

FAULT-TOLERANT MHEALTH FRAMEWORK IN TELEMEDICINE ENVIRONMENT FOR CHRONIC HEART DISEASE PATIENTS

© 05-4506832 Perpustakaan Tuanku Bainun AHMED SHIHAB AHMED ALBAHRI

UNIVERSITI PENDIDIKAN SULTAN IDRIS

2019

FAULT-TOLERANT MHEALTH FRAMEWORK IN TELEMEDICINE ENVIRONMENT FOR CHRONIC HEART DISEASE PATIENTS

AHMED SHIHAB AHMED ALBAHRI

O5-4506832 Spustaka.upsi.edu.my Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah SpustakaTBainun berger pustakaTBainun

THESIS SUBMITTED IN FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

FACULTY OF ART, COMPUTING & CREATIVE INDUSTRY SULTAN IDRIS EDUCATION UNIVERSITY

2019

ii

UPSI/IPS-3/BO 32 Pind \cdot 00 m/s \cdot 1/1

Please tick (✓) **Project Paper** Masters by Research Masters by Mix Mode Ph.D.

INSTITUTE OF GRADUATE STUDIES

DECLARATION OF ORIGINAL WORK

This declaration is made on the 16/7/2019

i. Student's Declaration:

I'm Ahmed Shihab Ahmed Albahri -p20162002423-Faculty of Art, Computing, and Creative Industry. Hereby declares that the dissertation /thesis for titled (Fault-Tolerant mHealth Framework in Telemedicine Environment for Chronic Heart Disease Patients) is my original work. I have not plagiarized from any other scholar's work and any sources that contain copyright had been cited properly for the permitted meanings. Any quotations, excerpt, reference or re-publication from or any works that have copyright had been clearly and well cited. Perpustakaan Tuanku Bainun

Signature of the student

ii. Supervisor's Declaration:

I'm Dr. Aos Alaa Zaidan- hereby certify that the work entitled (Fault-Tolerant mHealth Framework in Telemedicine Environment for Chronic Heart Disease Patients) was prepared by the above-named student, and was submitted to the Institute of Graduate Studies as a partial / full fulfillment for the conferment of the requirements for Doctor of Philosophy (By Research), and the aforementioned work, to the best of my knowledge, is the said student's work.

22/07/2019_ Date

Signature of the Supervisor

pustaka.upsi.edu.i

INSTITUT PENGAJIAN SISWAZAH / INSTITUTE OF GRADUATE STUDIES

BORANG PENGESAHAN PENYERAHAN TESIS/DISERTASI/LAPORAN KERTAS PROJEK DECLARATION OF THESIS/DISSERTATION/PROJECT PAPER FORM

Tajuk / *Title*: Fault-Tolerant mHealth Framework in Telemedicine Environment for Chronic Heart Disease Patients

No. Matrik /*Matric No.*: P20162002423

Saya / I: Ahmed Shihab Ahmed Albahri

mengaku membenarkan Tesis/Disertasi/Laporan Kertas Projek (Kedoktoran/Sarjana)* ini disimpan di Universiti Pendidikan Sultan Idris (Perpustakaan Tuanku Bainun) dengan syarat-syarat kegunaan seperti berikut:-

acknowledged that Universiti Pendidikan Sultan Idris (Tuanku Bainun Library) reserves the right as follows:-

- 1. Tesis/Disertasi/Laporan Kertas Projek ini adalah hak milik UPSI. The thesis is the property of Universiti Pendidikan Sultan Idris
- 2. Perpustakaan Tuanku Bainun dibenarkan membuat salinan untuk tujuan rujukan dan penyelidikan.

Tuanku Bainun Library has the right to make copies for the purpose of reference and research.

3. Perpustakaan dibenarkan membuat salinan Tesis/Disertasi ini sebagai bahan pertukaran antara Institusi Pengajian Tinggi.

The Library has the right to make copies of the thesis for academic exchange.

4. Sila tandakan ($\sqrt{}$) bagi pilihan kategori di bawah / Please tick ($\sqrt{}$) from the categories below:-

SULIT/CONFIDENTIAL	Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub dalam Akta Rahsia Rasmi 1972. / Contains confidential information under the Official Secret Act 1972
TERHAD/RESTRICTED	Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan ini dijalankan. / Contains restricted information as specified by the organization where research was done.
TIDAK TERHAD / OPEN ACCE	SS
(Tandatangan Dalajar/ Signatura)	(Tandatangan Penyelia / Signature of Supervisor)
Tarikh:	& (Nama & Cop Rasmi / Name & Official Stamp)
Catatan: Jika Tesis/Disertasi ini SULIT @ TERHAD, dengan menyatakan sekali sebab dan tempoh lapora	sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan an ini perlu dikelaskan sebagai SULIT dan TERHAD .
Notes: If the thesis is CONFIDENTAL or R	ESTRICTED, please attach with the letter from the related

Notes: If the thesis is CONFIDENTAL or RESTRICTED, please attach with the letter from the related authority/organization mentioning the period of confidentiality and reasons for the said confidentiality or restriction.

ACKNOWLEDGMENT

"In the name of Allah, the Most Gracious and the Most Merciful"

Alhamdulillah, first and foremost, praise be Allah, the Cherisher and Sustainer of the World and to the Prophet Muhammad (Peace and Blessings of Allah Be upon Him) who was sent by Allah to be a great teacher to the mankind.

This research would not have come to fruition without all your help and supports. Thank you. Allah blesses you

Special thanks to my supervisor Dr. Aos Alaa Zaidan, and my co-supervisor Dr. Bilal Bahaa Zaidan for their guidance and advice throughout the research, their patience, kindness, interjecting a healthy dose of common sense when needed.

My warmest appreciation to my beloved parents who support me with their love, do 'a support for both moral and financial for my study. Thank you my dear mother for this great support. Many thanks go to my father Shihab Ahmed Albahri, thank you my dear for helping me and supporting me. My heart overflows with gratitude for all my family especially my wife for being supportive and understanding. I would like to extend my appreciation to my sister and my brothers Ali and Osama who involved and give a helpful hand in ensuring the success of this research.

(2) 0

ABSTRACT

This research aimed to improve the fault tolerance of healthcare services provided for Chronic Heart Disease (CHD) patients living in remote areas. A new fault-tolerant mHealth framework was proposed to solve existing problems in healthcare services due to frequent failures in the telemedicine architecture. This study used an experimental research design that was carried out based on two stages. In the first stage, the researcher proposed a new algorithm known as Three-level Localization Triage (3LLT) to exclude the triage process from a medical center (Tier 3) and to overcome alarm failures related to Tier 1. In the second stage, the proposed framework was used to assist the decision maker to make the appropriate hospital selection based on a Multi-Criteria Decision Making technique, namely the Analytic Hierarchy Process (AHP). Two datasets were used comprising a dataset of 572 CHD patients and a dataset of hospitals healthcare services, which were used in the triage stage and in the hospital selection stage, respectively, based on two scenarios. The first scenario involved real high-level services of 12 hospitals located in Baghdad, Iraq, and the second scenario was based on low-level simulated services of 12 hospitals located in Kuala Lumpur, Malaysia. The results showed that the AHP technique was highly effective in solving the failures of healthcare services and the problems related to hospital selection. Moreover, the results showed significant differences in the groups' scores, indicating that the ranking results were identical for the three groups. Clearly, such empirical results suggest that the ranking of hospitals cannot be determined in a specific situation with many combined factors that may have a significant impact on the priority setting at the hospital level. For the validation of the framework, the results showed that the ranking results were perfectly identical. The implication of this study is that medical organizations can use the proposed fault-tolerant framework to assign patients to appropriate hospitals that can provide them with prompt, effective healthcare services.

vi

RANGKA KERJA MKESIHATAN TAHAN ROSAK UNTUK PEMILIHAN HOSPITAL BAGI PESAKIT SAKIT JANTUNG KRONIK DI DALAM PERSEKITARAN TELEPERUBATAN

ABSTRAK

Kajian ini bertujuan untuk mempertingkatkan toleransi kesalahan dalam perkhidmatan penjagaan kesihatan bagi pesakit jantung kronik yang tinggal di kawasan pendalaman. Satu rangka kerja mKesihatan tahan rosak dicadangkan untuk menyelesaikan permasalahan dalam perkhidmatan penjagaan kesihatan yang disebabkan kegagalan yang kerap berlaku dalam senibina teleperubatan. Kajian ini menggunakan reka bentuk kajian experimen yang dijalankan dalam dua fasa. Dalam fasa pertama, para penyelidik mencadangkan satu algoritma baru yang dikenali sebagai Three-level Localization Triage (3LLT) untuk mengasingkan process triage dari satu pusat perubatan (Tier 3) dan mengatasi kegagalan penggera yang berkaitan dengan Tier 1. Dalam fasa kedua, rangka kerja yang telah dicadangkan digunakan untuk membantu pembuat keputusan untuk melaksanakan pemilihan hospital berdasarkan teknik Multi-Criteria Decision Making iaitu Analytic Hierarchy Process (AHP). Kajian ini menggunakan dua dataset yang terdiri daripada satu dataset yang melibatkan 572 pesakit jantung kronik dan satu dataset berkaitan dengan perkhidmatan penjagaan kesihatan yang digunakan dalam fasa *tiage* dan dalam fasa pemilihan hospital, masing-masing, berdasarkan dua senario. Senario pertama melibatkan perkhidmatan beraras tinggi di 12 hospital di Baghdad, Iraq, dan senario kedua berdasarkan simulasi perkidmatan 12 hospital di Kuala Lumpur, Malaysia. Dapatan menunjukkan teknik AHP amat berkesan dalam menyelesaikan kegagalan dalam perkidmatan penjagaan kesihatan dan permasalahan dalam pemilihan hospital. Tambahan pula, dapatan mempamerkan perbezaan yang signifikan dalam skor kumpulan yang menunjukkan keputusan-keputusan pemeringkatan adalah sama untuk ketiga-tiga kumpulan. Jelas sekali, dapatan empirik berkenaan menunjukkan pemeringkatan hospital tidak dapat ditentukan di dalam satu situasi yang spesifik yang melibatkan gabungan pelbagai faktor yang mempunyai impak yang signifikan terhadap pengesetan keutamaan berdasarkan tahap hospital. Untuk pengesahan rangka kerja, dapatan menunjukkan keputusan-keputusan pemeringkatan adalah satu peratus sama. Implikasi kajian ini adalah organisasi perubatan boleh menggunakan rangka kerja tahan rosak ini untuk menempatkan para pesakit di hospital yang sesuai agar mereka dapat diberikan perkhidmatan penjagaan kesihatan dengan cepat dan berkesan.

0

TABLE OF CONTENTS

DECLAR	ATION OF ORIGINAL WORK	ii	
DECLARATION OF THESIS			
ACKNOW	VLEDGMENT	iv	
ABSTRA	CT	v	
ABSTRAI	K	vi	
TABLE O	OF CONTENTS	vii	
LIST OF 7	TABLES	xii	
LIST OF	FIGURES	xiv	
LIST OF	ABBREVIATIONS O pustaka.upsi.edu.my APPENDICES	too xvi ptbupsi xx	
CHAPTE	R1 INTRODUCTION	1	
1.1 In	ntroduction	1	
1.2 R	esearch Background	2	
1.3 Si	ignificant of Study	7	
1.4 P	roblem Statement	8	
1.5 R	esearch Objectives	13	
1.6 R	esearch Questions	13	
1.7 T	he Link between Objectives and Research Questions	14	
1.8 R	esearch Scope	15	
1.9 R	esearch Organization	17	
1.10 C	hapter Summary	19	

O 5-4506832 pustaka.upsi.edu.my F Perpustakaan Tuanku Bainun VerpustakaTBainun Perpustakaan Sultan Abdul Jalil Shah

ptbupsi Viii

CHAPTER	2 LITERATURE REVIEW	21
2.1 Int	roduction	21
2.2 Sy	stematic Review Protocol	24
2.2.1	Method	24
2.2.2	Information Sources	24
2.2.3	Study Selection	25
2.2.4	Search	25
2.2.5	Eligibility Criteria	26
2.2.6	Data Collection Process	27
2.2.7	Taxonomy Analysis	29
2.3 Te	lemedicine Application: An overview	31
2.4 Tie	er 1	35
2.4.1	Sensor Based	35
2.5 Tie	er 3	41
2.5.1	Server Based	41
05-4502.6 Tie	er 2 ^{ustaka.upsi.edu.my} Kampus Sultan Abdul Jalil Shah	Ptbu47
2.6.1	Gateway Based	47
2.6.2	mHealth Doctor	50
2.6.2	2.1 Ambient Assisted Living	51
2.6.2	2.2 Treatment Support and Diseases Surveillance	51
2.6.2	2.3 Triage over mHealth	54
2.6	5.2.3.1 Triage based Disaster Casualties & Incidents	54
2.6	5.2.3.2 Triage-based Home Monitoring	56
2.6.2	2.4 Network Failure between Tier 2 and Tier 3	56
2.7 He	althcare Service Challenges in Telemedicine Application	58
2.7.1	Healthcare Scalability Challenge	60
2.7.1	1.1 Aging Population	61
2.7.1	1.2 Disaster Scenes and MCIs	64
2.7.1	1.3 Network Congestion	66
2.7.2	Server Failures Challenges	69
2.8 Ga	p Analysis for Telemedicine Applications	71

2.9	Remote Healthcare Monitoring for Telemedicine	75
2.10	Chronic Diseases in Remote Healthcare Monitoring	76
2.10	0.1 Heart Disease	79
2.11	Sources Used to Measure Patients' Medical Vital Signs	80
2.12	Triage Standards and Guidelines	83
2.13	Healthcare Services Packages and Time of Arrival of Patients at the Hospital	90
2.13	3.1 Healthcare Services Packages	90
2	2.13.1.1 Package 1 (Alarm)	91
2	2.13.1.2 Package 2 (Alarm)	93
2	2.13.1.3 Package 3 (Directions)	94
2	2.13.1.4 Package 4 (Directions)	95
2	2.13.1.5 Package 5 (Directions)	96
2.13	3.2 Time of Arrival of Patients at the Hospital (TAH)	97
2.13	3.3 Open Issues and Challenge for Hospital Selection	98
2.14	Multi-Criteria Decision Making (MCDM): Review and Analysis	101
05-4506832.14	4.1 Definition and Significance of MCDM	101
2.14	4.2 Applications of MCDM	104
2.14	4.3 Overview of Using MCDM in Healthcare	105
2.14	4.4 MCDM Methods	107
2	2.14.4.1 AHP	112
	2.14.4.1.1 MLAHP to Evaluation Main and Sub-Criteria	113
	2.14.4.1.2 AHP to Ranking Alternatives	114
2.14	4.5 Summary for MCDM	114
2.15	Chapter Summary	115
СНАРТ	TER 3 RESEARCH METHODOLOGY	119
3.1	Introduction	119
3.2	Preliminary Study Phase	120
3.3	Identification Phase	123
3.3.	1 Identify the Targeted Tier within the Telemedicine Architecture	123
3.3.	2 Identification of Patients with Chronic Heart Disease and Dataset	125
3.3.	3 Propose of 3LLT within mHealth for Triage and Detect Tier 1 Failures	126

	3.3.3.1	Requirements for Constructing 3LLT	127
	3.3.3.2	3LLT Workflow	128
	3.3.3.3	Data Fusion Module	129
	3.3.3.4	Output of the Data Fusion Module	131
	3.3.3.5	3LLT Algorithm	133
	3.3.3.6	Triage Level Calculation Linked with Healthcare Packages	134
3.	3.4 Ide	entification of Distributed Hospitals and Packages Dataset and TAH	136
3.	3.5 Pro	ppose Decision Matrix in mHealth	139
	3.3.5.1	Describe the DM Packages	140
	3.3.5.2	Evaluation of DM	142
3.4	Develo	pment Phase	144
3.	4.1 De	velop Decision-Making Solution for Ranking Hospitals Based AHP	146
	3.4.1.1	MLAHP to set weights for the main and sub criteria	148
	3.4.1.2	AHP for Ranking Hospitals	159
3.	4.2 Ge	neralization aspect for the proposed Framework	169
05-4503832	Validat	ion Phase Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah	170
3.	5.1 Ob	jective Validation	170
3.6	Chapter	Summary	172
CHAP	TER 4	RESULTS AND DISCUSSION	173
4.1	Introdu	ction	173
4.2	Sequen	ces Result for Evaluation the DMs	175
4.	2.1 Pat	tients Dataset	176
4.	2.2 Но	spitals Healthcare Services Packages Dataset	176
	4.2.2.1	Real Healthcare Services Packages Dataset	177
	4.2.2.2	Simulated Healthcare Services Packages Dataset	178
4.	2.3 Pat	ient Location Statuses to Determine TAH	179
4.	2.4 Ev	aluation Scenarios	183
4.3	Rankin	g Hospitals Results	187
4.	3.1 Re	sult of MLAHP in set weights for the main and sub criteria	188
4.	3.2 Re	sult of AHP in Ranking Hospitals	197
	4.3.2.1	Weights of GCI for Services Criteria	198

	4.3.2.2 Weights of GCI for TAH Criteria	202
4.3	3.3 Result for Scenarios	204
4.4	Chapter Summary	215
СНАР	TER 5 VALIDATION	216
5.1	Introduction	216
5.2	Validation Process	217
5.2	2.1 Validation of the Ranking Results of Package 1	218
5.2	2.2 Validation of the Ranking Results of Package 2	222
5.2	2.3 Validation of the Ranking Results of Package 3	226
5.3	Chapter Summary	230
СНАР	TER 6 CONCLUSION AND FUTURE WORK	232
6.1	Introduction	232
6.2	Research Goals Attained	233
6.3	Research Contributions	235
6.4	Research Limitations	237
05-4506852	Recommendations for Future Work an Abdul Jalil Shah	238 Pt
6.6	Research Conclusion	239
REFE	RENCES	241
LIST OF PUBLICATIONS		
APPEN	NDICES	270

LIST OF TABLES

Table No.	Page
1.1 Link Between Objectives And Research Questions	14
2.1 Common Classification of Server Failures and Outage Data	70
2.2 Description of Relevant Medical Sources used in Monitoring Patients	81
2.3 State of the Art Triaging Systems	84
2.4 Evaluation Performance of MSHA Triage and Research Requirements	88
2.5 Healthcare Services Package 1 (Alarm)	92
2.6 Healthcare Services Package 2 (Alarm)	93
2.7 Healthcare Services Package 3 (Direction)	ptb.95
2.8 Healthcare Services Package 4 (Direction)	96
2.9 Healthcare Services Package 5 (Direction)	96
2.10 Example of Multiple-Attribute Problems	103
2.11 Advantages and Limitations of MCDM Methods	108
3.1 Healthcare Services Packages, Triaging Levels, TC Value	132
3.2 The If-then Statements Integrated with Data Fusion Algorithm	135
3.3 Healthcare Services Algorithm of (3LLT) Triage	135
3.4 Decision Matrix for Package 1 (Alarm)	140
3.5 Decision Matrix for Package 2 (Alarm)	141
3.6 Decision Matrix for Package 3 (Directions)	141
3.7 Nine Scales of Pairwise Comparisons (T L Saaty, 1977; Wind & Saaty, 1980)	151
3.8 Total Number of GCI for All Packages	163
4.1 Real Healthcare Services Dataset for 12 Hospitals within Baghdad- AL Karkh	177
4.2 Simulated Healthcare Services Dataset for 12 Hospitals	178
4.3 TAH/Distances of Location A towards 12 Hospitals within Baghdad- AL Karkl	n 181

0

O 5-4506832 pustaka.upsi.edu.my Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

4.4 TAH/Distances of Location B and C towards 12 Hospitals within Kula Lumpur	183
4.5 Ranking Hospitals Scenarios	184
4.6 Evaluation Results Of 9 Scenarios	184
4.7 MLAHP Measurement for Weight Preferences of Main Criteria (First Expert)	189
4.8 MLAHP Measurement for Weight Preferences of Sub-Criteria (First Expert)	190
4.9 MLAHP Local and Global Weights for Six Experts for Package 1	191
4.10 MLAHP Local and Global Weights for Six Experts for Package 2	192
4.11 MLAHP Local and Global Weights for Six Experts for Package 3	193
4.12 MLAHP Results of Weight Calculated for Three Packages for Six Experts	194
4.13 Maximum and Minimum Weight of Criteria Obtained from Six Experts	195
4.14 MLAHP Local and Global Weights Arithmetic Mean for Six Experts	196
4.15 GCI Weights of Services Criteria for Six Experts of Package 1	199
4.16 GCI Weight Arithmetic Mean for Six Experts for Services Criteria	202
4.17 GCI Weights of TAH Criteria for Six Experts of Package 1	203
4.18 GCI Weight Arithmetic Mean for Six Experts for TAH Criteria	204
4.19 Final Ranking Results of Evaluation Hospitals for 9 Scenarios Presented in 4.6	204
5.1 Validation Process for Scenario 1	219
5.2 Statistical Analysis Results for Four Groups Package1 (Scenarios1, 4, and 7)	220
5.3 Validation Process for Scenario 2	223
5.4 Statistical Analysis Results for Four Groups Package2 (Scenarios2, 5, and 8)	224
5.5 Validation Process for Scenario 3	227
5.6 Statistical Analysis Results for the Four Groups Package3 (Scenarios3,6, and 9)	228
6.1 Connection among Research Objectives, Research Methodology, and Goals	234

0

C

Figure No.

xiv

Page

LIST OF FIGURES

1.1 Relationship between Mhealth, Telemedicine, and E-Health Paradigms	6
1.2 Problem Statement Configuration	12
1.3 General Scheme and Scope of the Study	17
2.1 Literature Review Structure	23
2.2 Flowchart of Study Selection, Including the Search Query and Inclusion Criteria	28
2.3 Taxonomy of Research Literature on Telemedicine Applications	30
2.4 Three-Tiered Architecture of a WBANs Telemedicine System	34
2.5 Taxonomy of Healthcare Services Challenges and Problems	59
2.6 Problems Cause an Increase in Users' Requests in Remote Health Monitoring	ptb1 61
2.7 United States National Healthcare Expenditures Per Capital	63
2.8 Graphical Representation of the Example in Table 2.11	103
2.9 Most Popular MCDM Methods	107
3.1 Research Methodology Phases	122
3.2 High-Level Abstract of the Telemedicine Architecture during Various Failures	125
3.3 General scheme of 3LLT within MHealth	130
3.4 The Overall Architecture and Design of Decision Matrix within MHealth	139
3.5 Framework of Identifying the DM within MHealth in the Telemedicine	143
3.6 MLAHP–AHP Method for Ranking Hospitals	147
3.7 Hierarchy of MLAHP for Main and Sub-Criteria	149
3.8 Sample Evaluation Form	152
3.9 Design of MLAHP Measurement Steps for Weight Preferences-Package 1	155
3.10 Design of MLAHP Measurement Steps for Weight Preferences-Package 2	156
3.11 Design of MLAHP Measurement Steps for Weight Preferences-Package3	157
3.12 A Sample the Hierarchy for One Criterion of Services	160

XV

3.13 Hierarchy for TAH Criteria	160
3.14 Sample evaluation form for GCI for services	161
3.15 Sample Evaluation form for GCI Criteria of TAH	162
3.16 Design of AHP Measurement Steps for Ranking Hospitals for Package 1	166
3.17 Design of AHP Measurement Steps for Ranking Hospitals-Package 2	167
3.18 Design of AHP Measurement Steps for Ranking Hospitals-Package 3	168
4.1 Evaluation and Ranking Results of the Hospitals' Selection Process	175
4.2 Location A and 12 Hospitals within the Capital Baghdad- AL Karkh	180
4.3 Location B and C and 12 Hospitals within Kuala Lumpur	182
4.4 Final MLAHP Weights Chart for the Arithmetic Mean of Six Experts	197
5.1 Structure of the Validation Processes	217
5.2 Bar Chart for M and SD Results for Four Groups Package1(Scenarios1,4,and 7)	221
5.3 Bar Chart for M and SD Results for Four Groups Package2(Scenarios2,5,and 8)	225
5.4 Bar Chart for M and SD Results for Four Groups Package3(Scenarios3,6,and 9)	229

O5-4506832 Spustaka.upsi.edu.my Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

PustakaTBainun ptbupsi

xvi

LIST OF ABBREVIATIONS

	3LLT	Three Level Localization Triage
	AAL	Ambient Assisted Living
	ACS	Acute Coronary Syndrome
	AHP	Analytic Hierarchy Process
	ANP	Analytic Network Process
	AQM	Active Queue Managements
	AQM	Active Queue Managements
	ATS	Australian Triage Scales
	BAN	Body Brea Network
05	5 BEWS 🕜 pustaka.u	Bispebjerg Early Warning Score Shah
	BP	Blood Pressure
	CANet	Cane Network
	CMS	Center for Medicare and Medicaid Services
	СО	Coordinators
	CPS	Cyber-Physical Systems
	CTAS	Canadian Triage and Acuity Scale
	CVD	Cardiovascular Disease
	DM	Decision Making
	DOS	Denial of Service
	DSS	Decision Support System
	ECG	Electrocardiogram
	ED	Emergency Department
	E-health	Electronic Health
	EM	Evaluation Matrix

O 05-4506832 o pustaka.upsi.edu.my

eMEWS	electronic Modified Early Warning Scorecard
EMI	Electromagnetic Interference
EMR	Electronic Medical Records
ESI	Emergency Severity Index
EWS	Early Warning Scorecard
GCI	Grade of Criteria Importance
GDM	Group Decision Making
GDP	Gross Domestic Product
GOe	Global Observatory for eHealth
GPRS	General Packet Radio Service
GPS	Global Positioning System
GSM	Global System for Mobile Communication
GUDM	Automatic Generation of Unified Datasets
HAW	Hierarchical Adaptive Weighting
HOCA pustaka.u	Healthcare Aware Optimized Congestion Avoidance
HTTP	Hypertext Transfer Protocol
HWSNs	Healthcare Wireless Sensor Networks
IHE	Integrating the Healthcare Enterprise
IMDs	Interoperable Medical Devices
ΙΟΤ	Internet-of-Things
IPSO	Improved Particle Swarm Optimization
IS	Information System
LAN	Local Area Network
LCS	Low Cost and Secure
LstT	Longest Time
LT	Long Time
MAC	Media Access Control
MADM	Multi Attribute Decision Making
MAHP	Multi Analytic Hierarchy Process

0

O 5-4506832 pustaka.upsi.edu.my F Perpustakaan Tuanku Bainun Perpustakaan Sultan Abdul Jalil Shah

ptbupsi XVIII

MANET	Mobile Ad-hoc Network
MBAN	Medical Body Area Network
MCDM	Multi Criteria Decision Making
MCIs	Mass Causalities Incidences
MEW	Multiplicative Exponential Weighting
mHealth	Mobile Health
MIMUs	Mainstream Magnetic and Inertial Measurement Units
MIs	Medical Institutes
MLAHP	Multi-layer Analytic Hierarchy Process
MSHA	Multi Sources Healthcare Architecture
MTS	Manchester Triage System
MTS	Manchester triage system
MUI	Mobile User Interface
Pa2Pa	Patient to Patient
05 PCAH 🕥 pustaka.u	Priority based Congestion Avoidance Scheme
PCSs	Personal Coaching Systems
PDA	Personal Digital Assistant
PHDA	Priority based Health Data Aggregation
PTT	Pediatric Triage Tape
QOS	Quality of Service
RFID	Radio Frequency Identification
RHMSs	Remote Health Monitoring Systems
RT	Real-Time
RTPS	Real Time Publish Subscribe
SAW	Simple Additive Weighting
SOA	Service-Oriented Architecture
SpO2	Blood Oxygen Saturation Level
SstT	Shortest Time
ST	Short Time

 \bigcirc

START	Simple Triage and Rapid Treatment
STM	Sacco Triage Method
STM	Science, Technology and Medical
ТАН	Time of Arrival of patient at the Hospital
TOPSIS	Technique for Order Preference by Similarity to Ideal Solution
WBAN	Wireless Body Area Network
WHO	World Health Organization
WoS	Web of Science
WPM	Weighted Product Method
WSM	Weighted Sum Model
WSN	Wireless Sensor Network

O 5-4506832 pustaka.upsi.edu.my f Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah PustakaTBainun bubupsi

XX

LIST OF APPENDICES

PAIRWISE COMPARISONS & LIST OF EXPERTS А

- PATIENT DATASET В
- С MLAHP & AHP WEIGHTS
- D VALIDATIONS PROCESS RESULTS

O 5-4506832 pustaka.upsi.edu.my f Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah PustakaTBainun bubupsi

CHAPTER 1

INTRODUCTION

1.1 Introduction

This chapter introduces the research topic, significant of study, the statement of the problem, research objectives, and questions. This chapter also presents the scope of this research where the experimental and technical scopes are explained. A brief background of the research components is presented in Section (1.2). Significant of study addressed in Section (1.3). The statement of the problem, on which the direction of the research is based, is identified and introduced in Section (1.4). This is followed by the objectives of the research, which are described in Section (1.5).

The research questions presented in Section (1.6), followed by the link between research objectives and questions in Section (1.7). The scope of the study is discussed in Section (1.8). The main structure of the thesis is briefly outlined in Section (1.9). Finally, a summary of the chapter is presented in Section (1.10).

1.2 **Research Background**

These days with the ascending of new technologies, telemedicine is becoming a real center of interest with regard to the research domain (Caliskan, 2013). Simply, telemedicine is a medical application of information technology enabling patients to have medical consultations outside hospitals by using video-conferencing or digital imaging systems. Telemedicine architecture contained on three-tier, Tier 1 represents sensorbased, Tier 2 represent gateway-based and mobile health (mHealth) (both Tier 1 and 2 represent the client side), while Tier 3 represents medical center server side that connected with distributed hospitals servers (Chang, Pang, Michael Tarn, Liu, & Yen, 2015; Figueredo & Dias, 2004; Kalid, Zaidan, Zaidan, Salman, Hashim, et al., 2018; Kovalchuk, Krotov, Smirnov, Nasonov, & Yakovlev, 2018; J. Wang, Qiu, & Guo, 2017). Telemedicine benefits by a vast bibliography but practical challenges remain to organize the risk management in the context of continuous improvement of healthcare services (Sene, Kamsu-Foguem, & Rumeau, 2015). The rising healthcare services costs and the aging of the world population add to the headways in telemedicine for the delivery of several healthcare services (Negra, Jemili, & Belghith, 2016).

For remote patients, continuous monitoring from a distant hospital is highly desirable to ensure adequate care and provide suitable guidelines for proper medication (Mirkovic, Bryhni, & Ruland, 2012; Sanders, Devergnas, Wichmann, & Clements, 2013). Remote patient care is now becoming a subject of major concern in healthcare services (Sarkar & Sinha, 2014). The burden of cardiovascular disease is growing worldwide and is projected to emerge as the No. 1 cause of death worldwide by the year 2020 (Moser et al., 2006; World Health Organization, 1996). Moreover, triaging patients for detecting the emergency level of the patient is calculated after evaluating their vital signs (Derlet, Kinser, Ray, Hamilton, & McKenzie, 1995; Salman, Rasid, Saripan, & Subramaniam, 2014). Triaging is required to link with compatible healthcare services package to complete the processing of healthcare services provisions (Salman et al., 2014).

Several challenges outlined in telemedicine architecture related to healthcare services at Tier 3 such as scalability and server failures. Scalability challenges arise when the number of patients increases that expected to occur in several aspects, namely: aging population, disasters and Mass Causalities Incidences (MCIs) (i.e., increase demand for healthcare services and online doctor visits) (Jeong et al., 2012; Salman et al., 2014; van Dyk, 2014). While server failures challenges is a complex issue because of many possible configurations of client/server environments and failure modes of a client, server and network devices (Bellod Cisneros & Lund, 2017; Duong-Ba, Nguyen, Bose, & Tran, 2014; Wood, 1995). The addressed challenges caused to severe consequences in providing healthcare services from the medical centre in a telemedicine environment.

Moreover, usually developing countries suffer a shortage of doctors as well as hospitals. Therefore, patients in these countries basically suffer the physical and monetary burdens of traveling around the country to see doctors. However, from their economic conditions, these countries may not easily agree to increase the number of hospitals. Hence, instead of adding a few new hospitals, it is a rationale that they rather choose to deploy as many telemedicine facilities, which generally cost much less than hospitals, as they can (Xiao & Chen, 2008). In addition, Sensor in Tier 1 is playing an ever more important role in medical technology with the aim of making medical devices even more effective and safer (Salman et al., 2014). The detection of sensor failure should be considered since it's significant to measure the emergency status of a patient. These concerns, which are directly related to patients' lives, are our research problems.

Fault-tolerant is the property that enables a system to continue operating properly in the event of the failure (or one or more faults within) some of its components (Randell, Lee, & Treleaven, 1978). In the other words, a fault-tolerant in distributed system is the ability to isolate and recover from failures, self-healing capability; no single point of failure (Lounis, Hadjidj, Bouabdallah, & Challal, 2016; Murtaza, Al, & Email, 2013). it's a property that can be implemented in different ways (Lounis et al., 2016).

🕓 05-4506832 🔇 pustaka.upsi.edu.my 🕇 Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

A terminology definition for Fault-tolerant term is a capability of a computer system, electronic system or network to deliver uninterrupted service, despite one or more of its components failing (Spada & Kim, 2018). Fault tolerance also resolves potential service interruptions related to software or logic errors. The purpose is to

prevent catastrophic failure that could result from a single point of failure. In this context, a fault-tolerant framework in telemedicine architecture should recover telemedicine system parts such as Tier 1 and 3 from various failures.

MHealth, the attractive parts in telemedicine architecture offers the potential for sensor networks and information combination to improve patient care and provide healthcare services. A number of definitions of mHealth exist. The definition of mHealth by (Pawar, Jones, van Beijnum, & Hermens, 2012) as 'M-health is the application of mobile computing, wireless communications and network technologies to deliver or enhance diverse healthcare services and functions in which the patient has the freedom to be mobile, perhaps within a limited area'. However, mHealth is an important link between Tier 1 and Tier 3 and focused on mobility of patients involved in the healthcare system.

The position of mHealth, telemedicine, and other paradigms according To (Pawar et al., 2012) are formulated in Fig. 1.1.

Figure 1.1. Relationship between Mhealth, Telemedicine, and E-Health Paradigms 05-4506832 pustaka.upsi.edu.my

Continuing providing healthcare services and treatments within mHealth (Tier 2) during various failures is considered as a fault-tolerant system in telemedicine architecture. However, such challenges increase when mHealth providing healthcare services in case of medical center in normal mode, but the issues of provide services directly from distributed hospitals in case of medical center failure or network failure are not considered (Besaleva & Weaver, 2013; Boursalie, Samavi, & Doyle, 2015; Kalid, Zaidan, Zaidan, Salman, Hashim, et al., 2018; Rahmani et al., 2018; Zhu-juan, 2015).

Time of arrival of patients at the hospital (TAH) has proved to be very important in the hospital selection (Barsan et al., 1993; Kalid, Zaidan, Zaidan, Salman, Hashim, et al., 2018; RG, KL, LB, K, & TR, 1984; Wizig, 2004). A hospital selection to provide

healthcare services based on triage level and the chance of survival is consider a complex (Ashour & Okudan, 2010; Kovalchuk et al., 2018; X. Liu et al., 2011), since the decision is made based on a set of attributes (Faulin, Juan, Grasman, & Fry, 2012) which are healthcare services and TAH. Therefore, hospital selection within mHealth is a complex, multi-attribute decision-making process, especially in a remote monitoring environment. Such processes raise questions such as how mHealth can recover the mentioned failures, while the important question is how hospitals can be prioritized and selected in case of medical center failure or even network failure.

Significant of Study 1.3

- 1. Benefits to patients:
 - Enhance the patient's confidence in the healthcare system by ensures continues providing healthcare services within mHealth when various failures occurred in telemedicine environment (De Backere, Bonte, Verstichel, Ongenae, & De Turck, 2017; Moutacalli, Marmen, Bouzouane, & Bouchard, 2013).

🕓 05-4506832 🜍 pustaka.upsi.edu.my 🕇 Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah 💟 PustakaTBainun 💕 ptbupsi

- Improve health monitoring of CHD conditions and the ability of patient diagnosis system that aim to improve patient care at low cost (Salman et al., 2014).
- Support patients with a distinctive quality of care in a modern lifestyle and maintain their independence in a normal living environment (Lamprinakos et al., 2015; Teijeiro, Félix, Presedo, & Zamarrón, 2013).

- 2. Benefits to medical organizations:
 - Strengthening the health system in distributed hospitals and promote their dynamic processes (H. K. Kim, 2014).
 - Help to understand multiteam systems (i.e., health care professionals from multiple departments working together) and creating a climate for teamwork to better improve patient outcomes (Alnanih, Ormandjieva, & Radhakrishnan, 2013).
 - Commercial healthcare and medical services (Rajkumar & Sriman Narayana • Iyengar, 2013).
- 3. Benefits to Doctors:
- Assist medical teams through providing a decision making support for 05-4506832 hospitals selection in term of time support for doctors and other medical staff (Niswar et al., 2015).

Problem Statement 1.4

Various failures addressed in telemedicine architecture and can play important issues and significantly effective in a patient life. These failures frequently occur in telemedicine systems especially at Tier 1 (sensor-based), Tier 3 (medical center server), and even in the networks between these systems parts according to (Dong & Yang, 2015; Kalid, Zaidan, Zaidan, Salman, Hashim, et al., 2018; Salman et al., 2014). Firstly, sensor 05-4506832 😯 pustaka.upsi.edu.my

characteristics may be partial or complete failure, which can degrade the performance or even destroy the stability of the overall systems (Dong & Yang, 2015), as well as the network failure between Tier 1 and Tier 2 cause a shortage in data transmission in client side (Salman et al., 2014), in this case, the measuring of patient's condition is either inaccurate or is already missing.

In large numbers of critically ill or injured patients, providing healthcare services to patients is required (Azeredo, Guedes, Rebelo de Almeida, Chianca, & Martins, 2015; S. Wang, Hu, & Kingdom, 2012). Scalability is also related to the connection between a Wireless Sensor Network (WSNs) and the server side; thus, this telemedicine system is subjected to a large number of queries (Diallo, Rodrigues, & Sene, 2012), thus network congestion and failure occurs on Tier 3 (Cardellini, Colajanni, & Yu, 1999; Kalid, Zaidan, Zaidan, Salman, Hashim, et al., 2018; Salman et al., 2014). Furthermore, telemedicine services are based on client-server architecture (Figueredo & Dias, 2004). Client/server availability is a complex issue due to the many possible configurations of client/server environments and failure modes of client, server, and network devices (Bellod Cisneros & Lund, 2017; Duong-Ba et al., 2014; Wood, 1995). Such complexity makes it difficult to properly account for availability in client/server architectural design (Bellod Cisneros & Lund, 2017; Wood, 1995; G. Zheng, Ning, & Wang, 2010). All these caused several types of failures at Tier 3 and any disruption to the challenges telemedicine network and server side can lead to link outage, potentially leading to severe consequences (Gogan, Davidson, & Proudfoot, 2016; P. F. Hu et al., 2017; Woo, Lee, & Park, 2018).

In the normal case, the medical center server connected with distributed hospitals to providing healthcare services remotely to patients (Chang et al., 2015; Kovalchuk et al., 2018; C. T. Liu, Long, Li, Tsai, & Kuo, 2001; J. Wang et al., 2017; Wizig, 2004). In the existing systems, mHealth delivered solutions about provide healthcare services in case of medical center in normal mode, but the issues of continues these services in case of medical center server failure are not considered (Besaleva & Weaver, 2013; Boursalie et al., 2015; Kalid, Zaidan, Zaidan, Salman, Hashim, et al., 2018; Rahmani et al., 2018; Zhu-juan, 2015). Failures occurred at Tier 3 -or even in its network-, mHealth should connect directly with distributed hospitals to select the best one. However, hospitals' selection to provide healthcare services is considered a complex decision-making general problem (Akdag et al., 2014; Khan, Prasad, & Rajamanoharane, 2010). Thus, the understanding of the exact hospital' selection criteria and their weights is important (Khan et al., 2010; Leister & Stausberg, 2007; Lingsma et al., 2009).

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

In order to describe the specific problems in term of issues for the hospital selections within fault- tolerant, the healthcare services packages for chronic heart disease -as a study case- can provide to the patient from hospitals through five packages based on triage level (Salman et al., 2014). In addition, TAH represents an important factor for choosing appropriate hospital spatially with chronic heart disease patients (Barsan et al., 1993; RG et al., 1984; Wizig, 2004). Thus, the process of hospital selection regarding with multi-attribute (healthcare services packages and TAH) with respect to the proper weight assigned for each attribute is considered a multi-attribute decision matrix (Faulin

PustakaTBainun

05-4506832 😯 pustaka.upsi.edu.my

11

et al., 2012; Kovalchuk et al., 2018), and this considered the first issue. The different weights are often given for the mentioned attributes by decision makers (doctors) which further increase the complexity of the task (Yas, Zaidan, Zaidan, Rahmatullah, & Karim, 2017) and this considered as the second issue of the specific problem.

Whenever the services availability within hospitals at high level and the arrival of patient at the hospital takes a little period of time, this has a significant impact in the selection of the best hospital (Berglas et al., 2018; Nicholl, West, Goodacre, & Turner, 2007; Wei et al., 2008). Thus, this inverse relationship between both attributes causing a tradeoff and presenting the third issue. Finally, the TAH and the availability of services is varied from hospital to another (Busse, Schreyögg, & Smith, 2008; Kalid, Zaidan, Zaidan, Salman, Hashim, et al., 2018; Wizig, 2004), therefore the selection process involves simultaneous consideration from multiple attributes of distributed hospitals in different situations generate a data variation which considered the fourth issue (the data that representing services and TAH is varied among hospitals). Thus, the selection process of hospitals within mHealth is a complex multi-attribute decision-making problem, in which each hospital is considered an available alternative for the decision maker. The problem statement configuration is illustrated in Fig. 1.2.

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

12

Figure 1.2. Problem Statement Configuration

13

1.5 **Research Objectives**

- 1. To investigate the existing technologies of providing healthcare services, triage or prioritize based body sensor in telemedicine applications.
- 2. To propose a new triage algorithm for chronic heart disease patients and can detect failures at Tier 1.
- 3. To identify a decision matrix for hospital selection based on proposed triage algorithm.
- 4. To develop a fault-tolerant mHealth framework based on identified proposed decision matrix.

🕓 05-4506832 🔇 pustaka.upsi.edu.my f Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah 💟 PustakaTBainun 👘 ptbupsi

5. To validate the developed framework objectively.

1.6 **Research Questions**

The following research questions have been framed to set the direction for this research:

- 1. What are the available technologies for providing healthcare services in telemedicine applications?
- 2. What are the requirements needed for the fault-tolerant framework for continuous providing healthcare services within mHealth?
- 3. What are the available triage standards and guidelines?

14

- 4. Can the existing triage standards and guidelines localize the triage process within only Tier 2 (mHealth) for chronic heart disease patients as well as detect Tier 1 failures?
- 5. Does there any integrated platforms included available healthcare services and TAH for hospitals?
- 6. What are the suitable techniques to develop a fault-tolerant mHealth framework?
- 7. What type of tests should be carried out to ensure that the results undergo systematic ranking?

The Link between Objectives and Research Questions 1.7

Research questions are framed to provide guidance to the research and Table 1.1 depicts the obvious connection between the objectives and research questions:

Table 1.1

05-4506832 😯 pustaka.upsi.edu.my

Link Between Objectives And Research Questions

Research Questions	Research Objectives	
1. What are the available technologies for providing healthcare services in telemedicine applications?	 To investigate the existing technologies of providing healthcare services in telemedicine 	
2. What are the requirements needed for the fault-tolerant framework for continuous providing healthcare services within mHealth?	applications.	
	(Continue	

Table 1.1 (Continued)

	Research Questions		Research Objectives
3.	What are the available Triage standards and guidelines?	2.	To propose a new triage algorithm for chronic heart disease patients
4.	Can the existing triage standards and guidelines localize the triage process within only Tier 2 (mHealth) for chronic heart disease patients as well as detect Tier 1 failures?		and detect Tier 1 failures.
5.	Does there any integrated platforms including available healthcare services and TAH for hospitals?	3.	To identify a decision matrix for hospital selection based on proposed triage algorithm
6.	What are the suitable techniques to develop a fault-tolerant mHealth framework?	4.	To develop a fault-tolerant mHealth framework based on identified proposed decision matrix
7.	What type of tests should be carried out to ensure that the results undergo systematic ranking?	5.	To validate the developed framework objectively.
5-4506832	2 pustaka.upsi.edu.my Perpustakaan Tuan Kampus Sultan Abr	ku Ba dul Ja	inun Iil Shah 🎦 PustakaTBainun 🗗 ptbup:

1.8 **Research Scope**

This research is a cross-domain involving an expert system and healthcare was focused on providing healthcare services for remote health monitoring patients. The research method involved in the study to solve the problem that classified as a multi-disciplinary problem. The case study which is chronic heart disease dataset is adaptive to propose a new triage algorithm based on real healthcare services packages by using data fusion techniques. Then this research proposes decision matrixes for ranking hospitals based on

) 05-4506832 🧊 pustaka.upsi.edu.my 👔 Perpustakaan Tuanku Bainun 💟 PustakaTBainun 👘

the selected package by using MCDM within mHealth in case of medical center server failure.

In the final stage, the hospitals were scored based on a decision matrix using experts' opinions interpreted by decision making technique. The outputs are expected from this research type is a framework performed via several steps that improve the process of identifications and development for the fault-tolerant mHealth system in a telemedicine environment. The general scheme for our research and the view that represents the research method, research type, and research domain are presented in Fig.

1.3.

O5-4506832 Spustaka.upsi.edu.my Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah SpustakaTBainun

Figure 1.3. General Scheme and Scope of the Study

1.9 Research Organization

This research is composed of six chapters. These chapters are briefly reviewed as follow:

Chapter 1, provides the research background, significant of study, research problem. Moreover, this chapter demonstrates the research objectives, research questions, the link between them, and research scope.

18

Chapter 2, reviews a systematic review protocol for the area of telemedicine application, followed by an overview of telemedicine application in Tier 1, Tier 3 and Tier 2. The healthcare services challenges in telemedicine application are illustrated, followed by gap analysis for telemedicine applications. The remote health monitoring over telemedicine is also reviewed, followed by chronic diseases in remote healthcare monitoring. Sources used to measure patient' medical vital signs are presented. This chapter also reviewed triage standards and guidelines, followed by healthcare services packages and TAH to show the involved healthcare services packages in common chronic diseases monitoring studies and explain the importance of TAH towards distributed hospitals. This chapter ends with open issues to the research problems and highlights what should be done to solve those problems.

Chapter 3, gives the full description of the research methodology, which consists of four phases, namely, preliminary study phase, identification phase, development phase, and validation phase. Each phase corresponds to and addresses one or more research objectives, except the second phase which addresses the second and third objectives.

Chapter 4, presents the results based on the proposed method in four sections. Each section has its own aims. These sections show the sequences result for evaluation of the decision matrixes of hospitals, the weighting for main and sub-criteria used in this research, and the results of ranking hospitals.

Chapter 5, presents the results of validating the proposed method. In this chapter, several steps have been involved in the validation processes in order to test the ranking results of three packages (package 1, 2, and 3) and improving the identical process of ranking hospitals in telemedicine environment to overcome the research problems.

Finally, Chapter 6, presents the conclusion and the contributions of this research. The areas to be pursued as future works are also suggested.

1.10 Chapter Summary

🕓 05-4506832 🔇 pustaka.upsi.edu.my 🕇 Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah 💟 PustakaTBainun 💕 ptbupsi This chapter provides background about the main goal of the presented study which focused on improving and providing healthcare services during various failures in telemedicine architecture. In the statement of the problem, several failures highlighted in telemedicine architecture related to Tier 1 and Tier 3. A new triage algorithm can propose to detect the emergency level of patient and then linked with the compatible package, also can alarm the failures occurred within Tier 1. Then mHealth can connect directly with distributed hospitals when failures occurred within Tier 3, whereas the hospital selection determined as a complex decision-making problem with multiple attributes from healthcare services and TAH. The hospitals' selection within mHealth, remote monitoring, and the specific question linked with research objectives are also discussed.

Finally, the extent and constraints of this study are elaborated. The final part of this chapter presented the general idea of the other chapters of this thesis.

O 5-4506832 pustaka.upsi.edu.my f Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah PustakaTBainun buby

