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ABSTRACT 

 

The aims of this study were to improve the mechanical properties, thermal stability 
and biocompatibility of epoxy/fish scales hydroxyapatite (FsHAP) composite 
toughened with liquid natural rubber. The FsHAp was extracted from Tilapia fish 
scales using thermal method while liquid natural rubber was produced from 
poly(methyl methacrylate) grated natural rubber (MG30) via oxidative and photo 
degradation methods label as LMG30A and LMG30B, respectively. The analysis of 
liquid natural rubber was carried out using Fourier transform infrared spectroscopy 
(FTIR), nuclear magnetic resonance spectroscopy (NMR) and gel permeation 
chromatography (GPC) have shown that no significant chemical  structure change 
between both LMG30 (A and B) and MG30. GPC analysis exhibited that the average 
molecular weight of LMG30A (29,307Da) was lower than LMG30B (97,693Da). The 
fracture toughness of the epoxy was increased up to 23 fold (15.2 MPa.m1/2) when 
epoxy loading with 10 wt% FsHAp and toughened with 6 phr LMG30A, whereas 
impact strength and flexural test increased up to twice as compared to neat epoxy. The 
morphology was characterized using field emission scanning electron microscope 
(FESEM) showed uniform dispersion of rubber particles within the epoxy matrix with 
average diameter between 0.7 and 1.2 μm. Differential scanning calorimetry (DSC) 
and thermo gravimetric analysis (TGA) curves have showed the thermal stability of 
the epoxy/FsHAp/LMG30A composite higher as compared to neat epoxy. The 
epoxy/FsHAp/LMG30A composite was proven to be biocompatible through 
cytotoxicity test. In conclusion, the epoxy/FsHAp/LMG30A composite shown higher 
mechanical properties, thermal stability and biocompatibility as compared to neat 
epoxy. As an implication, the developed epoxy/FsHAp/LMG30A composite is 
potential to be used as medical device applications. 
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KOMPOSIT EPOKSI/HIDROKSIAPATIT SISIK IKAN (FsHAp) YANG 
DITEGUHKAN DENGAN CECAIR GETAH ASLI UNTUK APLIKASI               

BIOPERUBATAN 

 

ABSTRAK 

 

Kajian ini bertujuan untuk meningkatkan sifat mekanik, kestabilan terma dan 
bioserasi komposit epoksi/hidroksiapatit sisik ikan (FsHAp) diteguhkan dengan cecair 
getah asli. FsHAp diekstrak daripada sisik ikan Tilapia menggunakan kaedah terma 
manakala cecair getah asli dihasilkan daripada getah asli tercangkuk poli(metil 
metakrilat) (MG30) melalui  kaedah  degradasi oksidatif dan foto di label masing-
masing sebagai LMG30A and LMG30B. Analisis cecair getah asli dijalankan 
menggunakan spektroskopi Fourier transformasi inframerah (FTIR), spektoskopi 
resonans magnetik nuklear (NMR) dan kromatografi penyerapan gel (GPC) 
menunjukkan tiada perubahan struktur kimia yang nyata antara LMG30 (A dan B) 
dan MG30. Analisis GPC mendapati purata berat molekul LMG30A (29,307Da) lebih 
rendah daripada LMG30B (97,693Da). Kekuatan teguhan epoksi meningkat sehingga 
23 kali ganda (15.2 MPa.m1/2) apabila ditambah dengan 10 wt% FsHAp dan 
dikuatkan dengan 6 phr LMG30A, manakala kekuatan hentaman dan lenturan 
meningkat sehingga dua kali berbanding dengan epoksi tulin. Morfologi dicirikan 
menggunakan mikroskop pengimbas pancaran medan elektron (FESEM) 
menunjukkan penyebaran seragam partikel getah dalam matriks epoksi dengan purata 
diameter antara 0.7 dan 1.2 μm. Kalorimetri pengimbasan pembezaan (DSC) dan 
analisis gravimetri terma (TGA) menunjukkan kestabilan terma bahan 
epoksi/FSHAp/LMG30A yang lebih tinggi berbanding epoksi tulin. Komposit 
epoksi/FsHAp/LMG30A terbukti bersifat bioserasi melalui ujian sitotoksisiti. 
Kesimpulannya, komposit epoksi/FsHAp/LMG30A menunjukkan sifat mekanik yang 
lebih tinggi, kestabilan haba dan bioserasi berbanding dengan epoksi tulin. 
Implikasinya, komposit epoksi/FsHAp/LMG30A yang dibangunkan berpotensi 
digunakan sebagai peranti perubatan. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

1.1     Research Background 

 

Epoxies are important thermosetting materials commonly used in adhesives, coatings, 

electrical laminates and structural components because of their excellent mechanical 

properties, cure shrinkage, good solvent and chemical resistance, versatility            

and excellent adhesion (Gazi, 2019; Kim & Kim, 2017; Mathew, George, 

Parameswaranpillai, & Thomas, 2014).  

 

Epoxies are also widely used in medical products, such as medical-grade 

disposable and reusable devices including catheters and surgical instruments 

(Ahmadi, 2019; Bobby & Samad, 2019; Kontaxis, Pavlou, Portan, & Papanicolaou, 

2018; Madhav, Singh, & Jaiswar, 2019). Moreover, they can be found in orthopaedic 
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devices and in diagnostic equipment, such as MRI machines and ultrasound devices. 

Part of the reason is that the materials can be specially formulated to resist chemicals 

(Oladele, Akinola, Agbabiaka, & Omotoyinbo, 2018). Epoxies also adhere well to 

metals, plastics, glass and other substrates used in medical devices. Figure 1.1 shows 

some of the applications of epoxy/carbon fibre composites in orthopaedic prosthetics 

(Scholz, Blanchfield, Bloom, Coburn, Elkington, Fuller, & Trevarthen 2011). 

 

 

Figure 1.1. Epoxy/Carbon Fiber Composites Are Ideal Materials For Orthopedic 
Prosthetics. 

 

However, the applications of epoxy materials are limited by their intrinsic 

brittleness due to high 3D crosslink network (Chuayjuljit, Soatthiyanon, & Potiyaraj, 

2006). Many studies focused on toughening epoxy materials (Jansen, Tamminga, 

Meijer, & Lemstra, 1999; Kumar & Kothandaraman, 2008; Ratna, Banthia, & Deb, 

2005; Tan, Ahmad, Chia, Mamun, & Heim, 2013) by adding organic or inorganic 

fillers, such as reactive liquid rubbers, high-performance engineering thermoplastic 

(Sonoyama, Kuboki, Okamoto, Suzuki, Arakawa, Kanyama, & Yamashita 2002), 
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inorganic particles (Jin & Park, 2012) and hyper branched polymers (HBPs) (Jin, 

Huang, Zhu, Zhou, & Yan, 2012). 

 

Since the 1970s, the application of composite materials has widely increased 

with the development of new fillers, such as carbon fibre, boron, aramid, quartz, 

ceramic and glass fibre (Im & Kim, 2012; Feng, Lauke, & Mai, 2008). Considering 

that epoxy is biocompatible in fillers for biomaterials applications, Leyva et.al., 

(2008) attempted to use this material in the medical field and assumed that it is also 

biocompatible and non-toxic during degradation in the human body (Leyva, Antonio, 

& Queiroz, 2008).  

 

Many studies reported the advantages of hydroxyapatite (HA), especially in 

stimulating bone healing, and claimed that it has been used in orthopaedics as bone 

void fillers, dental surgery, orthopaedic and dental implant coating, traumatology, 

spine and maxillofacial (Nandi, Kundu, Mukherjee, Mahato, Datta, & Balla 2015; 

Swetha, Sahithi, Moorthi, Srinivasan, , Ramasamy & Selvamurugan 2010; Inoue, K., 

Ohgushi, Yoshikawa, Okumura, Sempuku, Tamai & Dohi 1997; Moore, Chapman, & 

Manske, 1987). HA is bioactive, non-toxic, non-immunogenic and osteoconductive 

with a crystallographic structure almost similar to that of the bone mineral (Hongjian 

Zhou & Lee, 2011). Figure 1.2 displays biomedical applications of HA. 
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Figure 1.2. Schematic Illustration of Biomedical Applications of Hydroxyapatite. 

 

            HA with a molecular formula of Ca10(PO4)6(OH)2 is a common inorganic   

filler used to improve the mechanical properties and biocompatibility of          

polymer composites (Monmaturapoj, Srion, Chalermkarnon, Buchatip, Petchsuk, 

Noppakunmongkolchai & Mai-Ngam 2017; Scalera, Esposito Corcione, Montagna, 

Sannino, & Maffezzoli, 2014), because of its excellent biocompatibility properties 

(Chen, Liang, Mccrate, Lee, & Li, 2011). The chemical structure of HA is shown in 

Figure 1.3 (Ramli, Adnan, Bakar, & Masudi, 2011).  
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Figure 1.3. The Crystal Structures of Hydroxyapatite (Fihri, Len, Varma, & Solhy, 
2017). 

 

            HA in the form of particles with particle size < 10 microns is classified as 

particulate fillers. It is similar to the silica powder used in epoxy composites 

(Brusentseva, Filippov, Fomin, Smirnov, & Veretennikova, 2015). The application of 

HA as a filler in epoxy was reported by Oladele et al., (2018). Meanwhile, Scalera et 

al., (2014) prepared epoxy/HA suspensions for stereo lithography in bone tissue 

engineering and found that the prepared epoxy/HA exhibits good mechanical 

properties (Scalera et al., 2014).  

 

             Fracture toughness is the property of resisting fracture by absorbing and 

dissipating energy during deformation prior to ultimate fracture. Toughness is a 

highly important property in applications where the material repeatedly encounters 

mechanical shock and vibration. Meanwhile, a small amount of a miscible liquid 

rubber is incorporated into the matrix of the curing agent-incorporated epoxy resin, 

and then the whole mass is subjected to curing. Phase separation is affected by the 

formulation, processing and curing conditions. Fracture toughness improves through 
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the dissipation of mechanical energy by cavitation of the rubber particles, followed by 

shear yielding of the matrix. Improvement of fracture toughness is influenced by 

different factors, such as rubber particle size, curing agent and cross-linking density 

(Kargarzadeh, Ahmad, & Abdullah, 2017).  

 

            The fracture toughness of epoxy can be improved by adding impact modifiers 

(Seng et al., 2011), such as liquid rubber. Epoxidised carbonyl-terminated butadiene 

acrylonitrile copolymer liquid rubber (CTBN) is a commercial liquid rubber used as a 

toughening agent (Kargarzadeh, Sheltami, Ahmad, Abdullah, & Dufresne, 2015; Ben 

Saleh, Mohd Ishak, Hashim, & Kamil, 2009) . Zainol et al., (2006) first reported the 

potential of liquid natural rubber (LNR) as an impact modifier for epoxy resin. They 

proved that the impact properties of epoxy resin improve by 22-fold after adding 5 phr 

liquid poly(methyl methacrylate) grafted natural rubber (LMG30). The rubber used in 

their study was poly(methyl methacrylate) grafted natural rubber (MG30) (Zainol, 

Ahmad, Zakaria, Ramli, HaslanFadli, & Abdul Aziz 2006). Other researchers were 

reported the modification of thermoset resin with other types of LNR (Hisham, 

Ahmad, Daik, & Ramli, 2011; Mathew et al., 2014; Saleh, Ishak, Hashim, Kamil, & 

Ishiaku, 2014).  

              

             NR can be modified into LNR with a similar microstructure but shorter 

polymeric chain. LNR has a molecular weight (Mw) less than 50,000 Dalton 

(Sivaraman et al., 2017; Ibrahim & Board, 2016). Previous studies prepared LNR via 

different methods, such as photochemical oxidation, redox reaction, photodegradation 

and oxidation (Ibrahim, Othman, Nor, & Ismail, 2017; Giang, Thao, Huong, & Thu 
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Hiep, 2016; Abdullah, 1994). Preparation of LNR has been an interesting subject for 

decades because of its application as a strong adhesive, reactive plastic, coating and 

LNR which can be easily modified chemically given its low molecular weight 

(Rooshenass, Yahya, R., & Gan, 2018).  

 

1.2     Problem Statement 

 

Epoxy resins are highly cross-linked polymers used in material adhesives, aerospace, 

coatings and electrical and medical devices because of their high strength and 

stiffness and good solvent resistance (Abdul, Yop, Jin, & Hui, 2013). However, epoxy 

resins have limited applications in medical devices because of the brittle properties of 

epoxy after crosslinking. Hence, considerable efforts have been devoted to improving 

the toughness of epoxy resins (Unnikrishnan & Thachil, 2012). Numerous methods, 

such as adding rubber particulate, inorganic fillers and other engineering polymers, 

have been proposed to enhance the impact properties of epoxy. One successful 

method is the addition of synthetic liquid rubber (e.g. CTBN) and LNR (e.g. LENR).  

 

Most studies on epoxy toughening modified epoxy with LNR (Tan et al., 

2013).  However, the addition of rubber usually decreases other properties (mainly the 

modulus and the thermal properties). A new approach for improving the thermal 

stability, toughness and modulus of thermoplastic and thermoset systems has recently 

emerged through the formation of a nanophase structure in the polymer matrix; the 

nanophase consists of small, rigid particles, whiskers or tubes (e.g. layered silicates, 
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silica particles or carbon nanotubes) (Maghsoudian, Salimi, & Mirzataheri, 2019; 

Mentlík, 2018). In this study was added natural hydroxyapatite (FsHAp) powder was 

extracted from Tilapia fish scales via thermal method as a filler to improve modulus 

properties, thermal stability and the biocompatibility of the composites. 

 

          A commonly used HA for fillers in the polymer matrix composite is synthetic 

HA produced from the chemical reaction between ammonium phosphate 

[(NH4)2HPO4] and calcium hydroxide [Ca(OH)2]. It is widely used as a filler in 

thermoplastic materials, such as high-density polyethylene (HDPE) (Parra, Gonzalez, 

& Albano, 2009). However, synthetic HA is expensive to produce, and its quality is 

difficult to control. Biological sources of HA, such as fish scales, fish bones, bovine 

bones, teeth and bones of pig, are alternatives to synthetic HA (Mondal, Bardhan, 

Mondal, Dey, Mukhopadhyay, Roy & Roy, 2012). Fish waste, especially fish scales, 

is a good source of natural HA because it contains 50% by weight of scale. Fish scales 

are also abundant in valuable organic components, such as collagen (Sankar et al., 

2008). The preparation of HA from fish scales is biologically safe, economical and 

biocompatible (Zainon et al., 2012). Jaafar et al., (2017) reported the use of natural 

HA powder (HAp) from fish scales as a filler in HDPE (Aiza, Jaafar, Zainol, & Mohd 

Amin 2017).  

 

         Several reports focused on the application of LNR on modified epoxy but none 

on modified epoxy/FsHA composites. Meanwhile, reports on the application of 

natural HAp from fish scales as a filler to enhance the mechanical and biological 

properties of epoxy resin are also lacking. Furthermore, LMG30 has yet to be 
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prepared using oxidative degradation. In the present study, LMG30 was prepared 

using two methods, namely, photodegradation and modified oxidative degradation. 

Thus, this study aims to produce an epoxy/FsHAp composite modified with liquid 

rubber (LMG30) to improve the mechanical and biological properties of 

epoxy/FsHAp composites. Toughened epoxy/FsHAp composites have potential 

biomedical applications, such as in artificial limbs. 

  

1.3     Research Objectives 

 The objectives of this study are as follows: 

1. To prepare liquid poly (methyl methacrylate) grafted rubber (LMG30) via 

modified oxidative degradation and photodegradation. 

 

2. To optimise natural hydroxyapatite (FsHAp) filler loading and LMG30 as 

toughness agents in the production of epoxy composites. 

 

3. To characterise the physicochemical and mechanical properties of 

epoxy/FsHAp/LMG30 composites. 

 

4. To examine the surface morphology of fractured epoxy/FsHA/LMG30 

composites. 

 

5. To investigate the cytotoxicity of epoxy/FsHAp/LMG30 composites. 
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1.4    Significant of the Study  
 

HA has been used as a biomaterial because of its excellent biocompatibility properties 

(Pramanik, Mishra, Banerjee, Maiti, Bhargava, & Pramanik, 2009). HA is also a 

bioactive substance which forms a strong chemical bond with the host bone tissue; 

hence, it is a good bone graft material. HA bioceramics have several applications, 

such as in bone tissue engineering, bone void fillers for orthopaedic, traumatology, 

spine, and maxillofacial, dental surgery, orthopaedic and dental implant coating and 

desensitising agent in post teeth bleaching (Fouad, Elleithy, & Alothman, 2013).  

 

         HA is usually synthesised via chemical reactions, such as chemical precipitation 

(Ungureanu, Angelescu, Ion Stoian, & Rizescu, 2011). However, the high 

manufacturing cost associated with the chemicals used in the synthetic process has led 

to a new production approach. In this study, FsHAp was extracted from fish scales to 

reduce the production cost. Moreover, high-molecular-weight poly (methyl 

methacrylate) grafted NR (MG30) was depolymerised into low-molecular-weight 

MG30 (LMG30) as a potential toughening agent for polymeric materials. In this 

study, LMG30 was prepared via two methods, photodegradation and modified 

oxidative degradation. 

 

The natural materials FsHAp and LMG30 are low cost and biologically safe 

for human body; thus, they are suitable for medical device applications and halal 

sources for Muslims around the world. 

 



11 
 

This study is significant to the research development that expands the 

information and application of epoxy in biomedical applications by toughening the 

matrix by adding liquid rubber to enhance the impact properties of epoxy/FsHAp 

composites. The new epoxy/FsHAp/LMG30 composites with good mechanical and 

biocompatibility properties are suitable for medical devices. 

 

 This study will open the pathway for many future studies in biomedical 

applications, considering that reports about the use of LMG30 to enhance the 

toughened properties of epoxy/FsHAp composites are lacking. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 




