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ABSTRACT

Mallee biomass is considered to be a second-generation renewable feedstock in

Australia and will play an important role in bioenergy development in Australia. Its

production is of large-scale, low cost, small carbon footprint and high energy

efficiency. However, biomass as a direct fuel is widely dispersed, bulky, fibrous and

of high moisture content and low energy density. High logistic cost, poor grindability
and mismatch of fuel property with coal are some of the key issues that impede
biomass utilisation for power generation. Therefore, innovations are in urgent need to

improve biomass volumetric energy densification, grindability and good fuel

matching if co-fired with coal. Biomass pyrolysis is a flexible and low-cost approach
that can be deployed for this purpose. Via pyrolysis, the bulky biomass can be

converted to biomass-derived high-energy-density fuels such as biochar and/or bio

oil. So far there has been a lack of fundamental understanding of mallee biomass

pyrolysis and properties of the fuel products.

The series of study in this PhD thesis aims to investigate the production of such high

energy-density fuels obtained from mallee pyrolysis and to obtain some new

knowledge on properties of the resultant fuels and their implications to practical

applications. Particularly, the research has been designed and carried out to use

pyrolysis as a pretreatment technology for the production of biochar, bio-oil and

bioslurry fuels. The main outcomes of this study are summarised as follows.

Firstly, biochars were produced from the pyrolysis of centimetre-sized particles of

mallee wood at 300-500°C using a fixed-bed reactor under slow-heating conditions.

The data show that at pyrolysis temperatures> 320°C, biochar as a fuel has similar

fuel H/C and OIC ratios compared to Collie coal which is the only coal being mined

in WA. Converting biomass to biochar leads to a substantial increase in fuel mass

energy density from -10 GJ/tonne of green biomass to -28 GJ/tonne of biochars

prepared from pyrolysis at 320°C, in comparison to 26 GJ/tonne for Collie coal.

However, there is little improvement in fuel volumetric energy density, which is still

High- energy-density Fuels from Mallee Biomass



p'."IMIIlibBlp' ABSTRACT

around 7-9 GJ/m3 in comparison to 17 GJ/m3 of Collie coal. Biochars are still bulky
and grinding is required for volumetric energy densification. Biochar grindability

experiments have shown that the fuel grindability increases drastically even at

pyrolysis temperature as low as 300°C. Further increase in pyrolysis temperature to

500°C leads to only small increase in biochar grindability. Under the grinding

conditions, a significant size reduction (34-66 % cumulative volumetric size <75 urn)
of biochars can be achieved within 4 minutes grinding (in comparison to only 19%

for biomass after 15 minutes grinding). leading to a significant increase in volumetric

energy density (e.g. from �8 to �19 GJ/m3 for biochar prepared from pyrolysis at

400°C). Whereas grinding raw biomass typically result in large and fibrous particles,

grinding biochar produce short and round particles highly favourable for fuel

applications.

Secondly, it is found that the pyrolysis of different biomass components produced
biochars with distinct characteristics, largely because of the differences in the

biological structure of these components. Leaf biochars showed the poorest

grindability due to the presence of abundant tough oil glands in leaf. Even for the

biochar prepared from the pyrolysis of leaf at 800°C, the oil gland enclosures

remained largely intact after grinding. Biochars produced from leaf, bark and wood

components also have significant differences in ash properties. Even with low ash

content, wood biochars have low SilK and CalK ratios, suggesting these biochars

may have a high slagging propensity in comparison to bark and leaf biochars.

Thirdly, bio-oil and biochar were also produced from pyrolysis ofmicron-size wood

particle using a fluidised-bed reactor system under fast-heating conditions. The

excellent grindability of biochar had enabled desirable particle size reduction of

biochar into fine particles which can be suspended into bio-oil for the preparation of

bioslurry fuels. The data have demonstrated that bioslurry fuels have desired fuel and

rheological characteristics that met the requirements for combustion and gasification

applications. Depending on biochar loading, the volumetric energy density of

bioslurry is up to 23.2 GJ/m3, achieving a significant energy densification (by a

factor> 4) in comparison to green wood chips. Bioslurry fuels with high biochar
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concentrations (11-20 wt%) showed non-Newtonian characteristics with

pseudoplastic behaviour. The flow behaviour index, n decreases with the increasing
of biochar concentration. Bioslurry with higher biochar concentrations has also

demonstrated thixotropic behaviour. The bioslurry fuels also have low viscosity

«453 mPa.s) and are pumpable at both room and elevated temperatures. The

concentrations of Ca, K, Nand S in bioslurry are below the limits of slurry fuel

guidelines.

Fourthly, bio-oil is extracted using biodiesel to produce two fractions, a biodiesel

rich fraction (also referred as bio-oil/biodiesel blend) and a bio-oil rich fraction. The

results has shown that the compounds (mainly phenolic) extracted from bio-oil into

the biodiesel-rich fraction reduces the surface tension of the resulted biodiesel/bio-oil

blends that are known as potential liquid transport fuels. The bio-oil rich fraction is

mixed with ground biochar to produce a bioslurry fuel. It is found that bioslurry fuels

with 10% and 20% biochar loading prepared from the bio-oil rich fraction of

biodiesel extraction at a biodiesel to bio-oil blend ratio 0.67 have similar fuel

properties (e.g. density, surface tension, volumetric energy density and stability) in

comparison to those prepared using the original whole bio-oil. The slurry fuels have

exhibited non-Newtonian with pseudoplastic characteristics and good pumpability
desirable for fuel handling. The viscoelastic behaviour of the slurry fuels also has

shown dominantly fluid-like behaviour in the linear viscoelastic region therefore

favourable for atomization in practical applications. This study proposes a new bio

oil utilisation strategy via coproduction of a biodiesel/bio-oil blend and a bioslurry
fuel. The biodiesel/bio-oil blend utilises a proportion of bio-oil compounds

(relatively high value small volume) as a liquid transportation fuel. The bioslurry fuel

is prepared by mixing the rest low-quality bio-oil rich fractions (relatively low value

and high volume) with ground biochar, suitable for stationary applications such as

combustion and gasification.

Overall, the present research has generated valuable data, knowledge and

fundamental understanding on advanced fuels from mallee biomass using pyrolysis
as a pre-treatment step. The flexibility of pyrolysis process enables conversion of
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bulky, low fuel quality mallee biomass to biofuels of high volumetric energy density
favourable to reduce logistic cost associated with direct use of biomass. The

significance structural, fuel and ash properties differences among various mallee

biomass components were also revealed. The production of bioslurry fuels as a

mixture of bio-oil and biochar is not only to further enhance the

transportability/handling of mallee biomass but most importantly the slurry quality

highly matched requirements in stationary applications such as combustion and

gasification. The co-production of bioslurry with bio-oillbiodiesel extraction was

firstly reported in this field. Such a new strategy, which uses high-quality extractable

bio-oil compounds into bio-oillbiodiesel blend as a liquid transportation fuel and

utilises the low-quality bio-oil rich fraction left after extraction for bioslurry

preparation, offers significant benefits for optimised use of bio-oil.
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Figure7-7 Apparent viscosity of various fuels as a function of shear 115

rate. BaR x.xx - bio-oil rich fraction obtained from biodiesel

extraction at a biodiesel to bio-oil ratio of x.xx; BO-10% and BO-
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bio-oil rich fraction after biodiesel extraction (at a biodiesel to bio-oil

ratio of 0.67) with 10 wt% and 20 wt% biochar loading, respectively
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