rGO/Pt and TC14-rGO_MWCNTs/Pt	128
	4.11	The Resistivity Value of Various CE Thin Films Based on Four- point Probes Measurement	131
	4.12	Top View Morphology of Non-ann (a)–(d) TiO_2 NRs and (e)–(f) TiO_2 NFs	133
	4.13	(a) Diameter of TiO_2 NFs Structure, (b) Cross Section of TiO_2 NRs, (c) EDX Analysis of TiO_2 NRs-NFs, and (d) Diameter of D-ann TiO_2 NRs	135
	4.14	Top View Morphology of (a) TiO ₂ NRs-NTs and (b)–(d) TiO ₂ NTs	136
	4.15	(a)–(b) Top View and Diameter of TiO ₂ NRs Structure and (c)–(d) Cross Section and EDX analysis of TiO ₂ NRs-NTs	138

xxii

139 140 141
140 141
141
142
144
145
146
149
152
153 ptbu
154
156
157
158
159
162

4.32

4.33

4.34

4.35

4.36

4.37

4.38

4.40

05-4506832.39

NWs/TiO₂ NPs

NPs Photoanode Film

Photoanode Films

- xxiii The Illustration of Fabricated Photoanode Films; (a) TiO2 NRs-163 NFs-based Film, (b) TiO₂ NRs-NTs/TiO₂ NPs, and (c) TiO₂ FESEM Images of TiO₂ NPs and Its Average Diameter 165 FESEM Images and EDX Analysis of; (a)-(b) Non-ann TiO₂ NRs-166 NFs/TiO₂ NPs and (c)–(d) D-ann TiO₂ NRs-NFs/TiO₂ NPs FESEM Images and EDX Analysis of; (a)-(b) Non-ann TiO₂ NRs-167 NTs/TiO₂ NPs, (c)–(d) TiO₂ NWs/TiO₂ NPs, and (e) Top View of TiO₂ NRs-NFs/TiO₂ NPs/TC14-rGO Micro-Raman Spectra of Fabricated Non-ann TiO₂ NRs-NFs/TiO₂ 169 XRD Pattern of Fabricated Non-, G-, and D-ann TiO₂ NRs-171 NFs/TiO₂ NPs Photoanode Films XRD Pattern of Fabricated Non-ann TiO₂ NRs-NTs/TiO₂ NPs and 174 TiO₂ NWs/TiO₂ NPs Photoanode Films 177 ptbupsi XRD Pattern of Fabricated TiO₂ NRs-NFs/TC14-rGO/TiO₂ NPs and TiO₂ NRs-NFs/TC14-rGO MWCNTs/TiO₂ NPs Hybrid Transmittance Value of Fabricated Various TiO₂ Nanostructures-180 181
- based Photoanode Films Eg Value of Fabricated Mixed-phase TiO₂ Nanostructures 4.41 Photoanode Films; (a) Non-ann TiO₂ NRs-NFs/TiO₂ NPs and TiO₂ NRs-NTs/TiO₂ NPs, (b) G- and D-ann TiO₂ NRs-NFs/TiO₂ NPs, (c) TiO₂ NRs-NFs/TiO₂ NPs/TC14-rGO and TiO₂ NRs-NFs/TC14 rGO/TiO_2 NPs, and (d) TiO₂ NRs-NFs/TC14rGO MWCNTs/TiO₂ NPs and TiO₂ NWs/TiO₂ NPs
- 4.42 Solar Simulator Measurement of DSSCs Based on Different 185 Variety of CE Thin Films and Non-ann TiO₂ NRs-NFs/TiO₂ NPs as Photoanode
- 4.43 Solar Simulator Measurement of DSSCs Based on Non-ann TiO₂ 190 NRs-NTs/TiO₂ NPs as Photoanode
- 4.44 Solar Simulator Measurements of DSSCs Based on; (a) G-ann and 193 (b) D-ann TiO₂ NRs-NFs/TiO₂ NPs as Photoanode

		•	
X	X	1	V

4.45	Solar Simulator Measurement of DSSCs Based on D-ann TiO ₂ NRs-NTs/TiO ₂ NPs as Photoanode	196
4.46	Solar Simulator Measurement of DSSCs Based on TiO ₂ NRs-NFs/TiO ₂ NPs/TC14-rGO as Photoanode	198
4.47	Solar Simulator Measurement of DSSCs Based on TiO ₂ NRs-NFs/TC14-rGO/TiO ₂ NPs as Photoanode	199
4.48	Solar Simulator Measurement of DSSCs Based on TiO ₂ NRs- NFs/TC14-rGO_MWCNTs/TiO ₂ NPs as Photoanode	200
4.49	Schematic Diagram of Electron Transmission in Photoanode Based on; (a) TiO ₂ NRs-NFs/TC14-rGO/TiO ₂ NPs, (b) TiO ₂ NRs- NFs/TiO ₂ NPs, and (c) TiO ₂ NRs-NFs/TiO ₂ NPs/TC14-rGO as Photoanode	203
4.50	Solar Simulator Measurement of DSSCs Based on TiO_2 NRs-NCFs as Photoanode	204
4.51	Solar Simulator Measurement of DSSCs Based on TiO_2 NWs/ TiO_2 NPs as Photoanode	205
05-4506832	Schematic Diagram of DSSCs Electron Transfer Mechanism Based on TiO ₂ NWs/TiO ₂ NPs as Photoanode	208 ptbup
4.53	(a) EIS Analysis and (b) Bode Phase Plot of DSSCs Based on TiO_2 NWs/TiO ₂ NPs as Photoanode and Different Variety of CE Thin Films	210
4.54	(a) EIS Analysis and (b) Bode Phase Plot of DSSCs Based on Different TiO_2 NRs-NFs-based Photoanodes and TC14-rGO_MWCNTs/Pt CE Thin Film	212
4.55	FESEM Images and EDX Analysis of Fabricated PVDF NF Membrane	215
4.56	FESEM Images and EDX Analysis of Fabricated PVDF/SDS-GO NF Membrane	216
4.57	FESEM Images and EDX Analysis of Fabricated PVDF/SDS-GO/TiO ₂ NF Membrane	218
4.58	Micro-Raman Spectra of the Fabricated PVDF-based NF Membranes	220

XXV

4.59	Contact Angle Measurement of Fabricated NF Membranes; (a)	221
	PVDF, (b) PVDF/SDS-GO, and (c) PVDF/SDS-GO/TiO ₂	

- 4.60 The Water Flux Measurement of Fabricated PVDF-based NF 223 Membranes Based on Different Driving Pressure
- The Dye Rejection Measurement of Fabricated PVDF-based NF 4.61 225 Membranes

O5-4506832 O5-4506832 pustaka.upsi.edu.my Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

PustakaTBainun Dtbupsi

LIST OF ABBREVIATIONS

	А	Area
	Al ₂ O ₃	Aluminium Oxide
	AOT4	Sodium bis (3,5,5-trimethyl-1-hexyl)-2-sulfosuccinate
	Ar	Argon
	atm	Atmosfer
	С	Carbon
	CB	Conduction Band
	CdS	Cadmium Sulfide
CdTe aka upsi a Cadmium Telluride an Tuanku Bainun Pustaka TBainun		Cadmium Tellurideaan Tuanku Bainun Pustaka TBainun Di ptbupsi
	CE	Counter Electrode
	CIGS	Copper Indium Gallium Selenide
	CVD	Chemical Vapor Deposition
	D	Defect and Disorder Raman Peak
	D-ann	Directly Annealed
	DI	Deionize
	DMAc	N,N-dimethylacetamide
	DMF	N,N-dimethylformamide
	DMPII	Dimethyl-propyl-benzimidiazole Iodide
	DMSO	Dimethylsulfoxide
	DSA	Drop Shape Analysis
	DSSCs	Dye-sensitized Solar Cells

05-4

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

	N719	Di-tetrabutylammonium cis-bis(isothiocyanato) bis(2,2'-			
		bipyridyl-4,4'-dicarboxylato)ruthenium(II)			
	N749	Black Dye			
	NCFs	Nanocauliflowers			
	NF	Nanofiltration			
	NFs	Nanoflowers			
	NMP	N-methylpyrrolidone			
	Non-ann	Non-annealed			
	NPs	Nanoparticles			
	NRL	Natural Rubber Latex			
	NRs	Nanorods			
	NTs	Nanotrees			
	NWs taka.upsi.	e Nanowires Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah 💟 PustakaTBainun 🚺 ptbupsi			
	0	Oxygen			
	PAN	Polyacrylonitrile			
	PANI	Polyaniline			
	PEG	Poly(Ethylene Glycol)			
	PEI	Polyethyleneimine			
PES Polyethersulfone		Polyethersulfone			
	PET	Polyethylene Terephthalate			
	PFDTES	Perfluorodecyltriethoxysilane			
	PMMA	Polymethylmethacrylate			
	ppm	Parts Per Million			
	PSf	Polysulfone			
	PSS	Polystyrenesulfonate			

O5-4506832 Bustaka.upsi.edu.my Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

	Pt	Platinum		
	PVDF	Polyvinylidene Fluoride		
	PVP	Polyvinylpyrrolidone		
	R	Dye Rejection Efficiency		
	RBM	Radial Breathing Mode		
	R_{ct}	Charge Transfer Resistance		
	rGO Reduced Graphene Oxide			
	RO	Reverse Osmosis		
<i>R</i> _s Series Resistance		Series Resistance		
SDBS Sodium Dodecyl Benzene Sulphonate		Sodium Dodecyl Benzene Sulphonate		
SDS Sodium Dodecyl Sulphate		Sodium Dodecyl Sulphate		
	SiC	Silicon Carbide		
	Sn pustaka.upsi.	e Stannum Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah Dustaka TBainun Opptbupsi		
	SnO ₂	Stannic Oxide		
	SrTiO ₃	Strontium Titanate		
SWCNTs Single-walled Carbon Nanotubes		Single-walled Carbon Nanotubes		
	t	Time		
T Transmittance		Transmittance		
TBOT Titanium (IV) Butoxide		Titanium (IV) Butoxide		
TC14 Sodium 1 ,4-bis(neopentyloxy)-3-(neopentyloxycarbonyl)-1 ,		Sodium 1 ,4-bis(neopentyloxy)-3-(neopentyloxycarbonyl)-1 ,4-		
dioxobutane-2sulphonate		dioxobutane-2sulphonate		
	TCVD	Thermal Chemical Vapor Deposition		
	THF	Tetrahydrofuran		
	Ti	Titanium		
	TiCl ₄	Titanium Tetrachloride		

XXX

	TiO ₂	Titanium Dioxide
	TTIP	Titanium (IV) Isopropoxide
	UV	Ultraviolet
	UV-Vis	Ultraviolet Visible
	V	Voltage
	V_{oc}	Open-circuit Voltage
	WCPO	Waste Cooking Palm Oil
	wt%	Weight Percentage
	XRD	X-ray Diffraction
	ZnO	Zinc Oxide
	Zn ₂ SnO ₄	Zinc Stannate
	ZrO ₂	Zirconium Oxide
05-4506832	2Dpustaka.ups	Raman Signature of Graphitic Material PustakaTBainun
	З	Membrane Porosity
	η	DSSCs Energy Conversion Efficiency
	ρ	Density
	θ	Angle
	$ au_n$	Electron Lifetime
	ω_{G}	G-band Raman Wavelength

xxxi

LIST OF APPENDICES

- Academic Journals А
- В Presentations
- С Awards

O5-4506832 Of pustaka.upsi.edu.my Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

PustakaTBainun ptbupsi

CHAPTER 1

INTRODUCTION

1.1 Introduction

In this chapter, the research background of graphene oxide (GO)-based thin film and titanium dioxide (TiO₂) nanostructures with their hybridization as counter electrode (CE) and photoanode films for dye-sensitized solar cells (DSSCs) application are explained. In addition, the utilization of GO in the fabrication of nanofiltration (NF) membrane for membrane separation application (dye rejection) is also described clearly. Research problem, objectives, scope and limitations of this study are also presented in this chapter and ended by the thesis organization.

2

1.2 Research Background

Two of major problems faced by the world nowadays are high demand of electricity and lack of clean water. These become a crucial problems to be solved due to the rare and non-renewable plant or animal fossils as the major source of coal and oil for electricity. In addition, the rapid industrial factory growth caused another big problem such as polluted air and water from its waste product. These are mainly caused by high amount of dangerous heavy metal and dye waste which dissolved in the air and water, respectively.

The first major problem of high electricity demand which leads to the dependency on the non-renewable power source, such as coal, oil, and gas for electricity can be reduced by the effort of utilizing solar energy. The basic principle of solar energy is converting the sunlight into electricity. The development of that solar cell technology has gained a lot of interest since the invention of first generation silicon wafers solar cells in the 20th century by Russell Ohl and the next second generation solar cells based on amorphous silicon, copper indium gallium selenide (CIGS), and cadmium telluride (CdTe) (Bokalič & Topič, 2015). Good performance and high efficiency (η) of around 20% (Green, Emery, Hishikawa, Warta, & Dunlop, 2014) was achieved and became a potential candidate for reducing and slowly replacing the usage of the non-renewable power source. However, the scarcity of source element, high vacuum processes, and high temperature treatment induced high production costs, thereby limiting the fabrication of such solar cells at industrial scales (Bokalič & Topič, 2015).

DSSCs as third generation solar cells becomes a remarkable and promising subject since its invention by O'Regan and Grätzel in 1991 to replace both previous generation solar cells by adopting photosynthesis effect of plant leaves (O'Regan & Grätzel, 1991). DSSCs offers a simple fabrication, flexibility and design opportunities, low-cost material, light weight, and relatively high η (Bokalič & Topič, 2015; Demir, Sen, & Sen, 2017; O'Regan & Grätzel, 1991; Qin et al., 2015; M. Zhu, Li, Liu, & Cui, 2014). Basically, DSSCs consists of four parts; an anode electrode (photoanode) coated of semiconductor layer, a photo sensitizer (dye), an electrolyte containing redox couple, and cathode electrode (CE). Although up to 14.7% efficiency was achieved by Kakiage et al. (2015) and presents a possibility to chase the CIGS and CdTe solar cells, the investigation of DSSCs performance improvement are still wide open such as the improvement of photoanode and CE, and the replacement of dye or electrolyte.

CE has an important role in DSSCs for facilitating electron transfer from photoanode to complete the current cycle. Platinum (Pt) nanoparticles (NPs) is a common material used as CE due to its high electrocatalytic activity and electrical conductivity (Mehmood, Malaibari, et al., 2016; Popoola, Gondal, Alghamdi, & Qahtan, 2018; M. Y. Song et al., 2012). High η of 13.8% was achieved by using Pt material as CE (Kakiage et al., 2015). As an expensive due to its scarcity and easily corroded material, the utilization of Pt as CE need to be reduced and finally replaced by other materials with high transparency, low-cost and high conductivity (Cruz, Pacheco, & Mendes, 2012; Kong, 2013; Wan, Zhang, et al., 2015).

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

Several carbon-based material such as activated carbon, single- or multi-walled carbon nanotubes (S- or MWCNTs) (Chang et al., 2013; Ramasamy, Lee, Lee, & Song,

pustaka.upsi.edu.my

2008; Yun et al., 2018), and graphene (Bi et al., 2013) were investigated to reduce and slowly replace Pt due to its low-cost, relatively good electrocatalytic activity, and resistant to the corrosion (Cruz et al., 2012). As high conductive material, MWCNTs CE film fabricated by spin and spray coating methods yield high η of 5.97% (Dobrzański et al., 2017) and 7.59% (Ramasamy et al., 2008), respectively.

Graphene, a 2-D new carbon nanomaterial built of *sp*² carbon arranged in honeycomb lattice, becomes another promising alternative replacement for Pt (Kavan, Yum, & Grätzel, 2011; Kavan, Yum, Nazeeruddin, & Grätzel, 2011; Z.-Y. Li, Akhtar, Kuk, Kong, & Yang, 2012) due to its outstanding electrical and optical properties (Gee et al., 2013; Pan, Hou, Yang, & Liu, 2015; L.-J. Wang et al., 2014; Y. Zhang, Xu, Sun, Li, & Pan, 2011). Chemical vapor deposition (CVD) is the most popular method to produce high purity and controllable thickness of produced graphene. Unfortunately, this method involves an explosive precursor with high synthesis temperature of approximately 1000°C (Mikhailov, 2011).

GO as a graphene derivative becomes an alternative approach and can be chemically synthesized based on Hummers' method. High-quality GO is also produced by using this method, but the utilization of strong acid, poisonous chemicals, and the complex synthesis procedures restrict and make this method complicated (Kang et al., 2016). The transfer process to fabricate thin film is also a challenge due to the powder form of produced graphene and GO based on both methods (CVD and Hummers'). A dispersing agent, such as tetrahydrofuran (THF) (T.-T. Wu & Ting, 2013), alcohol (K. Xu et al., 2016), carbonated water (J. Kim et al., 2010), N-methylpyrrolidone (NMP) (Ekanayaka, Hong, Shen, & Song, 2017; N. Liu et al., 2008), and N,N-

dimethylformamide (DMF) (Ambrosi & Pumera, 2016), iso-propanol (Nagavolu et al., 2016), and also water (Johra, Lee, & Jung, 2014) is strongly required to disperse GO powder into the solution form, thereby making it easily transferrable.

A simple and low-cost method known as electrochemical exfoliation can be a promising method to produce GO in the solution form, which can be easily transferred onto desired substrate. Furthermore, electrochemical exfoliation offers a considerable potential in large-scale production due to the high volume of produced solution from a single-synthesis process (Yu, Lowe, Simon, & Zhong, 2015). Various solvents usually used as electrolytes in the electrochemical process include acetonitrile, DMF, dimethylsulfoxide (DMSO), propylene carbonate, nitric and sulfuric acid (Ambrosi & Pumera, 2016; J. Liu, Poh, et al., 2013; Parvez, Li, et al., 2013; M. Zhou et al., 2013).

The hydrophobic nature of surfactant chains attached to the carbon (C) bonds and hydrophilic heads of the surfactant stabilize the GO dispersion in the solution. Therefore, the surfactant chain (tail) number is important in the exfoliation process because it determines the quality of the synthesized GO. The intercalation process during electrochemical exfoliation can be increased by increasing the number of surfactant tail groups. Mohamed et al. (2015, 2014, 2016) investigated the single-, double- and triple-tail surfactants and showed that the customized triple-tail surfactant, namely sodium 1 ,4-bis(neopentyloxy)-3-(neopentyloxycarbonyl)-1 ,4-dioxobutane-2sulphonate (TC14), improves the MWCNTs dispersion in latex nanocomposites.

pustaka.upsi.edu.my

PustakaTBainun

6

Additionally, different surfactant tail groups in one-step electrochemical exfoliation intermixed with natural rubber latex (NRL) nanocomposite are successfully utilized by Suriani, Nurhafizah, Mohamed, Zainol, & Masrom (2015). The fabricated electrode utilizing TC14 surfactant also yields higher conductivity and capacitance value as compared to the commercially available single-tail sodium dodecyl sulphate (SDS) surfactant used in supercapacitor application. The high interaction of GO/NRL due to the triple interactions of TC14 surfactant results in wrinkled and crumpled tissue-like sheets with low agglomeration (Suriani, Nurhafizah, Mohamed, Masrom, Sahajwala, et al., 2016). The further reduction process of the synthesized GO assisted with customized triple-tail TC14 surfactant and subsequently mixed with the radiation vulcanization NRL provides higher conductivity and capacitance values compared to the pristine GO (Suriani, Nurhafizah, Mohamed, Masrom, Mamat, et al., 2017).

Overall, the usage of GO and reduced GO (rGO) as CE material either by Hummers' or exfoliation method were also presents relatively high η (Z.-Y. Li et al., 2012; Qiu, Zhang, Wang, Chen, & Wang, 2014; Suriani, Nurhafizah, Mohamed, Mamat, et al., 2017). Recently, η of 4.72% was achieved by using rGO as CE (K. Xu et al., 2016), while GO exhibits lower η (1.59%) (Z.-Y. Li et al., 2012) due to its higher oxygen-functional groups which resulted higher electron transfer resistance and decreased DSSCs performance. However, the DSSCs η based on GO or rGO CE thin films was found relatively lower as compared to the utilization of Pt as CE. In order to improve its performance, the hybridization between carbon-based materials were widely investigated such as GO- or rGO-MWCNTs. By hybridizing them, higher η (6.91%) was achieved as compared to the pristine rGO or MWCNTs film due to the larger surface area and higher electrical conductivity (Yeh et al., 2014). Nonetheless,

its η was still lower as compared to the conventional Pt CE film (13.8%) (Kakiage et al., 2015).

On the other hand, several Pt improvement such as fabrication method, materials modification, and hybridization with other materials were also done in order to achieve higher DSSCs efficiency (Demir, Savk, Sen, & Sen, 2017; Demir, Sen, et al., 2017). M. Y. Song et al. (2012) combined urea in the Pt fabrication using homogeneous deposition method followed by reduction using ethylene glycol and achieved 9.34% DSSCs η . They also found that smaller Pt particles was better to increase catalytic activity due to the larger surface area (M. Y. Song et al., 2012). Meanwhile, Bajpai et al., (2011) showed that ~27% Pt loading combined with graphene yields higher efficiency (2.91%) as compared to ~34% Pt loading (~2.79%). Therefore, less Pt loading results in increased DSSCs performance when it is hybridized with GO or rGO. The hybridization of Pt with carbon-based material is still an object of investigation to obtain higher η .

In this present work, both customized triple-tail TC14 and commercially available single-tail SDS surfactants are used in the water-based electrolyte preparation to assist the exfoliation process and investigate their effects on GO production. Chemical reduction process is carried out to produce rGO due to a water-based solution that requires low temperature during reduction. Among several reducing agents, such as chemicals, plant extracts, microorganisms, proteins and hormones, hydrazine hydrate was selected due to its effectiveness in thin and fine rGO production (Chua & Pumera, 2014). The spraying deposition method is chosen among various transfer methods, such as chemical etching, roll-to-roll process, drop casting, and spin and dip

coating to transfer GO and rGO solutions. This method is used due to its simple process, easy control, potential for large-scale production and suitability for various substrates (Pham et al., 2010). Fluorine-doped tin oxide (FTO) is selected as a substrate with better performance as compared to indium-doped tin oxide (ITO). ITO displayed thermal instability and two times higher sheet resistance compared to FTO after sintering process. In addition, higher η was achieved by using FTO thus this substrate is recommended for DSSC application (Sima, Grigoriu, & Antohe, 2010).

Furthermore, the hybridization of rGO and MWCNTs which then coated by thin Pt NPs (10 nm) are also done in this work in order to investigate its performance as compared to the pristine rGO, MWCNTs, and Pt NPs CE thin films. In addition, its also done to improve the rGO conductivity and catalytic activity. The MWCNTs was produced from waste cooking palm oil (WCPO) as precursor by modified thermal CVD (TCVD) method (Azmina, Suriani, Falina, Salina, Rosly, et al., 2012; Azmina, Suriani, Falina, Salina, & Rusop, 2012; Suriani, Muhamad, et al., 2011; Suriani, Nor, & Rusop, 2010). To the best of our knowledge, this is the first report which utilized MWCNTs from WCPO and its hybridization with TC14-rGO before coating with thin Pt NPs as CE thin film and combined it with TiO₂ as photoanode for DSSCs application.

The morphology structure of photoanode material also plays a key role in the DSSCs photovoltaic performance. This is due to their role on providing surface area for dye molecules adsorption, light absorption, and also transferring the excited electrons to the substrate. Several semiconductor oxide layers that have been used as photoanodes for DSSCs are zinc oxide (ZnO) (Jiang, Sun, Lo, Kwong, & Wang, 2007; D. Wang et al., 2017; Xie et al., 2018), stannic oxide (SnO₂) (Kavan, Yum, & Grätzel, 2011;

Ramasamy et al., 2008), zinc stannate (Zn₂SnO₄) (J. Gong, Liang, & Sumathy, 2012), strontium titanate (SrTiO₃) (C. W. Kim, Suh, Choi, Kang, & Kang, 2013) and TiO₂ (M. K. Ahmad, Mohan, & Murakami, 2015; M. K. Ahmad, Mokhtar, et al., 2016; M. K. Ahmad, Soon, et al., 2016; Fazli et al., 2017; Ullattil & Perivat, 2017; Ullattil, Thelappurath, et al., 2017; J.-F. Wang, Zhang, & He, 2018; D. Zhang, Yoshida, Oekermann, Furuta, & Minoura, 2006). Among all, ZnO and TiO₂ are the most popular semiconductor materials investigated in the DSSCs application. This is due to their nontoxicity, wide band gap energy, and good carrier mobility (Y. J. Hwang, Hahn, Liu, & Yang, 2012; Lei, Li, Zhang, & Anpo, 2016; Qin et al., 2015; Tamilselvan, Yuvaraj, Kumar, & Rao, 2012).

ZnO presents better carrier mobility, lower electron recombination, and flexible os 4506 synthesis process as compared to TiO2 (Quintana, Edvinsson, Hagfeldt, & Boschloo, 2007). Recently, high DSSCs η of 8.22% was achieved when ZnO was treated by 1H,1H,2H,2H-perfluorodecyltriethoxysilane (PFDTES) hexane solution after dye immersion (Xie et al., 2018). However, less chemical stability of ZnO yields the precipitation after dye immersion thus resulted less dye loading, poor electron injection, and lower efficiency (Quintana et al., 2007). TiO₂ offers better chemical and physical stabilities (Lei et al., 2016; Qin et al., 2015; Tamilselvan et al., 2012), large surface area (Tamilselvan et al., 2012), and presents higher DSSCs efficiency as compared to ZnO thus suitable to be applied as a photoanode material (Quintana et al., 2007; Tiwana, Docampo, Johnston, Snaith, & Herz, 2011).

> TiO₂ has three crystallite forms (phases) which are commonly known as anatase, rutile, and brookite. Brookite is not beneficial for several applications due to its unstable

form at room temperature. Anatase is a metastable form which can transformed into rutile by high temperature, while rutile is the most stable form. Both anatase and rutile forms are commonly utilized for DSSCs application due to their high photocatalytic activity (Lei et al., 2016). However, the drawback of TiO₂ as compared to ZnO as photoanodeis its lower electron mobility and higher electron recombination thus requiring improvement (Quintana et al., 2007). It is known that TiO₂ morphology can critically affect the TiO₂ performance, thereby its improvement and modification (J.-Y. Liao, He, Xu, Kuang, & Su, 2012) were widely investigated to solve this problem. These include varying layer numbers (Z.-S. Wang, Yanagida, Sayama, & Sugihara, 2006), addition of different haze (Chiba, Islam, Komiya, Koide, & Han, 2006) and other metal oxide coatings or dopings (Dahlan, Md Saad, Berli, Bajili, & Umar, 2017; Kroon et al., 2007), utilization of other nanostructures and mixing the TiO₂ phase (Yasin, Guo, & Demopoulos, 2016; W. Zhou et al., 2011). Combination of the crystallinity phase may yield high photocatalytic activity and consequently improve the *η* value (Fazli et al., 2017; L.-J. Wang et al., 2014; J. Zhao, Wu, Zheng, Huo, & Tu, 2015).

The zero-dimensional (0-D) TiO₂ NPs provide a large specific area for effective dye adsorption, which may increase DSSCs η thus highly recommended. Recently, one-dimensional (1-D) TiO₂ nanostructures such as nanorods (NRs) (M. K. Ahmad, Soon, et al., 2016; Qin et al., 2015), nanotubes (J. Hu et al., 2016), and nanowires (NWs) (Faisal, 2015; W. Wu et al., 2012) gain a lot of interest to be applied as DSSCs photoanode due to its better light harvesting, less grain boundary, slow electron recombination, and faster electron transport (Sadhu & Poddar, 2014; W. Wu et al., 2012). The combination of both morphologies and phases was proven to give better DSSCs performance as compared to the pure phase. Hafez, Lan, Li, & Wu (2010)

showed that the pure TiO₂ NRs and TiO₂ NPs give lower η (4.4 and 5.8%, respectively) as compared to the TiO₂ NRs/NPs bilayer photoanode (7.1%). Y. Cao et al. (2016) also achieved higher η of 7.39% by utilizing bilayered photoanode consisting of TiO₂ NRs and TiO₂ NPs as compared to pure film (0.54 and 4.63% of TiO₂ NRs and TiO₂ NPs, respectively). Moreover, W. Wu et al. (2012) also showed that two layers photoanode consists of TiO₂ NWs/NPs presents 7.92% efficiency as compared to the pure film. These results were also in a good agreement with several works done by utilizing both different morphologies and phases (M. K. Ahmad & Kenji, 2013; Rezvani, Parvazian, & Hosseini, 2016; J. Wang et al., 2014; W. Wu et al., 2012).

Post-treatment of TiO₂ nanostructures, such as annealing, also critically affects the optical and electrical properties of fabricated films. Ahn et al. (2011) showed that post-annealing of TiO₂ nanobarbed fibres resulted in higher crystallinity and higher conductivity as indicated by a lower band gap energy (E_g). Hasan, Haseeb, Saidur, & Masjuki (2008) reported that the TiO₂ morphology structure remains unchanged as the annealing temperature increases (300–600°C), while its transmittance decreases due to surface roughness. Meanwhile, D. Zhao et al. (2008) showed that the surface roughness factor for TiO₂ NPs increases with the annealing temperature (350–600°C). A low annealing temperature (350°C) yielded small-sized crystallites, while a higher temperature (600°C) improved the crystallinity, thus decreasing the internal surface area and impending the dye adsorption. Moreover, L. Meng, Li, and Santos (2011) found that the top ends of TiO₂ NRs sharpen as the annealing temperature increases (200–500°C). They also showed that higher DSSCs η was achieved by the annealed films as compared to the as-deposited films without annealing. This is also in a good

12

agreement with results from M. K. Ahmad, Soon, et al. (2016), who obtained the highest dye adsorption and DSSCs η by annealing TiO₂ NRs at 450°C for 30 minutes.

Besides post-annealing treatment, the hybridization of TiO₂ nanostructures with carbonaceous material, such as CNTs, graphene, GO, or rGO was also done in order to improve the TiO₂ electrical properties (Ilyas, Gondal, Baig, Akhtar, & Yamani, 2016; S.-B. Kim et al., 2015; J. Liu, Fu, et al., 2015; L. Liu, Zhang, Zhang, & Feng, 2017; Mehmood, Malaibari, et al., 2016; J. Song et al., 2011; J. Wang et al., 2014; J. Zhao, Wu, et al., 2015). This is due to the high conductivity of the carbonaceous material, which increases the electron transfer through TiO₂, decreases the electron recombination, and yields higher short circuit current density (J_{sc}). Higher η of 7.52% was achieved by J. Zhao, Wu, et al. (2015) when utilizing TiO₂-rGO nanocomposite via one-step hydrothermal method as compared to pure TiO₂ NPs film (6.39%). Meanwhile, L. Liu et al. (2017) achieved 6.85% efficiency when immersing the prepared TiO₂ NPs in the GO solution and then reducing them via thermal reduction process. However, they also found that less dye adsorption occurred in the sample with excessive rGO amount. Therefore, high amount of rGO must be avoided.

The configuration of the photoanode film also gives different effects in DSSCs performance. J. Song et al. (2011) sprayed a rGO layer on TiO₂ NPs and achieved 6.06% efficiency. They also found that a thicker rGO layer was not beneficial for dye adsorption, which decreased η . In contrast, J. Liu, Fu, et al. (2015) deposited the rGO layer between TiO₂ NPs films by the electrospray method. By spraying 1 layer of rGO (40 nm) between two TiO₂ NPs films, a higher efficiency (7.8%) was obtained as compared to pure TiO₂ NPs films (7.1%) and thicker (120 nm) rGO layers (7.3%).

Furthermore, when they investigated multiple rGO layers between the TiO₂ NPs films, the highest η (8.9%) was achieved by three rGO layers as compared to five layers rGO (6.1%).

In this work, the novel combination of rutile 1-D TiO₂ nanostructures (NRs and NWs) synthesized by hydrothermal growth method (M. K. Ahmad, Mohan, et al., 2015; M. K. Ahmad & Murakami, 2015; Faisal, 2015) and anatase 0-D TiO₂ NPs applied by squeegee method (D. Zhang et al., 2006) are used as bottom and upper layer of photoanode layer, respectively. Both methods are chosen due to its low-cost with simple preparation and fabrication. The three-dimensional (3-D) TiO₂ nanoflowers (NFs), nanotrees (NTs), and nanocauliflowers (NCFs) are also produced during hydrothermal synthesis. In addition, the novel hybridization of TiO₂ NRs-NFs with rGO based on customized triple-tail TC14 surfactant (TC14-rGO) and TC14-rGO_MWCNTs hybrid solution are also done by the simple spraying deposition method before applying TiO₂ NPs. In addition, the post-annealing treatment of TiO₂ NRs-NFs after hydrothermal growth is also done in order to investigate its effect in the DSSCs performance.

The second major problem of clean water can comes from high amount of dangerous heavy metal and dye waste which dissolved in the air and water, respectively. This contamination results from the rapid industrial factory growth, such as textile industries, pharmaceuticals, metal plating, and printing industries which causes the lack of clean water. The difficulty in treating dye wastewater which contains toxic substances and are non-degradable substances, becomes an important issue that needs to be solved (Z. Zhu et al., 2017). Several methods that are generally used to remove

dye from contaminated water are chemical and physical sorption, evaporation, biological degradation, chemical oxidation, flocculation-coagulation, photocatalytic system, electrodeposition, and membrane separation/filtration (Makertihartha, Rizki, Zunita, & Dharmawijaya, 2017; Z. Zhu et al., 2017). Among these methods, membrane filtration gains considerable interest due to its several advantages, such as simple operation, minimal chemical used, low energy, good separation, easy automation, low pollution, and high recovery rate (Méricq, Mendret, Brosillon, & Faur, 2015; Z. Zhu et al., 2017).

The pollutant filtration efficiency is strongly affected by the membrane type. The membrane can be divided into microfiltration, ultrafiltration, NF, and reverse osmosis (RO) based on its pore size (Shon, Phuntsho, Chaudhary, Vigneswaran, & Cho, 2013). NF membrane offers some advantages for textile wastewater, such as relatively high water flux and permeability compared with RO, low operating pressure, low energy consumption, small pore size (1–5 nm), and high efficiency to remove the dye (Safarpour, Vatanpour, Khataee, & Esmaeili, 2015; Shon et al., 2013; Z. Zhu et al., 2017). Several methods that are generally used to prepare the membrane include interfacial polymerization, stretching, sintering, track-etching, electrospinning, and phase inversion method (Lalia, Kochkodan, Hashaikeh, & Hilal, 2013).

Phase inversion method is commonly used due to its simple and easy preparation. Then, the morphology of the fabricated membrane is strongly affected by several factors, including polymer concentration, solvent (Madaeni & Taheri, 2011; Nasib, Hatim, Jullok, & Alamery, 2017), non-solvent (Thürmer, Poletto, Marcolin, Duarte, & Zeni, 2012), composition, coagulant temperature (X. Wang, Zhang, Sun, An,

& Chen, 2008), precipitation time, temperature and evaporation time before immersion, additive (N. M. Mokhtar, Lau, Ng, Ismail, & Veerasamy, 2015; Ngang, Ooi, Ahmad, & Lai, 2012), and casting thickness (Madaeni & Taheri, 2011). Various polymer materials that are generally used for membrane fabrication include polysulfone (PSf), polyacrylonitrile (PAN), polyaniline (PANI) (Yusoff et al., 2018), polystyrenesulfonate (PSS), polyethersulfone (PES) (Zinadini, Zinatizadeh, Rahimi, Vatanpour, & Zangeneh, 2014), polymethylmethacrylate (PMMA), polyethyleneimine (PEI), polyvinylpyrrolidone (PVP), and polyvinylidene fluoride (PVDF) (X. Cao, Ma, Shi, & Ren, 2006; Kumaran, Alagar, Kumar, Subramanian, & Dinakaran, 2015; Ngang et al., 2012; Z. Zhu et al., 2017). The formation of membrane pores with either finger- or sponge-like structure is also affected by the polymer material and solvent types.
An extremely low polymer molecular weight results in exceedingly weak membrane, whereas an excessively high value makes the membrane difficult to process due to the highly viscous solution (J. F. Kim, Jung, Wang, Drioli, & Lee, 2017).

PVDF presents excellent properties, including chemical, alkali, and corrosion resistance; thermal, chemical, and UV stability; good membrane-forming properties; high mechanical strength; and good solubility in many organic solvent, thereby making it applicable for water treatment (Ngang et al., 2012; Nikooe & Saljoughi, 2017; Z. Wang, Yu, et al., 2012; Z. Zhu et al., 2017). Meanwhile, the generally used organic solvents include NMP (Nasib et al., 2017; Thuyavan, Anantharaman, Arthanareeswaran, & Ismail, 2016), DMF (Thürmer et al., 2012), DMSO (Thuyavan et al., 2016), and N,N-dimethylacetamide (DMAc) (Madaeni & Taheri, 2011; Nasib et al., 2017; Thuyavan et al., 2016).

Madaeni and Taheri (2011) investigated the effect of polymer concentration, casting thickness, and solvent type on the morphology of the fabricated membrane. The result showed that 20 wt% of PVDF presents wider and longer finger-like pore morphology as compared to lower PVDF content. They also found that 200 µm casting thickness results in the highest flux and permeability. The utilization of DMAc in the membrane solution preparation results in high porosity and flux compared with NMP and DMF (Madaeni & Taheri, 2011; Nasib et al., 2017; Thuyavan et al., 2016; X. Wang, Zhang, et al., 2008). Meanwhile, Buonomenna, Macchi, Davoli, and Drioli (2007) showed that the direct immersion in the coagulant after casting process results in higher porosity as compared to the delayed immersion. Membrane solution heating during stirring process. Thürmer et al. (2012) also found that the use of pure water as coagulant of 4500 results in an asymmetric pore membrane with higher hidrophilicity than ethanol, buper followed by a water coagulant.

However, PVDF is well-known as high hydrophobic material which reduces the flux and permeability, hence requiring modification, either through physical or chemical means (X. Cao et al., 2006). In improving PVDF hydrophilicity, hydrophilic inorganic NPs additive, such as aluminium oxide (Al₂O₃), black iron oxide (Fe₃O₄), cadmium sulfide (CdS), silica, carbon-based and semiconductor materials are clearly needed. Carbon nanotubes, graphene, GO, and rGO which are carbon-based materials are widely investigated for PVDF modification. Among these materials, GO gained considerable interest due to its large surface area and high amount of oxygen-functional groups (Z. Zhu et al., 2017). Z. Zhu et al. (2017) obtained higher hidrophilicity and water flux than pure PVDF membrane by adding GO. GO addition also alters the

membrane morphology of the finger-like structure. Y. Zhao et al. (2013) showed that PVDF/GO blend membrane presents higher rejection as compared to pure PVDF membrane. This result also agreed with the findings of other studies (M. Hu & Mi, 2013; Z. Xu, Zhang, et al., 2014; P. Zhang et al., 2017).

Most studies reported the use of the powder form of GO that resulted from Hummers' method as additives in membrane solution preparation (M. Hu & Mi, 2013; Z. Wang, Yu, et al., 2012; Y. Zhao et al., 2013). As mentioned before, the synthesized GO by Hummers' or modified Hummers' methods produced good quality GO. However, it presents unsafe and inefficient synthesis method due to the usage of strong acid and highly toxic material and its complex synthesis steps, respectively (Kang et al., 2016). Electrochemical exfoliation method then becomes a promising solution due 05 4506 to its simple, low-cost, and low chemical consumption (Yu et al., 2015). On the other hand, several metal oxides such as ZnO, zirconium oxide (ZrO₂), and TiO₂ were widely developed as an additive due to their good properties such as stability, availability, antibacterial activity, and the presence of abundant hydroxyl groups. The abundance of hydroxyl groups improves the hydrophilicity of the material, thus increasing the flux and permeability (X. Cao et al., 2006). Ngang et al. (2012) shows that PVDF-TiO₂ mixed-matrix membrane enhances the water permeability and increases the methylene blue (MB) rejection.

Hence, in this work, the directly synthesized DMAc-based GO assisted by commercially available single-tail SDS surfactant is used as a solvent before mixing it with TiO_2 as an additive to fabricate modified PVDF-based NF membrane. TiO_2 is utilized to further improve the membrane's hydrophilicity. Then, pristine PVDF

membrane fabricated by DMAc and also PVDF/SDS-GO fabricated using the directly synthesized DMAc-based GO are used for comparison. Afterward, the three fabricated membranes are used to investigate their effectiveness for MB rejection application. To the best of our knowledge, this work presents a novel and simple GO synthesis through electrochemical exfoliation assisted by SDS surfactant by utilizing DMAc as the solvent for PVDF-based membrane fabrication.

1.3 **Problem Statement**

Pristine Pt is known as an outstanding material utilized as CE film for DSSCs application. However, high cost of Pt due its scarcity increases the DSSCs production os so cost thus limits its application. The utilization of GO and rGO as a derivative of graphene material which offers a low-cost, relatively high electrical and physical properties is a promising method to reduce and further slowly replaced the utilization of Pt. The electrochemical exfoliation method presents simpler synthesis process of GO as compared to Hummers' method which utilizing strong acids and hazardous chemicals. The utilization of customized triple-tail TC14 surfactant as dispersing and stabilizing agent in the electrochemical exfoliation offers better exfoliation as compared to the commercially available single-tail SDS surfactant.

Further chemical reduction process utilizing hydrazine hydrate instead of several reducing agents resulted thin and fine rGO with low oxygen (O) content thus increase the films conductivity. The produced solution form from electrochemical exfoliation and chemical reduction process gives an advantage in the transfer process

in order to fabricate thin film. More fabrication steps and the usage of solvent to disperse GO powder which absolutely needed in Hummers' method can be hindered. Spraying deposition method offers simpler and easier to control the film fabrication. In order to improve the electrical properties of CE film, the hybridization of TC14-rGO and MWCNTs from WCPO is carried out. Thin Pt coating is also carried out in order to increase the electrocatalytic activity of the fabricated CE thin film.

Meanwhile, the bilayered photoanode film consists of different TiO₂ nanostructures morphology and crystalline phases is also fabricated to achieve higher dye adsorption and faster electron transport. The hybridization of TiO₂ nanostructures with the produced TC14-rGO and TC14-rGO_MWCNTs are also carried out in order to achieve higher conductivity thus decrease the electron recombination during DSSCs process. Hydrothermal growth and squeegee method are selected for TiO₂ hope nanostructures synthesis method due to its simpler preparation and synthesis process. On the other hand, more fabrication steps of GO as the additive for membrane fabrication can be reduced by performing the direct electrochemical exfoliation. Direct DMAc-based GO in the solution form can be obtained from single step. The hazardous and complex step of Hummers' method can be avoided thus presents a simpler and safer synthesis method for membrane fabrication.

Therefore, in this work, GO-based material synthesized from the simple electrochemical exfoliation assisted by customized triple-tail TC14 and commercially available single-tail SDS surfactants are used for DSSCs and membrane application. The water-based GO is used to fabricate various CE thin films and also photoanode

hybrid film for DSSCs. Meanwhile, DMAc-based GO is used to fabricate PVDF-based NF membrane for dye rejection application.

1.4 Research Objectives

The goals of this study are:

- i. To improve the DSSCs photovoltaic performance by utilizing various kind of GOand rGO-based CE thin films and its hybridization.
- To enhance the DSSCs photovoltaic performance by utilizing various kind of TiO₂ nanostructures and its hybridization as photoanode film.
- iii. To investigate the novel direct DMAc-based GO synthesized from electrochemical

5-4506832 exfoliation for membrane separation application.

 iv. To improve the NF membrane performance by utilizing the synthesized DMAcbased GO and TiO₂ nanostructures.

1.5 Scope and Limitations of Study

The utilized surfactant in the synthesis of GO is limited to the customized triple-tail TC14 and commercially available single-tail SDS surfactants. Next, the production of rGO is carried out by chemical reduction process utilizing hydrazine hydrate instead of thermal reduction process due to the water-based solvent. Its hybridization to fabricate CE hybrid thin film is only focused with MWCNTs based on WCPO. The thin Pt NPs is only coated for TC14-rGO and TC14-rGO_MWCNTs film.

Meanwhile, 0-, 1-, and 3-D TiO₂ nanostructures are utilized as photoanode film instead of ZnO. The TiO₂ crystalline phase is only focused on rutile and mixed of anatase and rutile. The 0-D TiO₂ nanostructures is limited to TiO₂ NPs, while the 1-D nanostructures is limited to TiO₂ NRs and NWs. TiO₂ NFs, NTs, and NCFs are the 3-D TiO₂ nanostructures which simultaneously produced during hydrothermal method of 1-D TiO₂ NRs. The hybridization of photoanode film is done for only TiO₂ NRs-NFs film utilizing TC14-rGO and TC14-rGO_MWCNTs hybrid solutions. Meanwhile, the utilization of carbonaceous and semiconductor material as additive for the membrane fabrication are limited for the GO and TiO₂, respectively. In addition, the investigation of dye rejection application is limited for MB dye with low concentration (10 ppm).

The fabricated GO- and rGO-based CE thin films and its hybridization, and also of the NF membrane are characterized using several instrumentations. FESEM and EDX are used to investigate the morphology and element compound of various fabricated photoanode, CE thin films, and NF membrane. Meanwhile, HRTEM, XRD, micro-Raman spectroscopy are used to investigate the structural properties. Diffrac.eva V4.0 software is used to determine the phase, crystallite size, and crystallite percentage from XRD data. The integral breadth (*I* breadth) measurement is preferred instead of full width at half maximum (FWHM) due to its accuracy. The optical and electrical properties of fabricated film are measured by UV-Vis, four-point probe equipment with Keithley as sourcemeter and Leios TMXpert software as data analysis. Moreover, UV-Vis is also used to measure the absorption of the treated water after dye rejection test was performed. The contact angle measurement is used to measure the hydrophilicity of fabricated NF membrane utilizing drop shape analysis. Solar simulator under 1M

solar illumination is used for DSSCs efficiency measurement, while dead-end stirred cell is used for the flux and dye rejection measurement.

1.6 Thesis Organization

This work is focused on two applications based on GO- or rGO-based material. The improvement of DSSCs efficiency by utilizing various type of CE thin films and various type of TiO_2 nanostructures are done for DSSCs application. Meanwhile, the investigation of DMAc-based GO using NF membrane tested for MB is done for dye rejection application. This thesis consists of 5 chapters which presents the details work regarding DSSCs and dye rejection applications. Chapter 1 explains the research background, problem statement, research objectives, and scope and limitations of the study. The fundamental theories and previous studies related to DSSCs and NF membrane applications are intensively describes in Chapter 2. It is divided into two main parts, and each part of applications is explained clearly. The synthesis and fabrication process, and also characterization technique of various CE thin films, TiO₂ nanostructures, and NF membrane are clearly explained in Chapter 3. Next, Chapter 4 explains the results of each application including the morphology, structural, optical, electrical, and performance of fabricated CE and photoanode films and also NF membrane. The last chapter (Chapter 5) summarizes the results of both applications and cover the suggestion for the future work.