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ABSTRACT 

 

The purpose of this study was to develop generic pattern recognition models (GPRMs) 

based on two-class EEG–MI brain-computer interfaces for wheelchair steering control. 

Initially, a preprocessing procedure was performed to remove unwanted signals and to 

identify the optimal duration of MI feature components. Then, feature extraction based 

on five statistical features, namely min, max, mean, median, and standard deviation were 

utilized for extracting the MI feature components in three signal domains, namely time, 

frequency, and time-frequency domains. Seven classification algorithms, namely LDA, 

SVM, KNN, ANN, NB, DT, and LR were selected and tested to find the best algorithms 

that could be used for the development of hybrid classifiers. Two datasets were used, 

namely the BCI Competition dataset (which belonged to Graz University) and the 

Emotive EPOC dataset (which was collected in this study), with the former being 

utilized in the development, evaluation, and validation of the GPRM models and the 

latter being used for validation only. The research findings showed that GPRM models 

based on the LR classifier were highly accurate in the time and time-frequency domains 

in the range of 4 and 6 seconds and 4 and 7 seconds, respectively. In addition, GPRM 

models based on the MLP-LR classifier were highly accurate in the frequency domain 

in the range of 4 and 6 seconds. Furthermore, the validation of such models using the 

Emotive EPOC dataset showed that the LR-based GPRM model attained high 

classification accuracies of 90.2% and 85.7% in the time domain and time-frequency 

domain, respectively. The MLP-LR-based GPRM models achieved a classification 

accuracy of 84.2% in the frequency domain. In conclusion, the main findings showed 

that GPRMs were highly adaptable when deployed in the real-time application of the 

EEG-MI-based wheelchair steering control system. The implication of this study is that 

generic pattern recognition models based on EEG-MI Brain-Computer interfaces can be 

utilized to improve the effectiveness of wheelchair steering control.  

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 



vi 

 

MODEL-MODEL PENGECAMAN CORAK GENERIK BERASASKAN 

ANTARA MUKA OTAK MANUSIA-KOMPUTER UNTUK KAWALAN 

PENGEMUDIAN KERUSI RODA 

 

ABSTRAK 

 

Tujuan kajian ini adalah untuk membangunkan model pengecaman corak generik 

(GPRM) berasaskan antara muka otak manusia-komputer (BCI) berdasarkan EEG-MI 

untuk kawalan pengemudian kerusi roda. Mula-mula, prosedur pra-pemprosesan 

dijalankan untuk menyingkirkan isyarat yang tidak diingini dan untuk mengenal pasti 

tempoh optimum bagi komponen-komponen ciri MI. Kemudian, penyarian sifat 

berdasarkan lima sifat statistik, iaitu minima, maksima, min, median, dan sisihan piawai  

digunakan untuk mengekstrak komponen-komponen ciri MI ke dalam tiga domain 

isyarat, iaitu domain masa, domain frekuensi, dan domain masa-frekuensi. Tujuh 

algoritma pengelasan, iaitu LDA, SVM, KNN, ANN, NB, DT, dan LR dipilih dan diuji  

untuk menentukan algoritma-algoritma yang terbaik yang boleh digunakan untuk 

membangunkan pengelas hybrid. Dua set data digunakan, iaitu set data Competition BCI 

(yang dipunyai oleh Universiti Graz) dan set data Emotive EPOC (yang dikumpulkan 

dalam kajian ini). Set data pertama digunakan untuk pembangunan, penilaian, dan 

pengesahan GPRM, sementara set data kedua digunakan hanya untuk pengesahan. 

Dapatan kajian menunjukkan model GPRM berasaskan pengelas LR adalah sangat 

berkesan dalam domain masa dan domain masa-frekuensi bagi julat masa antara 4 dan 

6 saat dan julat masa antara 4 dan 7 saat, masing-masing. Tambahan pula, model GPRM 

berasaskan pengelas MLP-LR adalah sangat berkesan dalam domain frekuensi bagi julat 

masa antara 4 dan 6 saat. Di samping itu, pengesahan model berdasarkan set data  

Emotive EPOC menunjukkan model GPRM berasaskan pengelas LR memperoleh 

peratusan ketepatan pengelasan setinggi 90.2% dan 85.7% dalam domain masa dan 

domain masa-frekuensi, masing-masing. Model GPRM berasaskan pengelas MLP-LR 

memperoleh peratusan ketepatan pengelasan setinggi 84.2% dalam domain frekuensi. 

Sebagai kesimpulan, dapatan menunjukkan model GPRM adalah amat sesuai bila 

digunakan dalam sistem kawalan pengemudian kerusi roda berasaskan EEG-MI dalam 

masa nyata. Implikasi kajian ini adalah model-model pengecaman corak generik 

berasaskan antara muka otak manusia-komputer boleh digunakan untuk meningkatkan 

keberkesanan kawalan pengemudian kerusi roda.    
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                                               INTRODUCTION  

 

 

 

 

1.1 Overview 

 

This chapter gives an overview of the research which comprises the research problem, 

research gap, research objectives, motivation, background of the study, scope of the 

study, and thesis structure.  

 

Section 1.2 describes the research motivation, while Section 1.3 presents the 

research problem as well as the research gap. Research questions and research 

objectives are clarified in Section 1.4 and Section 1.5, respectively. Section 1.6 follows 

with the scope of the study highlighting the boundary of the research. Finally,       

Section 1.7 summarizes the structure of the thesis
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1.2 Motivation of the Study 

 

Clearly, mobility is one of the challenges faced by stroke survivors. For example, a 

wheelchair can assist patients to become partially independent in performing certain 

daily activities (Caesarendra et al., 2015; J. Li et al., 2013). At present, the need for 

wheelchairs has increased for paralyzed patients and elderly people (Tomari, Hassan, 

Zakaria, & Ngadengon, 2015). However, for physically challenged individuals, the use 

of a push wheelchair is not ideal as it does not provide the needed comfort and 

maneuverability. Therefore, electric-powered wheelchairs (EPWs) were invented to 

conserve the physical energy of users and provide them with increased maneuverability 

(Jayabhavani, Raajan, & Rubini, 2013; Mirza et al., 2015). Also, many patients with 

spinal cord injuries and neuromuscular disorders mainly rely on electrical powered 

wheelchairs (EPWs) to gain mobility (Shinde & George, 2016). 

 

Universal statistical data indicate that roughly 650 million people, who are 

approximately 10% of the global population, suffer from a motor disability, with nearly 

7% in need of an electrical wheelchair (Lamti, Gorce, Ben Khelifa, & Alimi, 2016). 

Also, according to the Department of Social Welfare statistical data, there has been an 

exponential increase in the number of paralyzed patients in Malaysia. (Swee, You, & 

Kiang, 2016). Therefore, to accommodate such mobility-impaired persons, numerous 

cutting-edge techniques and functionalities have been developed over the years (Rabhi, 

Mrabet, & Fnaiech, 2018). For example, advanced research in the field of biomedical 

engineering (Xie & Li, 2015) and robotic technologies (Widyotriatmo & Andronicus, 

2015) has delivered a new generation of wheelchairs called brain-controlled 

wheelchairs (BCWs), such as in (Turnip, Suhendra, & WS, 2015a).  
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Figure 1.1 shows the system architecture of the brain-controlled wheelchair (BCW). 

Specifically, the BCW is deemed to be the appropriate equipment for completely 

paralyzed patients with a healthy brain to navigate their environment (Budiharto, 

Gunawan, Parmonangan, & Santoso; Ramli, Arof, Ibrahim, Mokhtar, & Idris, 2015). 

As highlighted in the literature, BCW has been designed with different wheelchair 

platforms, such as normal BCW as in (Kim, Carlson, & Lee, 2013a) or BCW with 

robotic manipulator (Naijian, Xiangdong, Yantao, Xinglai, & Hui, 2016a) or BCW 

integrated with a smart environment (Tello et al., 2015). 

 

 

Figure 1.1. Architecture of Brain-Controlled Wheelchair adapted from (Faria, Reis, &   

Lau, 2012a). 

 

 

In fact, several types of BCI exist, depending on the recording technique of the 

physiological signals, such as electroencephalography (EEG), functional magnetic 

resonance imaging (FMRI), near-infrared spectroscopy (NIRS), and 

Magnetoencephalography (MEG) (Nicolas-Alonso & Gomez-Gil, 2012).  
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Among such physiological signals, EEG has been widely used because of its adequate 

temporal resolution, portability, and relatively low cost (Fernández-Rodríguez, 

Velasco-Álvarez, & Ron-Angevin, 2016). 

 

To date, there have been many attempts to design brain-computer interfaces 

(BCIs) for wheelchair control based on steady-state visual evoked potential (SSVEP), 

event-related desynchronization/synchronization (ERD/ERS) during motor imagery 

(MI) tasks, P300 evoked potential, and some hybrid signals (J. Li et al., 2014). 

However, the effectiveness of using P300 has several limitations, particularly for 

patients suffering from a neurological illness, ALS (Kodi, Kumar, Kodali, & Pasha, 

2013). Similarly, EEG-based SSVEP relies on certain motor movement control, which 

is ineffective for patients with severe motor disabilities (Bastos, Muller, Benevides, & 

Sarcinelli-Filho, 2011; Fernández-Rodríguez et al., 2016; S. M. T. Müller, Bastos-

Filho, & Sarcinelli-Filho, 2011; Puanhvuan & Wongsawat, 2012; Widyotriatmo & 

Andronicus, 2015).  

 

Another weakness of these schemes is that the user has to continuously focus 

on the mission when the process is synchronous (Inaki Iturrate, Antelis, & Minguez, 

2009). As such, users may become exhausted or suffer from sore eyes if exposed to a 

visual stimulus for a long time. Therefore, such type of brain signals is unsuitable and 

ineffective for wheelchair control, as people with disability can easily become 

exhausted (Chai, Ling, Hunter, & Nguyen, 2012a; Chai, Ling, Hunter, Tran, & Nguyen, 

2014; Kim, Suk, & Lee, 2016; Puanhvuan & Wongsawat, 2012) 
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Currently, motor imagery (MI) is one of the most common methods used in BCI-based 

EEG control systems (Hema, Paulraj, Yaacob, Adom, & Nagarajan, 2009; Kaneswaran, 

Arshak, Burke, & Condron, 2010). Recently, MI-based EEG signals have been used in 

various types of applications such as sports, psychology, neuroscience, rehabilitation 

technology as well as wheelchair control (Jiang, Tham, Yeo, Wang, & Jiang, 2014; J. 

Li et al., 2014).  

 

In general, MI pattern recognition systems involve raw MI EEG signal 

preprocessing, feature extraction, and pattern classification (Liu, Zhang, Duan, Zhou, 

& Meng, 2017). In particular, segmentation is a significant preprocessing step in the 

signal analysis, and its performance plays a vital role in the efficiency of the subsequent 

steps such as feature extraction and classification (Azami & Escudero, 2015). Feature 

extraction is another critical step in MI pattern recognition. Common EEG features 

include those in the time domain, frequency domain, time-frequency domain, and 

spatial domain (Liu et al., 2017). Technically, a feature represents a distinguishing 

property, a recognizable measurement, and a functional component obtained from a 

section of a pattern. Extracted features are meant to minimize the loss of relevant 

information embedded in the signal. This is necessary to reduce the complexity of 

implementation, to reduce the cost of information processing, and to eliminate the need 

to compress information (Al-Fahoum & Al-Fraihat, 2014). 

 

Generally, EEG signals are represented in high dimensional feature space, making 

such signal very difficult to interpret. In this regard, machine learning methods are 

helpful for interpreting high dimensional feature sets and analyzing the characteristics 

of brain patterns (Bhuvaneswari & Kumar, 2013).  
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In fact, many classification algorithms have been developed to distinguish brain activity 

states during different mental tasks (Belkacem, Hirose, Yoshimura, Shin, & Koike, 

2014). Machine learning algorithms that have appeared in the literature of BCW are as 

follows: Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), K-

Nearest Neighbors (KNN), Artificial Neural Networks (ANN), Naive-Base (NB), 

Decision Tree (DT), and Logistic Regression (LR).  

 

 

1.3 Research Problem 

 

Admittedly, people with disability and the elderly will find steering and driving a 

wheelchair with electrical and mechanical schemes challenging. Therefore, various 

technologies to assist people with disability have been recently proposed (Mirza et al., 

2015), one of which is Brain-Controlled Wheelchair (BCW) that has been considered 

to be an appropriate device for completely paralyzed patients with a healthy brain to 

navigate their environment (Budiharto et al.; Ramli et al., 2015). 

 

Up to the present, there have been many attempts to design Brain-Computer 

Interfaces (BCIs) for wheelchair control based on Steady State Visual Evoked Potential 

(SSVEP), Event-Related Desynchronization/Synchronization (ERD/ERS) for MI tasks, 

P300 evoked potential, and some hybrid signals (J. Li et al., 2014). However, P300 has 

several limitations, particularly for patients suffering from neurological illnesses such 

as ALS (Kodi et al., 2013).  
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Similarly, EEG-based SSVEP has some drawbacks in that it relies on a certain motor 

movement control, which is ineffective for patients with severe motor disabilities 

(Bastos et al., 2011; Fernández-Rodríguez et al., 2016; S. M. T. Müller et al., 2011; 

Puanhvuan & Wongsawat, 2012; Widyotriatmo & Andronicus, 2015). Another 

weakness of these schemes is that users have to continuously focus on a mission when 

the process is synchronous (Inaki Iturrate et al., 2009). Naturally, they may become 

exhausted or suffer from sore eyes after exposing to visual stimuli for a long time. 

Therefore, such type of brain signals is unsuitable and ineffective for wheelchair 

control, especially for people with disability who can easily become exhausted (Chai et 

al., 2012a; Chai et al., 2014; K.-T. Kim et al., 2016; Puanhvuan & Wongsawat, 2012). 

At present, MI is one of the most common methods used in BCI-based EEG 

control systems (Hema et al., 2009; Kaneswaran et al., 2010). For example, EEG-based 

MI signals have been used in various types of applications, such as sports, psychology, 

neuroscience, rehabilitation technology as well as wheelchair control (Jiang et al., 2014; 

J. Li et al., 2014). In general, MI pattern recognition systems involve raw MI EEG 

signal preprocessing, feature extraction, and pattern classification (Liu et al., 2017). 

These pattern recognition processes are essential in EEG-MI based system design 

because these processes have a significant effect on system performance.  

In particular, the presence of errors can cause the initiation of a wrong command 

that can lead to dangerous situations (Abiyev, Akkaya, Aytac, Günsel, & Çağman, 

2016).In a complex and real environment, driving a wheelchair safely is essential for 

people with disability because of the requirement for sending commands on time 

(Carlson, Leeb, Chavarriaga, & Millán, 2012).  
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Therefore, the safety criterion in designing a wheelchair system for people with 

physical impairment must be given more importance (Jayabhavani et al., 2013). Hence, 

reliable navigation control systems are required for wheelchair users to comfortably 

and freely navigate around with a high degree of safety (Kaufmann, Herweg, & Kübler, 

2014).  

For example, in an unsafe or unfamiliar condition, a wheelchair control system 

needs to be sensitive in checking the accuracy of extracted commands from the EEG-

MI based system for placing the user in a safe zone (Widyotriatmo & Andronicus, 

2015). Otherwise, the EEG-MI based system can pose a threat to the user or to nearby 

people because of the unwanted navigation controls of the wheelchair resulting from 

the use of wrong commands, unfamiliarity with the machine interface, and 

misinterpretation of user’s gestures by the machine (Shinde & George, 2016).  

Therefore, in designing a wheelchair for stroke survivors, for example, the 

accuracy of the classification in distinguishing mental tasks such as the thinking process 

of the user in deciding to move forward, backward, to the right, and to the left, has to 

be taken into account (Amarasinghe, Wijayasekara, & Manic, 2014). However, to attain 

a high classification accuracy is challenging for a BCI-based system because of the 

complexity of brain signals (Parmonangan, Santoso, Budiharto, & Gunawan, 2016).  

In addition, individual differences in EEG signals can also affect the stability of 

a control system, given that such signals are not ideally stable (Min Li, Zhang, Zhang, 

& Hu, 2013). Furthermore, the EEG based system has the disadvantage of having 

higher sensitivity to noises, including ocular, muscular, and electromagnetic noises. 
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Nonetheless, the noise problem can be reduced and the classification accuracy can be 

improved by using better computational intelligent methods for both feature extraction 

and classification algorithms to extract high dimensional EEG features (Chai et al., 

2012a). The use of high-quality EEG devices is prohibitively expensive (Abiyev et al., 

2016). Moreover, the financial cost and the reliability of BCI-based wheelchair control 

systems have been called into question given the less favorable results of the numerous 

models of smart wheelchairs that have been developed using high-tech assistive 

solutions, which have yet to be marketed (Naijian, Xiangdong, Yantao, Xinglai, & Hui, 

2016b; Taher, Amor, & Jallouli, 2016).  

In addition, recent applications in the field of EEG-based BCI systems have 

other  limitations such as the lack of complex configuration during EEG measurement 

that uses a large number of electrodes, the amount of time used for the arrangement and 

setup of electrodes (Andronicus, Harjanto, & Widyotriatmo, 2015; Kaysa & 

Widyotriatmo, 2013), and their   bulkiness and lack of maturity (Taher, Amor, & 

Jallouli, 2015). As a result to that, many studies using different techniques and methods 

of preprocessing, feature extraction, and classification in recognizing EEG patterns of 

EEG-MI based wheelchair control commands have been found in the literature; 

however, studies focusing on the best method or technique in distinguishing EEG-MI 

commands to be deployed in a wheelchair control system are seriously lacking. This 

revelation is not surprising given the challenges in designing and developing a motor 

imagery-based brain computer interface (BCI) with powerful pattern recognition and 

strong generalization capability (Zhang et al., 2018). Figure 1.2 highlights the research 

problem configuration, challenges, and issues discussed in this Chapter. 
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1.4 Research Objectives 

 

The main objective of this research is to develop a generic pattern recognition models 

(GPRMs) for two-class EEG-MI signal wheelchair commands. To achieve the main 

objective, several sub-objectives were identified as follows:  

 

1. To develop a generic preprocessing procedure of EEG motor-imagery signal in 

terms of generic dataset construction, signal filtering, and segmentation. 

2. To develop a feature extraction technique based on statistical methods in 

multiple-signal domains.  

3. To develop and evaluate a GPRM of two-class EEG motor-imagery signal 

wheelchair control commands in three signal domains using single classifiers 

and hybrid classifiers. 

4. To validate the developed GPRM in multiple-signal domains using EEG-MI BCI 

competition dataset and Emotive EPOC EEG-MI dataset. 
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1.5 Research Questions 

 

Four research questions were formulated to guide the design and focus of the study as 

follows: 

  

Q1. What are the preprocessing techniques that can be used to find the generic time 

segment of EEG-MI feature components? 

 

Q2. What is the most appropriate feature-extraction technique to extract signal features 

in multiple signal domains? 

 

Q3. What are the most appropriate pattern recognition models that can be used in the 

multi-signal domain to decode the EEG-MI brain signals for a couple of wheelchair 

commands that can be used for multi-subjects? 

 

Q4. What is the most appropriate approach to ensure that the developed models can be 

used for multi-subjects and deployed on several EEG-based BCI platforms? 
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1.6 Research Scope 

 

The scope of this research was limited to addressing the following issues: wheelchair 

platform, brain sensors, brain signal, the number of commands, study type, and a signal 

domain. With regard to the wheelchair platform, a standard wheelchair platform was 

selected without any other extensions, such as a robotic arm, and without integrating 

the wheelchair system with smart environmental control. However, for brain sensors 

for reading brain signals to be translated as a control command to the wheelchair 

platform, the EEG device was selected in this study. Out of several types of brain 

signals to be used for controlling the wheelchair, such as MI, P300, SSVEP, and SSSEP, 

MI was selected as a control signal.  

 

For the number of commands to control the movements of the wheelchair using 

the MI signal, this study focused on the steering control of the wheelchair in two main 

directions, namely the right and left direction, entailing the use of two commands. The 

study type to be conducted to MI-based wheelchair control system involved analysis, 

development, simulation, and framework. In particular, this study focused on 

developing a GPRM for analyzing brain signals and examining their impacts on system 

performance using laboratory data and off-line data collected from a simulated 

environment. Furthermore, coherent work was selected for analyzing the MI signal-

based wheelchair control system.  As such, this study was carried out in three signal 

domains, namely time, frequency, and time-frequency domain as summarized in   

Figure 1.3. 
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Figure 1.3. The Scope of Study 
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1.7 Thesis Structure 

 

To assist reading, this thesis is organized based on six Chapters as follows:  

Chapter One: This Chapter provides an overview of the workflow of the research 

regarding the research problem, research gap, research objectives, the motivation and 

background of the study, the scope of the study, and thesis structure.  

 

Chapter Two: This Chapter details a critical, in-depth review of the current literature 

pertaining to the field of wheelchair control based on a brain-computer interface using 

EEG. In particular, a systematic review approach was followed in collecting and 

analyzing relevant research articles, in identifying prevailing challenges in this area of 

research, in building a taxonomy for the selected articles, and in analyzing the research 

gap. 

 

Chapter Three: This Chapter explains the research methodology process of this study 

consisting of five phases that were sequentially carried out in solving the research 

problem. The first phase describes the systematic review process, starting from 

collecting the research articles and ending with identifying the research gap. The second 

phase and third phase describe the first objective pertaining to preparing the dataset and 

to the preprocessing of the EEG-MI signal. The fourth phase describes the second and 

the third objectives for the process of feature extraction and the classification of the 

GPRM respectively. The final phase describes the fourth objective concerning the 

validation of the GPRM by using two datasets, namely BCI competition dataset and 

Emotive EPOC dataset. 
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Chapter Four: This Chapter discusses the experimental results that helped guide the 

development of a GPRM for the EEG-MI signal consisting of two classes. Three 

experiments were conducted in each signal domain. Experiment 1 was performed with 

the aim of finding a GPRM for the EEG-MI signal consisting of two classes with the 

use of a single classifier. Experiment 2 was carried out to find a GPRM for the EEG-

MI signal using a hybrid classifier. Experiment 3 was conducted to evaluate the GPRM 

based on single and hybrid classifiers using the individual subjects’ dataset.  

 

Chapter Five: This Chapter discusses the validation of the performance of the GPRM 

for the EEG-MI signal. Specifically, three experiments were conducted to validate the 

GPRM using single and hybrid classifiers. The first experiment involved the validation 

of the GPRM using the second generic dataset. The second experiment dealt with the 

validation of the GPRM using a single subject’s dataset. Principally, the first and second 

experiment conducted using BCI Competition datasetIV-2b/validation part. The third 

experiment involved the validation of the GPRM using the Emotive EPOC dataset.  

 

Chapter Six: This Chapter provides a summary of the conclusion of this study, research 

outcome, research finding, future work, and recommended solutions for future research.  




