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ABSTRACT 

 

This research aimed to synthesis and investigate the potential of amphiphilic chitosan 

derivatives, namely N-octyl-O-sulfate chitosan (NOOSC), N-octyl-N-succinyl 

chitosan (NONSC), N-octyl-O-glycol chitosan (NOOGC), N-deoxycholic acid-O-

glycol chitosan (DAGC), N-hexanoyl-O-glycol chitosan (HGC) and N-lauryl-O-

glycol chitosan (LGC) as environmental friendly media for atrazine, rotenone and 

thymol formulations. The amphiphilic chitosan derivatives were characterised using 

proton nuclear magnetic resonance (1H NMR) spectrometer, Fourier transform 

infrared (FTIR) spectrometer, CHNS-O elemental analyser, fluorescence spectrometer 

and scanning transmission electron microscope (STEM). Encapsulation efficiency of 

pesticide active ingredients by amphiphilic chitosan derivatives was determined using 

a high performance liquid chromatography (HPLC). The release mechanism of 

atrazine, rotenone and thymol from the amphiphilic chitosan derivatives micelles was 

fitted to four kinetic models. Pot experiments were carried out to monitor the 

effectiveness of each pesticide formulation on weed (Cyperus kyllingia) and chilli 

(Capcisum annuum) plant infested by aphids, thrips and white fly. Research findings 

found that the amphiphilic chitosan derivatives have formed self-aggregates with a 

spherical shape. The critical micelles concentration (CMC) values of the amphiphilic 

chitosan derivatives were between 0.008 and 0.089 mg/mL. The encapsulation 

efficiency values for the amphiphilic chitosan were higher than 50%. All amphiphilic 

chitosan derivatives enhanced pesticides release performance as compared to pure 

pesticides solution. The constant (n) values obtained from Korsmeyer-Peppas kinetic 

model suggest that the release of pesticide active ingredients from the chitosan 

derivatives micelle was controlled by relaxation of polymer chains. Based on pot 

experiments, the amphiphilic chitosan derivatives formulation effectively treat the 

target species. In conclusion, the amphiphilic chitosan derivatives are potential as 

carrier agents for pesticide active ingredients. In implication, the amphiphilic chitosan 

derivatives as environmental friendly media able to reduce the use of organic solvents 

in pesticide formulations more than 60%. 
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TERBITAN KITOSAN AMFIFILIK SEBAGAI MEDIA MESRA ALAM 

UNTUK FORMULASI RACUN PEROSAK TAK TERLARUTKAN AIR 

 

ABSTRAK 

 

Kajian ini bertujuan untuk mensintesis dan menyelidik potensi terbitan kitosan 

amfifilik, iaitu kitosan N-oktil-O-sulfat (KNOOS), kitosan N-oktil-N-suksinil 

(KNONS), kitosan N-oktil-O-glikol (KNOOG), kitosan N-asid deoksikolik-O-glikol 

(KADG), kitosan N-heksanoil-O-glikol (KHG) dan kitosan N-lauril-O-glikol (KLG) 

sebagai media mesra alam untuk formulasi atrazin, rotenon dan timol. Terbitan 

kitosan amfifilik dicirikan menggunakan spektrometer resonans magnet nukleus 

proton (1H NMR), spektrometer inframerah transformasi Fourier (FTIR), penganalisis 

unsur CHNS-O, spektrometer pendarfluor dan mikroskop pengimbas penghantaran 

elektron (STEM). Kecekapan pengkapsulan bahan aktif racun perosak oleh terbitan 

kitosan amfifilik ditentukan menggunakan kromatografi cecair prestasi tinggi 

(HPLC). Mekanisma pelepasan atrazin, rotenon dan timol dipadankan kepada empat 

model kinetik. Eksperimen pasu telah dijalankan untuk memantau keberkesanan 

setiap formulasi racun perosak ke atas rumput (Cyperus kyllingia) dan pokok cili 

(Capcisum annuum) yang telah diserang afid, trip dan lalat putih. Dapatan kajian 

mendapati bahawa terbitan kitosan amfifilik telah membentuk penswabentukan 

dengan bentuk sfera. Nilai-nilai kepekatan misel kritikal (KMK) terbitan kitosan 

amfifilik adalah di antara 0.008 dan 0.089 mg/mL. Nilai-nilai kecekapan 

pengkapsulan untuk terbitan kitosan amfifilik adalah lebih besar daripada 50%. 

Semua terbitan kitosan amfifilik meningkatkan prestasi pelepasan racun perosak 

berbanding larutan bahan aktif racun perosak tulen. Nilai-nilai pemalar (n) dari model 

kinetik Korsmeyer-Peppas mencadangkan bahawa pelepasan bahan aktif racun 

perosak dari misel terbitan kitosan amfifilik telah dikawal oleh pengenduran rantai 

polimer. Berdasarkan eksperimen pasu, formulasi terbitan kitosan amfifilik merawat 

secara berkesan spesies sasaran. Kesimpulannya, terbitan kitosan amfifilik berpotensi 

sebagai agen pembawa untuk bahan aktif racun perosak. Implikasinya, terbitan 

kitosan amfifilik sebagai media mesra alam mampu mengurangkan penggunaan 

pelarut organik dalam formulasi racun perosak melebihi 60%. 
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INTRODUCTION 

 

 

 

 

1.1 Research Background 

 

Food is one the basic necessities for human in life. In order to achieve a sustainable 

life and good health, the access towards sufficient amount of safe and nutritious foods 

is indeed important (World Health Organization [WHO], 2017). Agriculture plays an 

important role as a major food contributor, as it provides more than 99.7% of world’s 

food supply (Ballantyne & Marrs, 2004). It was reported that around 500 million of 

small farms worldwide has contributed to 80% of the food supply for the large part of 

the developing country (United Nations [UN], 2018).  

 

According to Food and Agriculture Organization (FAO) of the United Nations, 

the global population is expected to grow and reach around 9.8 billion of people by 

2050 (FAO, 2014). One of the main goals for global agriculture is to provide 
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sufficient amount of food to feed the current population (Sadowski & Baer-Nawrocka, 

2018). Therefore, in order to feed the continuous growth of human population, the 

global production for agricultural product is expected to grow for about 1.1% per year 

from 2005 to 2050 (Alexandratos & Bruinsma, 2012). Consequently, it becomes a 

great challenge for key players of agriculture sector to ensure a sustainable food 

production to meet the high demand of the public (de Oliveira, Campos, Bakshi, 

Abhilash, & Fraceto, 2014).  

 

The major problems faced by agriculture sector are the attack from pest, 

diseases and weed which has caused significant loss in quantity and quality of 

agricultural production (de Oliveira et al., 2014; E. I. Pereira et al., 2015). It was 

estimated that there are around 9,000 species of insects and mites, 50,000 species of 

plant pathogens and 8,000 species of weed that are accountable for the damage of 

agriculture crops worldwide (W. Zhang, 2018). For instance, it was reported that 

around 45% of the world annual food production has lost due to pest attack 

(Odukkathil & Vasudevan, 2013). In addition, without application of pesticide 

agriculture sector could face serious loss in fruits (78%), vegetables (54%) and cereals 

production (32%) (W. Zhang, 2018). J Erik Fyrwald, the Head of the Syngenta, one of 

the world biggest pesticides makers in the interview with The Guardian has stated that 

the world may face food famines due to elimination of pesticides (Carrington, 2018).  

For that reason, in order to protect the crops, to maximise the agricultural activity and 

to ensure food sustainability, the use of pesticide is necessary (de Oliveira et al., 2014; 

E. I. Pereira et al., 2015).  
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Although there is no complete data on the overall total pesticides production 

worldwide, the United States Environmental Protection Agency (USEPA) has 

reported that the world expenditure on the pesticide at producer level has reached 

nearly USD 56 billion in 2012 (Atwood & Paisley-Jones, 2017). In addition, it was 

estimated that United States has produced around 1.2 billion pounds of pesticide (in 

amount of active ingredient) which is nearly 544,310 tonnes in 2006 and 2007 

(Grube, Donaldson, Kiely, & Wu, 2011).  

 

The amount of pesticide used on agriculture crop was estimated to be around 

1.0 to 2.5 million tonnes annually (Fenner, Canonica, Wackett, & Elsner, 2013; 

Odukkathil & Vasudevan, 2013). Based on statistics data released by the FAO of the 

UN, Asian countries has used the highest amount of pesticides with a total pesticides 

usage of around 2.0 million tonnes in 2014, followed by American countries (north 

and south) with around 900,000 tonnes and European countries with around 400,000 

tonnes of pesticide in the same year. Herbicides (869,566.71 tonnes) were accounted 

largest portion of global pesticide usage in 2014, followed by fungicides and 

bactericides (417,968.17 tonnes), insecticides (259,901.61 tonnes) and plant growth 

regulators (42,899.92 tonnes). 

 

Table 1.1 shows the list of populations, agriculture areas and pesticides usage 

(active ingredients) for selected countries in 2014. Malaysia which has around 30 

million of population and 7.8 million hectare of agriculture areas has consumed more 

than 49,000 tonnes of pesticide (in terms of active ingredients) in 2014. Meanwhile, 

China (mainland, Macao SAR, Hong Kong SAR, and Taiwan Province), whose now 

supply for about 25% world’s food was the major consumer of pesticides among 
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Asian countries with a total of 1,815,706.68 tonnes of pesticides used in 2014 (FAO, 

2018a; Y. Xu, Li, & Wan, 2017).  

 

Table 1.1 

Populations, Agriculture Areas and Pesticides Usage for Selected Countries in 2014. 

Country Population Agriculture area (ha) Pesticides used (Tonnes) 

Argentina 42,981,515 148,700,000 207,706 

Brazil 204,213,133 282,589,000 352,336 

China 1,421,307,384 515,357,700 1,815,706.68 

Egypt 91,812,566 3,745,000 11,363 

France 64,190,638 28,766,500 74,909.60 

Germany 81,489,660 16,725,000 45,836.29 

Italy 59,585,668 13,162,000 59,422 

Japan 128,162,873 4,519,000 53,543.7 

Malaysia 30,228,017 7,839,000 49,199.43 

Mexico 124,221,600 106,705,000 53,196.66 

Myanmar 51,924,182 12,645,000 5,417.80 

Spain 46,521,827 26,578,000 61,067 

Thailand 68,416,772 22,110,000 21,800 

United Kingdom 65,015,686 17,232,000 18,392.45 

Adapted from Food and Agriculture Organization of the United Nations (FAO), 2018a. 
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1.2  Problem Statement 

 

The pesticide formulations are normally comprised of inert and active ingredients, 

where the latter is the chemical that is responsible to kill, repel or control the target 

pest. The active ingredients can be divided into two types, namely synthetic 

(inorganic and organic) and biological pesticides (Isman, 2006). The synthetic 

pesticides are often referred as man-made pesticides. The best examples of synthetic 

pesticides are organochlorines, organophosphates and carbamates that have been 

extensively applied in agriculture. Whereas, the example of the biological pesticides 

are azadirachtin, rotenone, ryanodine and thymol, which are synthesised from small 

organic molecules produced by plants that called secondary metabolites (Cavoski, 

Caboni, & Miano, 2011). These secondary metabolites have some pesticidal 

properties that are effective to defend and protect plants from pest attack (de Oliveira 

et al., 2014). 

 

Pesticide active ingredients are generally having a wide range of solubility in 

solvent. Some of them are readily soluble in water, while some only dissolve in 

organic solvent or sometimes in neither one (Chin, Wu, & Wang, 2011; El Jay, 1996). 

For example, biologically active ingredients, derived from plants such as capsaicin 

and rotenone, known for their poor solubility in water which are around 0.06 mg/mL 

and 0.002 mg/mL, respectively (L. Hu, Xia, Zhan, Huang, & Xu, 2006; C. Shen, 

Yang, Wang, Zhou, & Chen, 2012; Turgut, Newby, & Cutright, 2004). Meanwhile, 

herbicides metalachor and prochloraz have solubilities of 0.53 and 0.34 g/L in water, 

respectively (Fan, Wu, & Peng, 2014).  
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Therefore, in order to dissolve these active ingredients, large amount of 

organic solvents is often required in the current pesticide formulations (Fan et al., 

2014; Katagi, 2008). Nonetheless, there are various negative side effects upon the 

usage of organic solvents in pesticide production (Kah, Beulke, Tiede, & Hofmann, 

2012; L. G. Pan, Tao, & Zhang, 2005). The organic solvents are often toxic, 

flammable and volatile (García, Alfaro, Calero, & Muñoz, 2014; Tominack, 2000). 

Organic solvents can be a source for volatile organic compounds (VOCs) emission 

and can contaminate the environment, and consequently cause a health hazard to 

humans and animals (Capello, Wernet, Sutter, Hellweg, & Hungerbühler, 2009; 

Jessop et al., 2015; R. S. S. Kumar et al., 2013; Pérez-Martínez, Ginés, Morillo, 

González-Rodríguez, & Moyano Méndez, 2000; Tominack, 2000).  

 

For example, polychloromethanes and polychloroethanes are chlorinated 

VOCs and carcinogen, and are frequently used as solvents in pesticide industry. 

USEPA, European Commission (EC) and Ministry of Environmental Protection 

(MEP) of China have listed these compounds as priority pollutants (Huang, Lei, Wei, 

& Zeng, 2014). According to W. Zhu, Schmehl, Mullin, and Frazier (2014), the 

utilisation of N-methyl-2-pyrrolidone (NMP) as a solvent in pesticide formulation can 

heighten the toxicity effect to nervous, cardio-vascular, respiratory and hormonal 

systems. In Malaysia, both Department of Agriculture and Department of 

Environment Malaysia have highlighted environmental issues arising from the release 

of organic solvent to the environment from pesticides application. 

 

Moreover, although organic solvents have their own toxicity effect, they can 

interact with pesticide active ingredients in the formulation thus increase their toxicity 
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properties (Cox & Surgan, 2006). Brand and Muller (2002) noted that dermal 

penetration for herbicide formulation is notably greater than pure active ingredients 

(Atrazine, Alachlor and Trifluralin). Meanwhile, the role of cyclohexanone as a 

coformulator in the formulation of commercial insecticide, dimethoate EC40 has been 

explored by Eddleston et al. in 2012. Even though there was no significant toxicity 

effect reported on guinea pig for cyclohexanone and dimethoate after applied them 

separately, the presence of both chemicals in pesticide formulation has caused severe 

toxicity effects on guinea pig, as cyclohexanone was assumed has interacted and 

altered the actual toxicity of dimethoate.  

 

The uncontrolled release of pesticides into the environment has received great 

concern from environmental scientists. In many cases, farmers are often applied 

pesticides on crops at a higher rate than permitted maximum dosage. This situation 

can be related to the fact that most (60 to 70%) of the pesticide loss and does not 

reach the target surface when applied on agricultural field (E. I. Pereira et al., 2015).  

These occur as the pesticides typically settle in the environment due to the leaching, 

volatilisation, immobilisation and also erosion (Al-Rajab & Hakami, 2014; E. I. 

Pereira et al., 2015). For instance, herbicides alcahor and insecticide imidacloprid 

have always been applied at a higher threshold concentration in agricultural field to 

counter the losses (Armbrust & Peeler, 2002; Fernandez-Urrusuno, Gines, & Morillo, 

2000). Consequently, the pesticides particularly for highly soluble ones can be the 

sources for some environmental issues as they can enter the soil (J. Li, Yao, Li, & 

Shao, 2012). As the pesticides leach into the soil, they can leach and settle into the 

groundwater system and thus potentially be the sources of pesticide contamination. If 
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persist, they may accumulate in the plants and animals, and can cause a serious health 

threat (A. Roy, Singh, Bajpai, & Bajpai, 2014). 

 

Another limiting factor in development of pesticide formulation is the 

application of non-selective pesticide. Due to their toxicity effects, the non-selective 

pesticides can cause adverse toxic effects on wide range of non-target organisms 

(Arias-Estévez et al., 2008; Saxena & Pandey, 2001). The leach, drift, runoff and 

volatilisation of the pesticide could reach the non-target species in adjacent habitats 

and can change the species richness and diversity (Arias-Estévez et al., 2008; Boutin, 

Strandberg, Carpenter, Mathiassen, & Thomas, 2014). For example, thiocarbamates, 

an organosulfur compound that is applied extensively in agricultural field as a 

pesticide can affect non-target pests including mammals (Mathieu, Duval, Xu, 

Rodrigues-Lima, & Dupret, 2015). In addition, herbicide paraquat has an acute and 

non-selective behaviour that can kill any green plant tissues upon contact (Brigante & 

Avena, 2014). Permethrin also has wide range of toxicity and severe unintended 

effects on non-target arthropods such as spiders, damsels and bugs.  

 

 

1.3 Research Significances 

 

Despite the benefit of the application of agrochemical products to protect the crops, 

the environmental issues arise from their application brought so much concern to the 

public. Great efforts have been directed to solve environmental issues relating to the 

pesticide applications, worldwide. New trends of pesticides formulation has lean 

towards reducing the application of organic solvent and improve the activity of active 
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ingredients. Most of the efforts have been focused on technical and engineering 

aspects especially during pesticide formulations. From fundamental aspect, 

introduction of good carrier or media system can reduce the amount of organic 

solvents used in the production of pesticides by enhancing solubility of the 

hydrophobic pesticide active ingredients and reduce its environmental risk by 

controlled-release technique. 

 

 This research combines the recent advancement in materials science and the 

application of polymeric micelle in production of agrochemical products. In this 

research, amphiphilic chitosan derivatives which are extensively studied in medical 

and pharmaceutical field are utilised as green media or carrier agents in pesticide 

formulation due to their unique properties. Chitosan is chosen due to its outstanding 

biological properties and functions such as biodegradability, biocompatibility, 

insecticidal and antibacterial activity, and importantly easy to modify (Larsson et al., 

2013). The amphiphilic chitosan can be developed by introducing the hydrophobic 

and hydrophilic moieties to the chitosan backbone. When come in contacts with 

aqueous solvent, the amphiphilic molecule chains tend to reorganise and form 

micelles aggregate via intra- or intermolecular association between moieties (core-

shell structure) (Larsson et al., 2013). The hydrophobic core will provide loading 

space for hydrophobic pesticide active ingredients whereas the hydrophilic shell will 

protect the encapsulated pesticide active ingredients, thus enhance its the solubility in 

water. Figure 1.1 shows the schematic diagram of encapsulation of hydrophobic 

pesticides active ingredient by amphiphilic chitosan micelles. 
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Figure 1.1. The Schematic Diagram of the Encapsulation of the Hydrophobic 

Pesticides by Amphiphilic Chitosan Micelles. 

 

 

In addition, although there are many research focused on chitosan-based 

materials for agricultural practices, there are only few comprehensive studies that 

have been currently conducted on application amphiphilic chitosan derivatives in 

agriculture, particularly in pesticide formulations. This research proposed a 

formulation for production of agrochemicals products which useful to overcome the 

environmental issues relating to the use of organic solvents and uncontrolled release 

of pesticides. This research is relevance to the National Agro-Food Policy set by 

Ministry of Agriculture and Agro-based Industry Malaysia (MOA) which focused on 

ensuring food security for Malaysian citizen by promoting sustainable development in 

agriculture (MOA, 2011). This research is also significance to the National Policy on 

the Environment set by Department of Environment Malaysia (DOE) particularly on 

Continuous Improvement in the Quality of the Environment that directed towards 

achieving clean, safe and healthy, and productive environment for present and future 

generation (DOE, 2002; Economic Planning Unit, 2015). 
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1.4 Research Aim  

 

The overall aim of this research was to utilise amphiphilic chitosan derivatives as 

green media (carrier agents) in the formulation of environmental friendly pesticides. 

 

 

1.5 Research Objectives 

 

The objectives of this research were: 

1. To synthesis and characterise the physical and chemical properties of 

amphiphilic chitosan derivatives. 

2. To evaluate the ability of amphiphilic chitosan derivatives to encapsulate and 

increase water solubility of hydrophobic pesticide active ingredients in 

pesticide formulations. 

3. To assess the ability of amphiphilic chitosan derivatives to release 

hydrophobic pesticide active ingredients through in vitro system. 

4. To evaluate the effectiveness of proposed pesticide formulations on target 

species or infected plants.  

 

 

1.6 Research Scopes 

 

This research consisted of four main parts, namely synthesis, characterisation, 

application and effectiveness studies. In this research, six types of amphiphilic 

chitosan derivatives, which consist of different types of hydrophilic and hydrophobic 
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groups, namely N-octyl-O-sulfate chitosan, N-octyl-N-succinyl chitosan, N-octyl-O-

glycol chitosan, N-deoxycholic acid-O-glycol chitosan, N-hexanoyl-O-glycol chitosan 

and N-lauryl-O-glycol chitosan were synthesised. N-octyl chitosan and O-glycol 

chitosan were used as precursors to synthesis the respective amphiphilic chitosan 

derivatives. Several characterisation studies were carried out on each amphiphilic 

chitosan derivative in order to determine the chemical structure, the presence of 

functional groups, the elemental composition, thermal properties and internal 

morphology of the materials.  

 

The amphiphilic chitosan derivatives were then applied to encapsulate three 

types of hydrophobic pesticides active ingredients, namely atrazine, rotenone and 

thymol. The ability of the amphiphilic chitosan derivatives to increase the solubility 

of atrazine, rotenone and thymol in water was evaluated based on its encapsulation 

efficiency. 

 

The in vitro release of the atrazine, rotenone and thymol from the amphiphilic 

chitosan derivatives micelles was conducted in phosphate buffer saline (PBS) solution 

to evaluate the controlled release properties. The release mechanism of atrazine, 

rotenone and thymol from the amphiphilic chitosan derivatives micelles was obtained 

by fitting the in vitro release data to four kinetic models.  

 

The pot experiment was performed to assess the effectiveness of the 

amphiphilic chitosan derivatives formulations on target species. In this study, aphids, 

trips and white fly were used as target species for formulations of the amphiphilic 

chitosan derivatives-loaded with rotenone or thymol. Meanwhile, weed (Cyperus 
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kyllingia) was used as target species for the formulation of amphiphilic chitosan 

derivatives-loaded with atrazine. 

 

 

1.7 Thesis Outline  

 

This thesis is organised into 5 chapters. Each chapter is arranged as follows; Chapter 

1 explained about background of the study, problem statement, research aim and 

objectives, and the scopes of the study. Chapter 2 discussed the literature reviews on 

the topics related to pesticides such as the backgrounds of the pesticides application in 

the world, the classification of the pesticides, the environmental effects and health 

hazards due to the application of pesticides and organic solvents. The agriculture 

trends and application of the pesticides in Malaysia was also described. The examples 

of the carrier agents used in the pesticides formulation and research gaps were also 

highlighted. 

 

 On the other hand, Chapter 3 focussed on the research methodologies. The list 

of the chemicals used throughout this study was provided. The details on the 

procedure to synthesis each of the amphiphilic chitosan derivatives, to encapsulate the 

pesticides active ingredients in the amphiphilic chitosan derivatives micelles and the 

analytical techniques to characterise the chitosan derivatives were explained. The 

production of the pesticides formulation for studied pesticides active ingredients and 

procedure to evaluate effectiveness of the pesticides formulation was also presented.  
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Next, Chapter 4 discussed the results obtained from the characterisation of 

each of the amphiphilic chitosan derivative, the application study and effectiveness of 

the pesticides formulation on targeted species. In chapter 5, the research findings were 

summarised and some suggestions for future work were presented. 




