

FABRICATION OF SAND/ZINC OXIDE-BASED NANOCOMPOSITE VIA SOL-GEL IMMERSION METHOD FOR PHOTOCATALYSIS APPLICATION

pustaka.upsi.edu.m

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Sha

) ptbupsi

NUR JANNAH BINTI IDRIS

UNIVERSITI PENDIDIKAN SULTAN IDRIS

2020

FABRICATION OF SAND/ZINC OXIDE-BASED NANOCOMPOSITE VIA SOL-GEL IMMERSION METHOD FOR PHOTOCATALYSIS APPLICATION

NUR JANNAH BINTI IDRIS

pustaka.upsi.edu.m

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah PustakaTBainun

ptbupsi

THESIS SUBMITTED IN FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER OF SCIENCE (MASTER BY RESEARCH)

FACULTY OF SCIENCE AND MATHEMATICS UNIVERSITI PENDIDIKAN SULTAN IDRIS

2020

pustaka.upsi.edu.my f Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah V PustakaTBainun ii
UPSI/IPS-3/BO 32 Pind : 00 m/s: 1/1
SULTAN IDIUS EDUCATION UNIVERSITY PhD
INSTITUTE OF GRADUATE STUDIES
DECLARATION OF ORIGINAL WORK
This declaration is made on the11
i. Student's Declaration:
I. NUR JANNAH BINTI IDRIS, M20181001453 (PLEASE
INDICATE STUDENT'S NAME, MATRIC NO. AND FACULTY) hereby declare that the work FABRICATION OF SAND/ZINC OXIDE-BASED NANOCOMPOSITE VIA SOL-GEL
IMMERSION METHOD FOR PHOTOCATALYSIS APPLICATION is my
original work. I have not copied from any other students' work or from any other sources except where due reference or acknowledgement is made explicitly in the text, nor has any part been written for me by another person. pustaka.upsi.edu.my Perpustakaan Tuanku Bainun kampus Sultan Abdul Jalil Shah
Signature of the student
I. Supervisor's Declaration: PROF.DR. SURIANI ABU BAKAR (SUPERVISOR'S NAME) hereby certifies that
the work entitled <u>FABRICATION OF SAND/ZINC OXIDE-BASED NANOCOMPOSITE</u> VIA SOL-GEL IMMERSION METHOD FOR PHOTOCATALYSIS APPLICATION
(TITLE) was prepared by the above named student, and was
submitted to the Institute of Graduate Studies as a * partial/full fulfillment for the conferment
of (PLEASE_INDICATE THE DEGREE), and the aforcmentioned work, to the best of my knowledge, is the said student's
work.
Date Signature of the Supervisor
PROFESOR DR. SURIANI ABU BAKAR Timbalan Naib Canselor (Penyelidikan dan Inovasi) Universiti Pendidikan Sultan Idris 35900 Tanjong Malim Perak Darul Ridzuan

				iii
			UPS///PS-3/BO 31	
			Pind.: 01 m/s:1/1	
		UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITY ENGAJIAN SISWAZAH / OF GRADUATE STUDIES		
BORANG PENGE	SAHAN PENYERAHI RATION OF THESIS/	AN TESIS/DISERTASI/LAPO DISSERTATION/PROJECT I	RAN KERTAS PROJEK	
Touck / Title	FABRICATION OF SA	AND/ZINC OXIDE-BASED NAI	NOCOMPOSITE VIA SOL-GEL	
Тајик / Тије.	IMMERSION METH	OD FOR PHOTOCATALYSIS A	PPLICATION	
No Matrik /Matric N	. M201810014	53		
Saya / / :	NUR JANNAH	BINTI IDRIS		
		(Nama pelajar / Student's Name)		
mengaku membenar di Universiti Pendid kegunaan seperti ber acknowledged that Uni 1. Tesis/Diserta: The thesis is th	kan Tesis/Disertasi/La likan Sultan Idris (l ikut:- versiti Pendidikan Sultai si/Laporan Kertas Proj e property of Universiti	aporan Kertas Projek (Kedokt Perpustakaan Tuanku Bain n Idris (Tuanku Bainun Library) r ek ini adalah hak milik UPSI. Pendidikan Sultan Idris	toran/Sarjana)* ini disimpan un) dengan syarat-syarat eserves the right as follows:-	
2. Perpustakaan penyelidikan. Tuanku Bajaur	Tuanku Bainun dit	penarkan membuat salinan	untuk tujuan rujukan dan	
O5-4506832 S. Perpustakaan antara Institus The Library has	dibenarkan membua si Pengajian Tinggi. s the right to make copie	tt safinan Tesis/Disertasi ini s of the thesis for academic exc	sebagai bahan pertukaran hange.	
4. Sila tandakan	($$) bagi pilihan kate	gori di bawah / Please tick (√) fi	rom the categories below:-	
SULIT	ICONFIDENTIAL	Mengandungi maklumat yang be kepentingan Malaysia seperti ya Rasmi 1972. / Contains confiden Secret Act 1972	rdarjah keselamatan atau ng termaktub dalam Akta Rahsia tial information under the Official	
	DIRESTRICTED	Mengandungi maklumat terhad y organisasi/badan di mana penyel restricted information as specified was done.	ang telah ditentukan oleh idikan ini dijalankan. I Contains I by the organization where research	
	TERHAD / OPEN AC	CESS		
		Sem	2mp -	
(Tandatang Tarikh:	an Pelajar/ Signature)	(Tandatangan Penye & (Nama & Cop Ras PROFESOR DR. S Timbalan Naib Can Universiti Pendidik 35900 Tanjong Ma	lia / Signature of Supervisor) imi / Name & Official Stamp) URIANI ABU BAKAR selor (Penyelidikan dan Inovasi) an Sultan Idris lim	
Catatan: Jika Tesis/ dengan menyatakan	Disertasi ini SULIT @ TERHA sekali sebab dan tempoh lap	D, sila lampirkan surat daripada pihak b bran ini perlu dikelaskan sebagai SULIT	erkuasa/organisasi berkenaan dan TERHAD.	
Notes: If the the authority/organizatio	sis is CONFIDENTAL or n mentioning the period of cor	RESTRICTED, please attach with fidentiality and reasons for the said con	the letter from the related fidentiality or restriction.	

iv

ACKNOWLEDGEMENT

Foremost, I would like to express all the praise to Allah SWT for giving me such a blessing to continue and finish my study. I would like to express my sincere gratitude to Prof. Dr. Suriani Abu Bakar for her support, guidance, advice and encouragement throughout my study. Those are priceless and enlightened me to develop my skill. I would also like to thank my co-supervisor Assoc. Prof. Dr. Norhayati Hashim from Chemistry Department UPSI for the advices and support in order to complete this study. Many thanks also to Assoc. Prof. Dr. Mohd Khairul Ahmad from Microelectronic and Nanotechnology-Shamsuddin Research Centre (MiNT-SRC), Universiti Tun Hussein Onn Malaysia (UTHM) for letting me to use the laboratory and equipment.

I would also like to thanks to the staffs of Faculty Science and Mathematics, UPSI: Mr. Mohd. Faisal, Mr. Bisyr Asfar, Mr. Mohd.Hashimi, Mr.Ibrahim and Mr. Zurin for their help on my project. Next, I would like to thanks my lab mates in Nanotechnology lab UPSI: Dr. Muqoyyanah, Dr. Ali Abdul Ameer Mohammed, Dr. Khayri Zaid Z Al-Zalit, Rosmanisah Mohamat, M. Sc. For their help, discussion and kindness during my study.

Last but not least, I dedicated this work to my parents, family and friends who always supporting, convincing, and encouraging me to continue my study. Without them, I am nothing and could never not reach this level. May Allah blessed us always. Aminn.

05-45068

ABSTRACT

This study aimed to fabricate sand/zinc oxide (ZnO) nanorods (NRs)-based nanocomposite via sol-gel immersion method with titanium dioxide (TiO₂) and graphene oxide (GO)-based materials for methylene blue (MB) dye degradation. The nanocomposite photocatalyst was initially fabricated by growing ZnO via sol-gel immersion followed by synthesizing TiO₂ using hydrothermal method on the sand as a substrate. Different concentration and synthesis time were used as parameters for the fabrication. These nanocomposites were then hybridized with GO and GO_multiwalled carbon nanotubes (MWCNTs) hybrid solution via immersion method. Prior to hybridization, the initial GO was synthesized using electrochemical exfoliation method assisted by commercially available single-tail sodium dodecyl sulphate surfactant and was further mixed with MWCNTs to form GO_MWCNTs hybridsolution. The sand/ZnO, sand/ZnO/TiO₂ nanocomposites, and sand/ZnO/TiO₂/GO-based photocatalyst materials were then characterized by using ultraviolet (UV)-light irradiation within three-days interval for MB dye degradation, field emission scanning electron microscopy (FESEM), micro-Raman spectroscopy and ultraviolet-visible specstroscopy (UV-vis). The finding, sand/ZnO NRs (4h) presented the highest photocatalysis performance (92.64%) as compared to sand/ZnO/TiO₂ nanocomposite and and/ZnO/TiO₂/GO-based photocatalyst materials. This was due to high density and actives sites presented by sand/ZnO NRs (4h) which lead to higher adsorption of MB molecules on its surfaces. As for the conclusion, sand/ZnO NRs (4h) demonstrated a potential ability to be applied as a photocatalyst material to degrade MB solution. The implication of this study is a novel, simpler, low-cost and green approach for the production of sand/ZnO, sand/ZnO/TiO2 nanocomposites, and sand/ZnO/TiO2/GObased photocatalyst materials for photocatalysis application.

FABRIKASI NANOKOMPOSIT BERASASKAN PASIR/ZINK OKSIDA MELALUI KAEDAH RENDAMAN SOL-GEL UNTUK APLIKASI FOTOPEMANGKINAN

ABSTRAK

Kajian ini bertujuan untuk menghasilkan nanokomposit berasaskan pasir/zink oksida (ZnO) nanobatang (BtG) melalui kaedah rendaman sol-gel dengan titanium dioksida (TiO₂) dan bahan berasaskan grafin oksida (GO) untuk degradasi pewarna metilena biru (MB). Nanokomposit fotopemangkin pada awalnya dihasilkan dengan menumbuhkan ZnO melalui rendaman sol-gel diikuti dengan mensintesis TiO₂ menggunakan kaedah hidroterma di atas pasir sebagai substrat. Kepekatan dan masa sintesis yang berbeza digunakan sebagai parameter untuk fabrikasi. Nanokomposit ini kemudiannya dihibridisasi bersama GO dan GO_nanotiub karbon berbilang dinding (NTKBD) larutan hibrid melalui kaedah rendaman. Sebelum hibridisasi, awalnya GO disintesis dengan menggunakan kaedah pengelupasan elektrokimia yang dibantu oleh komersial rantaian tunggal sodium dodesil sulfat dan selanjutnya dicampurkan dengan NTKBD membentuk larutan hibrid GO_NTKDB. Pasir/ZnO, pasir/ZnO/TiO2 untuk nanokomposit, dan pasir/ZnO/TiO2/berasaskan-GO kemudiannya dicirikan dengan menggunakan sinaran sinar ultraviolet (UV) selama tiga hari untuk degradasi pewarna MB, pemancaran medan mikroskopi imbasan elektron (FESEM), spektroskopi Ramanmikro dan spektroskopi ultraungu-tampak (UV-vis). Dapatan kajian, pasir/ZnO BtG (4j) menunjukkan prestasi fotopemangkinan yang tertinggi (92.64%) berbanding fotopemangkin pasir/ZnO/TiO₂ nanokomposit, dengan bahan dan pasir/ZnO/TiO₂/berasaskan-GO. Ini disebabkan oleh kepadatan dan tapak aktif yang tinggi ditunjukkan oleh pasir/ZnO BtG (4j) yang membawa kepada penjerapan molekul MB yang lebih tinggi pada permukaannya. Sebagai kesimpulan, pasir/ZnO BtG (4j) menunjukkan kemampuan potensi untuk digunakan sebagai bahan fotokpemangkin untuk degradasi larutan MB. Implikasi kajian ini adalah pendekatan baru, lebih mudah, dan hijau bagi penghasilan bahan fotopemangkin kos rendah pasir/ZnO, pasir/ZnO/TiO₂ dan pasir/ZnO/TiO₂/berasaskan-GO untuk aplikasi fotopemangkinan.

TABLE OF CONTENTS

				Page
DECLARATI	ON O	F ORIGINAL WORK		ii
DECLARATI	ON O	F THESIS		iii
ACKOWLEDGEMENT				iv
ABSTRACT				v
ABSTRAK				vi
TABLE OF C	ONTE	ENTS		vii
LIST OF TAB	LES			xii
LIST OF FIGU	URES			xiv
LIST OF ABBREVIATION Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah				
LIST OF APPENDICES xix				
CHAPTER 1	INT	RODUCTION		
	1.1	Introduction		1
	1.2	Research Background		2
	1.3	Problem statement		10
	1.4	Research Objectives		12
	1.5	Scope and Limitation of Study		13
	1.6	Thesis Organization		14

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction 15

2.2	Main S	Source of Water Pollution	16
2.3	Water	Treatment Method	17
	2.3.1	Physical Process	17
	2.3.2	Biological Process	18
	2.3.3	Chemical Process	20
2.4	Discov	very and Fundamental of Photocatalysis	21
	2.4.1	Features of Good Photocatalyst	23
	2.4.2	Photocatalysis Mechanism	25
2.5	Semic	onductor Photocatalyst	28
	2.5.1	Zinc Oxide as Photocatalyst	28
		2.5.1.1 Substrate for Zinc Oxide Immobilization	31
		2.5.1.2 Synthesis Method of Zinc Oxide Photocatalyst	33 ptbupsi
	2.5.2	Titanium Dioxide as Photocatalyst	37
		2.5.2.1 Synthesis Method of Titanium Dioxide	39
	2.5.3	Sand/Zinc Oxide/Titanium Dioxide Nanocomposite as a Photocatalyst	39
2.6	Carbo	n-Based Materials	43
	2.6.1	Properties of Graphene Oxide	43
	2.6.2	Method to synthesis GO	45
		2.6.2.1 Electrochemical Exfoliation Method	46
	2.6.3	Properties of Multi-Walled Carbon Nanotubes	47
2.7	Fabric	ation of Hybrid Photocatalyst Material	48
			53

2.8 Summary

METHODOLOGY CHAPTER 3

3.1	Introdu	action	54
3.2	Fabric	ation of Sand/ZnO	55
	3.2.1	Preparation of Substrate	55
	3.2.2	Fabrication of Sand/ZnO	57
3.3	Fabric	ation of Sand/ZnO/TiO2 Nanocomposite	59
3.4	Fabric	ation of Sand/ZnO/TiO2 Nanohybrid	62
	3.4.1	Synthesis of Graphene Oxide	62
	3.4.2	Fabrication of Graphene Oxide/Multi- Walled Carbon Nanotubes Hybrid Solution	64
	3.4.3	Fabrication of Sand/ZnO/TiO ₂ /Carbon- based Materials Nanohybrid	65 ptbup
3.5	Photoc	catalysis Test	66
3.6	Sample	e Characterization	68
	3.6.1	Field Emission Scanning Electron Microscopy	68
	3.6.2	Micro-Raman Spectroscopy	70
	3.6.3	Ultraviolet-Visible Spectrocopy	71
3.7	Summ	ary	73

CHAPTER 4 RESULTS AND DISCUSSION

4.1	Introduction	75
4.2	The Properties of Fabricated Sand/ZnO	76

	4.2.1 Morphological Properties	76
	4.2.2 Structural Properties	79
4.3	The Properties of Fabricated Sand/TiO $_2$	83
	4.3.1 Morphological Properties	83
	4.3.2 Structural Properties	87
4.4	The Properties of Fabricated Sand/ZnO/TiO $_2$	89
	4.4.1 Morphological Properties	89
	4.4.2 Structural Properties	93
4.5	The Properties of Fabricated Hybrid Sand/ZnO/TiO ₂ with Carbon-based Materials	96
	4.5.1 Morphological Properties	96
	4.5.2 Structural Properties	98
4.6	Performance of Sand-Based Materials in Dye Removal	101 ptbups
	4.6.1 Effect of Sand/ZnO Nanostructure-based Photocatalysts	101
	4.6.2 Effect of Sand/TiO ₂ Nanostructure-based Photocatalysts	104
	4.6.3 Effect of Sand/ZnO/TiO ₂ Nanocomposite- based Photocatalysts	106
	4.6.4 Effect of Sand-based Hybrid Photocatalysts	110
4.7	Mechanism of Photocatalysis	115

Chapter 5 **CONCLUSION**

5.1	Conclusion	119
5.2	Future Work	122

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

REFERENCES	123
APPENDICES	147

pustaka.upsi.e

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

PustakaTB

ptbupsi

Page

LIST OF TABLES

Table No.

- 2.1 Advantages and Disadvantages of Physical Process (Holkar, Jadhav, 18 Pinjari, Mahamuni, & Pandit, 2016; Piaskowski et al., 2018; Z. Wang, Xue, Huang, & Liu, 2010)
- 2.2 Advantages and Disadvantages of Biological Process (Mojsov, 20 Andronikov, Janevski, Kuzelov, & Gaber, 2016; R. L. Singh, Singh, & Singh, 2015)
- 2.3 Properties of Homogenous and Heterogeneous Catalyst (Majoros,2006; 22 Nidheesh, Vargas, Oturan & Oturan, 2017)
- 2.4 Physical Properties of ZnO Wurtzite Structure at T=300K30
- 2.5 Methods Used for Fabrication ZnO/TiO₂ Nanocomposite and Its 41 Photocatalysis performance
 - 2.6 Carbon-based Materials Composited with ZnO or TiO_2 and Its 51 Photocatalysis Performance
 - 4.1 Micro-Raman Peak Position of ZnO NRs (4h) and ZnO NRs-NFs (10h) 82
 - 4.2Micro-Raman Peak Position of sand/TiO2 NRs (5 and 20h)89
 - 4.3 Micro-Raman Peak Position of sand/ZnO NRs (4h)/TiO₂ NRs (5h) and 95 sand/ZnO NRs (4h)/TiO₂ NRs (20h)
 - 4.4 Micro-Raman Band Peaks of Hybrid Sand-Based Photocatalysts with 100 Carbon-Based Materials
 - 4.5 The Final Concentration and Percentage of Dye Removal within 3-Days 103 Interval of Sand/ZnO NRs (4h) and Sand/ZnO NRs-NFs (10h)
 - 4.6 The Final Concentration and Percentage of Dye Removal within 3-Days 105 Interval of Sand/TiO₂ NRs (5h) and Sand/ TiO₂ NRs (20h)
 - 4.7 The Final Concentration and Percentage of MB Removal within 3-Days 109 Interval of Sand/ZnO NRs (4h)/TiO₂ NRs (5h) and Sand/ZnO NRs (4h)/TiO₂ NRs (20h)

ptbups

- 4.8 The Final Concentration and Percentage of Dye Removal within 3-Days 113 Interval of Sand/ZnO NRs (4h)/TiO₂ NRs (5h)/GO and Sand/ZnONRs (4h)/TiO₂ NRs (5h)/GO_MWCNTs
- 4.9 Percentage of MB degradation for 3-days intervals. 115

pustaka.upsi.ed

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

PustakaTBa

ptbupsi

3.4

(a) Experimental Procedure to Synthesize TiO₂, (b) Prepared Sand-Based

Photocatalysts, (i) Sand/TiO₂ NRs (5h), (ii) Sand/TiO₂ NRs (20h), (iii)

61

2.7 TiO₂ Phases; (a) Rutile, (b) Brookite and (c) Anatase (Pelaez et al, 2012) 38 2.8 Building Blocks of Carbon Allotropes; a) Fullerence b) CNTs c) 44 Graphene d) Graphite (Y. Zhao et al., 2012) 2.9 Different Types of CNTs; (a) SWCNTs, (b) DWCNTs, (c) MWCNTs 48 3.1 **Experimental Procedures for Sand Cleaning** 56 3.2 Water bath (Memmert, Operate at 230 V, 50-60 Hz and 2000 W) Used in 57 Order to Synthesis ZnO NRs and ZnO NWs Via Sol-gel Method 3.3 (a) The Schematic Diagram of Sol-Gel Immersion Method to Synthesized 59 Sand/ZnO NRs (4h) and Sand/ZnO NRs-NFs (10h) and the Synthesize

(b) Sand/ZnO NRs (4h), (c) Sand/ZnO NRs-NFs (10h)

- MB degradation Pathway in Photocatalysis Process (Zuo et al., 2014)

Characteristics of a Good Photocatalyst (Carp, Huisman, & Reller, 2004;

Khan, Adil, & Al-Mayouf, 2015; Konstantinou & Albanis, 2004;

- 2.4 30
- 2.3 28
- ZnO Phases; (a) Cubic Rocksalt, (b) Cubic Zinc Blende and (c)
- Hexagonal Wurtize (Johar, Afzal, Alazba, & Manzoor, 2015).

Nanocomb (Parihar et al., 2018), (g) Nanotubes (Schlur, Calado, &

2.5 Features of A Good Substrate (S. Singh, Mahalingam, & Singh, 2013) 32 2.6 Various ZnO Nanostructures which commonly used as photocatalyst; (a) 36 Nanoflowers (Wahab et al., 2007), (b) Nanorods (Xie et al., 2005) (c)-(d) Nanowires (Bitenc & Orel, 2009), (e) Nanorods (Parihar et al., 2018), (f)

Spitzer, 2018), (h) Nanoparticles (Pudukudy & Yaakob, 2015).

LIST OF FIGURES

Rehman, Ullah, Butt, & Gohar, 2009).

Illustration of Photocatalysis Mechanism

Figure No.

2.1

2.2

Page

23

27

Sand/ZnO NRs (4h)/TiO₂ NRs (5h), (iv) Sand/ZnO NRs (4h)/TiO₂ NRs (20h)

- (a) The schematic diagram and (b) Experimental Procedures of Electrical
 Exfoliation Method to Synthesize GO
- 3.6 (a) MWCNTs Powder, (b) Stirring Process of MWCNTs in GO Solution, 64
 (c) Synthesized GO Solution, (d) Synthesized GO_MWCNTs Hybrid Solution
- 3.7 (a) The Experimental Procedures for Immersion Process and (b) the 66 Synthesized Sand/ ZnO NRs (4h)/TiO₂ NRs (5h)/GO-based Nanohybrid;
 (i) sand/ZnO NRs (4h)/TiO₂ NRs (5h)/GO, (ii) sand/ZnO NRs (4h)/TiO₂ NRs (5h)/GO_MWCNTs
- 3.8 Photocatalysis Test Under the Illumination of UV-Light. 67
- 3.9 FESEM Instrument (a) (Hitachi SU8020) and EDX (Horiba EMAX) 69 Instrument and (b) ZEISS Used in This Study
- 3.10 Micro-Raman Spectroscopy (Renishaw InVia) Used in This Study 71
- 3.11 (a) Standard Curve of Dye Concentration-absorbance and (b) UV-Vis
 72 Spectrometer (Agilent Cary 60) Utilized in Order to measure the percentage of MB Degradation
- 3.12 Flow Chart of Research Methodology
- 4.1 FESEM Images and EDX Analysis of; (a)-(b) Sand/ZnO NRs (4h) and 79 (c)-(d) Sand/ZnO NRs-NFs (10h)
- 4.2 Micro-Raman Spectra Comparison of ZnO NRs (4h) and ZnO NRs-NFs 82 (10h)
- 4.3 FESEM Images and EDX Analysis of; Sand/TiO₂ (a)-(b) Sand/TiO₂ NRs 86 (5h) and (c)-(d) Sand/TiO₂ NRs (20h)
- 4.4 Micro-Raman Spectra Comparison of sand/TiO₂ NRs (5h) and sand/TiO₂ 88 NRs (20h)
- 4.5 FESEM Images and EDX Analysis of; (a)-(c) Sand/ZnO NRs (4h)/TiO₂ 92 NRs (5h) Nanocomposite and (d)-(e) Sand/ZnO NRs (4h)/TiO₂ NRs (20h) Nanocomposite
- 4.6 Micro-Raman Spectra Comparison of Sand/ZnO NRs (4h)/TiO₂ NRs (5h) 94 and Sand/ZnO/TiO₂ NRs (20h)

74

- xvi
- 4.7 FESEM Images and EDX Analysis of; (a)-(c) Sand/ZnO NRs (4h)/TiO₂ 97 NRs (5h)/GO and (d)-(f) Sand/ZnO NRs (4h)/TiO₂ NRs (5h)/GO_MWCNTs
- 4.8 Micro-Raman Spectra Comparison of; (a) sand/ZnO NRs (4h)/TiO₂ NRs 100 (5h)/GO and (b) sand/ZnO NRs (4h)/TiO₂ NRs (5h)/GO_MWCNTs
- 4.9 MB Dye Degradation and Its Absorbance for 3-Days Interval of; (a)-(b) 103 Sand/ZnO NRs (4h) and (c)-(d) Sand/ZnO NRs-NFs (10h)
- 4.10 MB Dye Degradation and Its Absorbance for 3-Days Interval of; (a)-(b) 105 Sand/TiO₂ NRs (5h) and (c)-(d) Sand/TiO₂ NRs (20h)
- 4.11 MB Dye Degradation and Its Absorbance for 3-Days Interval of; (a)-(b) 108 Sand/ZnO NRs (4h)/TiO₂ NRs (5h) and (c)-(d) Sand/ZnO NRs (4h)/TiO₂ NRs (20h)
- 4.12 MB Dye Degradation and Its Absorbance for 3-Days Interval of; (a)-(b) 112 Sand/ZnO NRs (4h)/TiO₂ NRs (5h)/GO and (c)-(d) Sand/ZnO NRs (4h)/TiO₂ NRs (5h)/GO_MWCNTs
- 4.13 The Photocatalysis Mechanism Schematic Diagram of Sand/ZnO NRs 118 (4h)/TiO₂ NRs (5h)/GO_MWCNTs Nanohybrid Photocatalyst

05-4506832

Perpustakaan Tuan Kampus Sultan Ab

Sultan Abdul Jalil Shah

aTBainun

) ptbupsi

LIST OF ABBREVIATION

Bi_2WO_6	Russellite
С	Carbon
СВ	Conduction Band
CBD	Chemical Bath Deposition
CdS	Cadmium Sulfide
Cl	Chloride Ion
Co ₃ O ₄	Cobalt (II,III) Oxide
CVD	Chemical Vapor Deposition
6 D 🕜 pustaka.upsi.e	Defect and Disorder Peak Bainun Pustaka Bainun
DI-water	De-Ionized Water
DWCNTs	Double-Walled Carbon Nanotubes
EDX	Energy Dispersive X-Ray
Eg	Band Gap Energy
eV	Electron Volt
FESEM	Field Emission Scanning Electron Microscopy
G	Crystalline Graphite Peak
GO	Graphene Oxide
H^{+}	Hydrogen Ions
HCl	Hydrocholoric Acid
HMT	Hexametylenetramine
I_D / I_G	Ratio of D and G peak

М	Molarity
MB	Methylene Blue
МО	Methylene Orange
MWCNTs	Multi-Walled Carbon Nanotubes
NH ₃	Ammonia
NRs	Nanorods
NFs	Nanoflowers
OH-	Hydroxide Ions
$OH \cdot$	Hydroxide Radicals
ppm	Parts Per Millions
PVD	Physical Vapor Deposition
RhB	Rhodamine Blue
6 SDS 🕜 pustaka.upsi.e	Sodium Dodecyl Suphate Bainun De Pustaka TBainun Optbupsi
SnO_2	Tin Oxide
SrTiO ₃	Strontium Titanate
SWCNTs	Single-Walled Carbon Nanotubes
TBOT	Titanium Butoxide
TiO ₂	Titanium Dioxide
UV	Ultraviolet
UV-Vis	Ultraviolet Visible
VB	Valence Band
wt%	Weight Percentage
ZnO	Zinc Oxide
$Zn(NO_3)_2$	Zinc Nitrate
ZrO_2	Zirconium dioxide

LIST OF APPENDICES

- Academic Journal А
- В Presentation

CHAPTER 1

INTRODUCTION

C 05-4506 1.1 Introduction du.my f Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

This chapter discusses the research background of zinc oxide (ZnO), titanium dioxide (TiO₂) and ZnO/TiO₂ nanocomposite as the sand-based photocatalysts for photocatalysis application. The hybridization of sand-based photocatalysts with graphene oxide (GO) and GO_multi-walled carbon nanotubes (MWCNTs) are also described clearly. Research problem, objectives, scope and limitation of this study and thesis organization are also presented in this chapter.

1.2 Research Background

Nowadays, clean water sources are limited due to the pollution from industry that released waste disposal into fresh water sources without treating them properly. Textile wastewater consists of various types of heavy metal and non-biodegradable organic dye which caused a very serious problem for human health (Saravanan, Gracia, & Stephen, 2017). Furthermore, most of organic dye are rich with hazardous chemicals which make it difficult to treat and harmful to the environment or biological health as they are toxic by nature (Katheresan, Kansedo, & Lau, 2018; Maučec et al., 2018). Methylene blue (MB) is one of organic dye that have a complex aromatic structure and difficult to decompose (N.Sun et al., 2018). Water will be highly coloured, difficult to treat and decolorize whenever it mixed with MB dye (Basturk & Karatas, 2015). Therefore, it is imperative to find a way to degrade the organic dye so that clean and fresh water source can be obtained.

> Recently, methods for treating dye effluent received the limelight as clean water sources possibly begin to diminish rapidly if there is no reliable solution is found. There are several methods that can be used to treat dye effluent, such as coagulation, biodegradation, adsorption, and membrane process. Unfortunately, these methods are inefficient enough to completely degrade the dye in the polluted water (Anjum, Miandad, Waqas, Gehany, & Barakat, 2016). Moreover, these methods present some disadvantages from the environment aspect such as the generated secondary pollution and high energy requirement to operate (Anjum et al., 2016; Fei et al., 2018; Katheresan et al., 2018). A simple method, semiconductor-based photocatalysis process then

ptbups 3

considered as promising method to treat dye polluted waste water (Banerjee, Benjwal, Singh, & Kar, 2018; Khataee & Kasiri, 2010; Martins et al., 2018).

Photocatalytic phenomenon has been discovered in 1972 by Honda and Fujishima where they have splitted water into oxygen and hydrogen under ultraviolet (UV) light on a TiO₂ electrode (Fujishima & Honda, 1972b). After that discovery, they published their finding in 'Nature' that lead to the beginning of a new era in heterogeneous photocatalysis (Fujishima & Honda, 1972b). Then, this phenomenon began to evolve as Frank and Bard used TiO₂ photocatalysis for environmental purification by destroying the pollutants in polluted water (Frank and Bard, 1977).

Photocatalysis is a chemical reaction where it uses light radiation to activate the catalyst in order to accelerate the reaction rate. In other word, photocatalysis is an acceleration of a photoreaction in the existence of catalyst where photon energy is converted into chemical energy (Ibhadon & Fitzpatrick, 2013; Lacombe & Keller, 2012). Many researchers have been attracted by the effects of the photocatalysis as it is one of the cleanest and environment-friendly for water purifying (Basturk & Karatas, 2015; Khojasteh, Salavati-Niasari, & Sangsefidi, 2018). In addition, it also becomes a low cost method since it only consumes low level of energy for operation (Ehrampoush, Moussavi, Ghaneian, Rahimi, & Ahmadian, 2011). In order to activate the photon excitation, semiconductor materials are clearly needed. Various semiconductor photocatalysts that commonly used in photocatalysis process were ZnO, TiO₂, cadmium sulphate (CdS), tungsten oxide (WO₃), tin oxide (SnO₂), strontium titanate (SrTiO₃), and russellite (Bi₂WO₆), zirconium dioxide (ZrO₂) (Gaya, 2014).

ptbup 4

It has been reported that ZnO is considered as an ideal semiconductor photocatalyst for photocatalysis process owing to its high-electron mobility, high chemical and physical stability, high photostability, good oxidizing power and has high surface area (Anjum et al., 2016; Adnan, Julkapli & Hamid, 2016; Gupta & Tripathi, 2011; Nalumaga, 2017). However, the agglomeration between ZnO particles would decreased the number of active surface sites and surface area thus decreased its photocatalysis performance (Azmina et al., 2017). In addition, ZnO photocatalysts was inefficient in powder form as it will dispersed in water and produced milky solution which hindered the photocatalyst activation under UV light (Eddy et al., 2015). A substrate then clearly needed in order to activate the photocatalyst and perform the photocatalysis process. Several types of substrate usually used for photocatalyst were clay, glass, zeolite, silica, sand, and fly ash. Among them, sand offers several advantages such as has porous morphology, high density, locally available, low cost, and chemically inert (Abdel-Maksoud, Imam, & Ramadan, 2018; Hadjltaief, Zina, Galvez, & Costa, 2016; Shan, Ghazi, & Rashid, 2010).

Type of ZnO nanostructures also play a crucial role for the efficiency of photocatalysis performance. ZnO nanostructures can be divided into zero- (0D), one-(1D), two- (2D) and three-dimensional (3D). The most commonly used ZnO nanostructures as photocatayst is 0-D such as nanoparticles, nanospheres and quantum dot owing to their large suface area (Zhou, Wen, Zhao, & Anderson, 2017). However, 0-D ZnO nanostructures possess several limitations as mentioned before. Recently, 1-D and 3-D nanostructures such as nanorods (NRs) and nanoflowers (NFs) of ZnO has been used as photocatalyst (Yin, Chen, Zhang, Cai, & Wang, 2014). NRs nanostructures is an ideal candidates as a photocatalyst due to its photostability under

ptbups 5

both UV-light and visible light irradation, simple procedure formation and attachable to any types of substrate (Azam & Babkair, 2014; Baruah, Jaisai, Imani, & Nazhad, 2010; N. Huang et al., 2015; Nikoofar, Haghighi, Lashanizadegan, & Ahmadvand, 2014; Zhou et al., 2017). Meanwhile, NFs nanostructures possessed large surface-tovolume ratio which offer higher active sites which offer larger contact area between dye and the catalyst thus resulted in the maximum dye adsorption (Ong et al., 2014; Peter, Praveen, Vignesh, & Nithiananthi, 2017; Zhou et al., 2017). Moreover, high oxygen vacancies offered by NFs nanostructures could also enhanced the photocatalysis performance (Tripati et al., 2014).

N. Huang et al. (2015) showed that ZnO NRs possessed high dye removal of rhodamine blue (RhB) and methylene orange (MO) which almost completely degraded both dyes within 100 minutes as compared to ZnO nanosphere under UV-lightradiation. This result also in a good agreement with Yimin Wang, Hangbo Zhang, Qu, & Su (2016) which showed that faster RhB dye degradation was achived by ZnO nanorods (within 60 minutes) as compared to ZnO nanosphere. Meanwhile, Mohammad, Kapoor, & Mobin (2016) claimed that ZnO-NFs successfully degraded 99.46% of MO in just 50 mins as compared to commercial ZnO (76.86%) within 130 mins. Ameen, Akhtaer & Shin (2017) showed that, ZnO-NFs presented high removal of bromophenol dye with 96% within 120 mins.

> On the other hand, since ZnO also possess limitation in photocatalysis process caused by the high recombination rate between electron-hole pair (Nalumaga, 2017; N.Sun et al., 2018). In order to overcome this limitation, ZnO photocatalyst must be composited with other semiconductor, metal, non-metal, or carbon based materials

(Banerjee et al., 2018; N. Sun et al., 2018). It have been reported that the combination between semiconductor-semiconductor nanocomposite such as ZnO/TiO₂ showed excellent photocatalysis effect as compared to the pure semiconductor (P. Cheng et al., 2014; Habib et al., 2013). Longer lifetime of the photogenerated electron/hole was achieved when ZnO and TiO₂ were composited together, as the TiO₂ act as a trap site which can prevent electron-hole recombination (Hadjltaief et al., 2016; Nalumaga, 2017). Moreover, the incorporation of ZnO into TiO₂ can decreased the band gap value and extend the light absorption range (Bai, Kou, Gong, & Zhao, 2013; Cirak et al., 2018; Wetchakun, Wetchakun, & Sakulsermsuk, 2019). Cirak et al. (2018) showed that by compositing ZnO and TiO₂, 95% dye degradation was achieved compared to the pure TiO₂ (65%). In addition, P. Cheng et al. (2016) and C. Cheng et al. (2014) also showed that ZnO/TiO₂ nanocomposite performed high photocatalysis activity than pure ZnO and TiO₂. These results were in a good agreement with prior work Hadjlataief et al. (2016) which showed that ZnO-TiO₂/clay nanocomposite achieved higher dye degradation of 98.7% as compared to of TiO₂/clay (87.2%).

To date, there are several available methods that can be used in order to synthesize ZnO/TiO₂ nanocomposite such as thermal evaporation, vapor liquid solid, electrospinning, chemical and physical vapor deposition (CVD/PVD) (Lim, 2010; Siwinska-Stefanska et al., 2018). However, these methods consumed high temperature, pressure and energy, complex procedures and utilized expensive materials (Benkara & Zerkout, 2010; Zhou, Wen, Zhao, & Anderson, 2017). Typically, photocatalysis performance are strongly depend on the crystallite size and morphology of the photocatalysts. Therefore, synthesis method play a vital role in order to synthesize nano sizes, uniform and highly distributed ZnO/TiO₂ nanocomposite on the substrate (Lim,

2010; Rosnan, Haan, & Mohammad, 2018). Moreover, low-cost, facile, low energy and low pressure synthesis method are being demanded in order to grow ZnO/TiO₂ nanocomposites.

In particularly, sol-gel and hydrothermal methods offered uniform size distribution, various synthesized morphology, low temperature operation, simple procedures and resulted high purity and crystallinity of nanocomposites (Adnan et al., 2016; Ba-abbad et al., 2013; Kołodziejczak-Radzimska & Jesionowski, 2014; Lee et al., 2010; Ong, Ng, & Mohammad, 2018; Rosnan et al., 2018; Wetchakun et al., 2019; Zhou et al., 2017). Sol-gel method also has proven in promoting good purity, good dispersing and homogeneity (Bodson et al., 2010). P.Cheng et al. (2016) synthesized ZnO-TiO₂ nanocomposites by using two steps hydrothermal method and resulted in Constant of MO dye within 25 mins. Siwińska-Stefańska et al. (2018) synthesized TiO₂-ZnO nanocomposite by using sol-gel method has successfully degraded 93.4% of C.I. basic violet 10 dye within 120 mins. Meanwhile, Hakki, Allahyari, Rahemi, & Tasbihi (2019) synthesized TiO₂-ZnO on glass by using sol-gel dip coating method and effectively removed the MB dye (97.3%) within 360 mins. Siwińska-Stefańska et al. (2019) fabricated TiO₂-ZnO by using hydrothermal method and exhibited high photocatalysis performace in removing C.I.Basic Violet 10 (95%) within 180 mins. Therefore, owing to excellent properties proposed by sol-gel and hydrothermal method thus it were chosen in order to fabricate ZnO and TiO₂, respectively.

> In order to further enhance the photocatalysis performance, the hybridization of photocatalyst material are also done with other carbon based-material, such as graphene

ptbup 8

oxide (GO) and multi-walled carbon nanotubes (MWCNTs) owing to their large surface area and high electron mobility (Mahmoodi, 2013; Saleh, 2013; Tayel, Ramadan, & Seoud, 2018). The sp² hydbridization of carbon atoms on GO allow a fast electron transfer thus improve the charge separation which can enhance the efficiency of photocatalysis (Jeanmonod, Rebecca, & Suzuki, 2018; Sun et al., 2018; Tayel et al., 2018). The utilization of GO and MWCNTs with the photocatalyst are proven to further improve the photocatalysis process (Dalt, Alves, & Bergamann, 2016; Zhang et al., 2016).

Chaudhary, Singh, Vankar, & Khare (2018) showed that ZnO/MWCNTs achieved 93% of MB degradation compared to pure ZnO (48% of MB degradation). Meanwhile Raliya, Avery, Chakrabarti, & Biswas (2017) showed that the hybridization of GO with TiO₂/ZnO nanocomposite have enhanced the photocatalytic performance from 40 to 44%. These results were in a good agreement with Dalt et al, (2016) which showed that the incorporation of MWCNTs with TiO₂-ZnO achieved the highest photocatalytic activity compared to TiO₂-ZnO nanocomposite.

> GO is commonly synthesized via Hummers' method which produced high quality of GO (Kumar, Madaria, & Zhou 2010). However, this method presents several drawbacks, such as the utilization of high hazardous chemical that can lead to environmental damage, plenty of procedures, and long-time of production (Brodie, 1859; Hummers & Offeman 1957). A simpler electrochemical exfoliation assisted by surfactant becomes a promising solution to synthesize GO in large scale production (Fatiatun, 2018, Muqoyyanah, 2019; Suriani, Muqoyyanah, Othman, Mamat, et al 2018; Suriani, Muqoyyanah, Othman, Rohani, et al., 2019). In addition, this process also

environment-friendly, economic, can be operated at ambient pressure and temperature, less procedures and less hazardous chemical usage (Fatiatun, 2018, Muqoyyanah, 2019; Suriani, Muqoyyanah, Othman, Mamat, et al., 2018; Suriani, Muqoyyanah, Othman, Rohani, et al., 2019).

The transfer process of GO-based materials onto the ZnO/TiO₂ nanocomposite can be done via spray coating, spin coating, dip coating and immersion method. Spray coating method is simple and provide a large surface area coverage onto the desired substrate (Y. Liu, 2017, Y. Chen et al., 2018). However, the uniformity of the coverage is relatively poor and there are material wastage or loss during the process (Y. Liu, 2017). Moreover, this method also required very expensive apparatus. Meanwhile, dip coating is relatively a slow coating process. Spin coating is easy to handle, cheap and provide high uniformity. However, spin coating also experienced coating material wastage same as spray coating, non-uniform layer of and only applicable for flat substrate. Therefore, immersion method was chosen in order to transfer GO-based materials onto the sand/ZnO/TiO₂ owing to its simplicity, low-cost, time-saving, large scale production and obtainment of homogenous substrate (Latthe, Gurav, Maruti, & Vhatkar, 2012; Poorebrahimi & Norouzbeigi, 2015)

> To the best of our knowledge method to synthesize ZnO/TiO₂ nanocomposite by combining sol-gel immersion and hydrothermal method, respectively are not well explored. In addition, based on the literature, the utilization of immersion method to transfer GO-based materials onto the ZnO/TiO₂ nanocomposite also rarely explored. Therefore, in this work, the novel combination of ZnO and TiO₂ synthesized by sol-gel immersion and hydrothermal method, respectively was used as sand-based

photocatalyst materials applied for photocatalysis application. Meanwhile, the novel hybridization of the GO-based materials with sand-based photocatalysts were done via immersion.

1.3 Research Problems

ZnO is the most common semiconductor material utilized as photcatalyst applied for photocatalysis application. This was due to its unique characteristics such as high stability, eco-friendly and cheap (P. Cheng et al., 2016). However, photocatalysis performance of individual ZnO were limited due the aggregation of the powder form of ZnO and difficulties to separate from the treated water the due to its nanosize (Mousavi, Davar, & Loghman-Estarki, 2016). Moreover, its powder form is inefficient of a it is produced milky solution and easily dispersed (Katheresan et al., 2018).

In order to hinder these drawbacks, the ZnO photocatalyst must be supported on a substrate in order to immobilize it in the solution. There are several substrates that are commonly used such as zeolites, glass, clay, silicon, sand and quartz (Hadjltaief et al., 2016). In this work, sand is selected as a substrate due to its availability, high density, inexpensive and chemically inert (Abdel-Maksoud et al., 2018)

ZnO possesses high rate of recombination between electron and hole (Cirak et al., 2018; Eddy et al., 2015). In addition, self-oxidation of ZnO also lead to the inefficient photocatalysis performance (Cirak et al., 2018). Therefore, ZnO was composited with other semiconductors materials, such as TiO₂ in order to enhance its

ptbup 11

performance. It has been reported that the coupling between these two semiconductors showed excellent photocatalysis performance (C. Cheng et al., 2014; Gita, Hussan, & Choudhury, 2017; Gupta & Tripathi, 2011; Habib et al., 2013).

ZnO was synthesized on the sand substrate via sol-gel immersion method due to the low energy and cost consumption, low temperature operation, simple procedure, has a good control over the physical characteristics and morphology and resulted high purity and crystallinity of ZnO (Adnan et al., 2016; Ba-abbad et al., 2013; Kolodziejczak-Radzimska, & Jesionowski, 2014; Ong et al., 2018; Wetchakun et al., 2019). Meanwhile, ZnO/TiO₂ nanocomposite was synthesized by growing TiO₂ on the prior synthesized sand/ZnO via hydrothermal method which offer simple equipment and large scale production (Adnan et al., 2016; Wetchakun et al., 2019)

Other materials that can be utilized to further improve the photocatalysis performance is carbonaceous materials such as GO and MWCNTs. These materials possess high conductivity, extraordinary strength, provide large surface area, and could stabilize the electron/hole separation by acting as electron transfer and acceptor (Mallakpour & Rashidimoghadam, 2019; Saleh, 2013). GO was commonly synthesized by Hummer's method due to its high-quality GO production (Kang et al., 2016). However, this method utilizing hazardous chemicals and strong acids which lead to the serious environmental pollution, consuming long time production and causing metal ion impurities on the GO sheets (Pei, Wei, Huang, Cheng, & Ren, 2018; Suriani et al., 2018). Therefore, electrochemical exfoliation method was chosen to synthesize high production of GO owing to its simplicity, economic, environment friendly, and can be operated at ambient pressure and temperature (Kakaei & Hasanpour, 2014; Parvez et

al., 2014). This process utilized water-based electrolyte assisted by commercially single-tail sodium dedocyl sulphate (SDS) surfactant that is functioning in stabilizing the GO dispersion (Md Disa et al., 2015).

Hence, in this work, sand/ZnO photocatalyst materials were fabricated with different nanostructures which are NRs and NFs before compositing it with TiO₂ NRs. The hybridization of sand/ZnO/TiO₂ nanocomposite were also done with GO and GO_MWCNTs hybrid solution as the photocatalyst materials. Afterward, the fabricated sand-based photocatalyst materials are used to investigate their effectiveness for photocatalysis application (MB degradation). To the best of our knowledge, this work presents a novel combination between ZnO with TiO₂ on the sand as a substrate via solgel immersion and hydrothermal method, respectively. Meanwhile, the hybridization via immersion method.

1.4 Research Objectives

The research objectives of this study are:

- To fabricate sand/ZnO and sand/ZnO/TiO₂ nanocomposites as photocatalyst materials via sol-gel immersion and hydrothermal method, respectively.
- To fabricate sand/ZnO/TiO₂/GO-based photocatalyst materials via immersion method.

 To investigate the photocatalysis performance of the fabricated sand/ZnO, sand/ZnO/TiO₂ nanocomposites and sand/ZnO/TiO₂/GO-based photocatalysts for MB dye degradation.

1.5 Scope and Limitation of Study

This study focuses on the fabrication of various type of sand-based photocatalysts and its hybridization with carbon-based materials in order to improve the photocatalysis performance. The nanostructures used for ZnO and TiO₂ were limited to NRs and NFs only. Meanwhile, the crystalline phases used for ZnO and TiO₂ were only focused on wurtzite and rutile phase, respectively. The surfactant used for GO production was only focused on commercially available single-tail SDS surfactant and MWCNTs based on waste cooking palm oil. In addition, the investigation of photocatalysis performance are limited by specifying the photocatalyst mass (30 g) and the usage of low MB dye concentration (5 ppm).

> The fabricated sand-based photocatalysts and its hybridization with carbonbased materials were characterized using several instrumentations. FESEM and EDX were utilized to investigate the surface morphology and elements compound of various fabricated sand-based photocatalysts. Meanwhile, micro-Raman spectroscopy and UV-Vis were used to investigate the structural properties and measure the absorption of the treated water after dye degradation test was performed, respectively.

1.6 Thesis Organization

This thesis consists of five chapters which presents the details work regarding photocatalysis application. Chapter 1 explains the research problem, research objectives, and scope and limitations of the study. Chapter 2 presents the literature review of the fundamental theories, including photocatalyst, photocatalysis and previous study related to photocatalysis application. The research methodology which cover the fabrication, synthesis process and characterization techniques of various sand-based photocatalysts are explained in Chapter 3. Chapter 4 presents the results and discussion including the morphology, structural and performance of the fabricated sand-based photocatalysts. Finally, the last chapter, Chapter 5 summarizes the results, conclusions and suggestion for the future work.

05-450

ustaka.upsi.edu.my

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah PustakaT

() 05-450

