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ABSTRACT 

This research aims to develop an imputation framework for the National Childhood 

Development Research Centre (NCDRC)’s missing data. Missing data and other 

associated issues, such as outliers, time points, noise, and continuity, were the main 

challenges in this research. The nature of the NCDRC dataset was not consistent with 

those reported in the literature, with the latter being more randomly scattered and 

copious and having no patterns, making it difficult to find and select relevant 

experimental data. The VIseKriterijumska Optimizacija Kompromisno Resenje 

(VIKOR) method was utilized to select the best continuous portion of Body Mass Index 

(BMI) data over 182 different portions, which accounted for 911 participants (i.e. 

children with complete records) over seven (7) continuous time points. Three different 

machine learning algorithms to impute the missing data were tested and evaluated, 

namely K-nearest Neighbour (KNN), Naïve Bayes (NB), and Decision Tree (DT). 

Three evaluation performance indicators, namely t-test, Coefficient of Determination, 

and Root Mean Square Error, were used in the experiment using three configurations 

based on 5%, 10%, and 15% missing data.  The results of the experiment showed that 

KNN’s performance scores were significantly higher than those of the other algorithms. 

Out of all scores, KNN achieved 95.23% of the scores, followed by NB with 94.04% 

and DT with 83.33 %, clearly indicating that KNN outperformed DT and NB in the 

imputation of missing data. In conclusion, the main finding suggests that the KNN 

algorithm is the most effective algorithm for imputing missing data. The implication of 

this study is that practitioners, especially NCDRC’s personnel, can use the proposed 

missing data imputation framework to help impute missing data of similar datasets.   
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RANGKA KERJA IMPUTASI DATA HILANG UNTUK DATA 

LONGITUD AWAL KANAK-KANAK: SATU 

 KAJIAN KES TERHADAP DATA NCDRC 

ABSTRAK 

Kajian ini bertujuan untuk membangunkan satu rangka kerja imputasi untuk Pusat 

Kajian Pembangunan Awal Kanak-kanak Kebangsaan (NCDRC). Data hilang dan isu-

isu yang berkaitan, seperti outlier, titik masa, kebisingan, dan kesinambungan, 

merupakan cabaran yang dihadapi dalam kajian ini. Ciri set data NCDRC adalah tidak 

konsisten dengan set data yang dilaporkan dalam literatur, di mana ianya lebih 

bertaburan secara rawak dan bersaiz besar dan tidak mempunyai corak yang jelas bagi 

memudahkan pencarian dan pemilihan data eksperimen. Kaedah VIseKriterijumska 

Optimizacija Kompromisno Resenje (VIKOR) digunakan untuk memilih bahagian 

selanjar yang terbaik untuk data Indeks Jisim Badan (BMI) yang merangkumi 182 

bahagian yang berlainan melibatkan 911 peserta (kanak-kanak dengan rekod yang 

lengkap) meliputi tujuh (7) titik-titik masa selanjar. Tiga algoritma pembelajaran mesin 

untuk imputasi data hilang diuji dan dinilai, iaitu K-nearest Neighbour (KNN), Naïve 

Bayes (NB), dan Decision Tree (DT). Tiga penunjuk prestasi penilaian, iaitu t-test, 

Coefficient of Determination, dan Root Mean Square Error, digunakan dalam 

eksperimen berdasarkan beberapa konfigurasi yang melibatkan kehilangan data 

sebanyak 5%, 10%, dan 15%. Dapatan menunjukkan skor prestasi KNN adalah lebih 

tinggi dari skor algoritma yang lain. Daripada semua skor yang terlibat, KNN 

memperoleh 95.23% daripada skor berkenaan, diikuti dengan NB dengan 94.04% dan 

DT dengan 83.33%. Ini menunjukkan KNN berprestasi lebih baik lagi berbanding DT 

dan NB dalam imputasi data hilang. Kesimpulannya, dapatan menunjukkan algoritma 

KNN adalah merupakan algoritma yang terbaik bagi imputasi data hilang. Implikasi 

kajian ini membolehkan para pengamal, terutamanya kakitangan NCDRC, 

menggunakan rangka kerja imputasi data hilang yang dibangunkan untuk 

menggantikan data yang hilang dalam sesuatu set data.  
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RESEARCH BACKGROUND 

 

 

 

 

1.1 Introduction 

This chapter explains the research background aspect of this thesis, it is meant to 

highlight different areas and points which contribute to the understanding of this 

thesis’s topic. Among the points covered in this chapter are the research background 

which informed the reader about the origin of the topic, followed by the state of problem 

which discusses how the problem in this dissertation emerges. Furthermore, other 

important highlights are addressed including research objectives, research questions 

and research scope. As for the last details which summarize this thesis layout. 
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1.2 Research Background 

Early childhood is the period when most of children transitions take place; this period 

is a significant influencer of child development as children progress into adolescence 

(Caemmerer & Keith, 2015) and adulthood (Kim, Choi, & Kim, 2014). Early childhood 

is an intriguing research in the academic world that warrants considerable attention 

(Girard, Pingault, Doyle, Falissard, & Tremblay, 2017). Early childhood was 

investigated in many domains, such as social and medical domains. Researchers 

emphasized the importance of this period in shaping many aspects of children’s lives, 

especially brain development as discussed in (Keyser, Ahn, & Unick, 2017) and (M. 

Wang & Saudino, 2013). This period plays a significant role in shaping other aspects 

of childhood development, such as growth (Matos et al., 2017; Schott, Crookston, 

Lundeen, Stein, & Behrman, 2013), emotions (Keyser et al., 2017; Kim et al., 2014; 

Long, Benischek, Dewey, & Lebel, 2017; M. Wang & Saudino, 2013), socialization 

and behavior (Girard et al., 2017; Hardee et al., 2013; Long et al., 2017; Matos et al., 

2017; Taveras, Rifas-Shiman, Bub, Gillman, & Oken, 2017) and health (Matos et al., 

2017). Apart from children’s development aspect, this period plays a great role on 

child’s skills including cognitive (Kim et al., 2014; Long et al., 2017; Taveras et al., 

2017), perception (Y. Zhang et al., 2017), inhibitory control (Gagne & Saudino, 2016), 

executive function (Meuwissen & Englund, 2016), language (Girard et al., 2017) and 

education (B. Jensen, Jensen, & Rasmussen, 2017; X. Zhang & Lin, 2015). Early 

childhood also represents great risk, wherein many neurodevelopmental disorders 

emerge (Long et al., 2017) in addition to the internalization and externalization of 

problems in children (F. Li & Godinet, 2014). Family bonds between parents and 

children are formed during this time (De Luca, Yueqi, & Padilla, 2017). Literature 
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shows that early childhood research is gaining significant interest, which is recognized 

as a hot topic (Conroy & Harcourt, 2009). Several researchers conducted data analysis 

on this domain and obtained good results (e.g. identifying special patters in a particular 

skills). Towards this end, data analysis is essential in the study of early childhood in 

order to understand this period in its best shape. 

 

Data analysis plays a significant role in science research. Researchers worldwide 

utilized different data analysis measures in their respected fields for different reasons. 

Researchers tend to work with different analysis methods for various scientific 

purposes, such as evaluation (Aubert-Broche et al., 2013), investigations (Erdoğan, 

Ener, & Arıca, 2013; Y. Zhang et al., 2017), data modelling (Greenwood et al., 2013) 

and prediction (Staff, Maggs, Cundiff, & Evans-Polce, 2016). Others highlighted the 

role of data analysis for its contribution to research (Meuwissen & Englund, 2016), 

answering research questions (Speirs et al., 2016) and the relationship of findings 

(Mills-Koonce et al., 2015). While others developed data analysis for social purposes, 

particularly, understanding children’s related norms, such as health (Schleider, Abel, & 

Weisz, 2015), tracking and describing changes (Guevara, van Dijk, & van Geert, 2016; 

R. Miller, 2017); reducing biases (Field, 2017; C.-W. Liu et al., 2017; Paternina-

Caicedo et al., 2015) and their contribution to lack of consensus (Buckley et al., 2015). 

Due to the variety of data with respect to its nature, different analytical approaches are 

required for different types of data. Accordingly, the nature and type of data used for 

the analysis play a major role in any data analysis approach. 

 

Data type is also a significant part of any study, which is equally important as data 

analysis because they complete each other. Data type alone does not provide sufficient 



4 

 

 

 

information without proper analysis. The same goes for data analysis, which would not 

provide information without proper data. It has been noticed that data types in early 

childhood studies represent an occurrence or a situation for children at that time period. 

Data type may not be a significant indicator of how this period is observed given the 

fact that data related to children are not recorded by them (i.e. children), but they are 

recorded by parents or other caregivers (Netsi et al., 2017; Strobino et al., 2016; 

Trautmann, Alhusen, & Gross, 2015). A longitudinal type of data emerged in literature, 

which enables researchers to observe children for many years. This type of data aids 

researchers across the majority of early childhood studies for various purposes, such as 

evaluation (Aubert-Broche et al., 2013), improvement of study models (Sadeghi et al., 

2013), provision of consistent estimates (Matos et al., 2017), maximization of statistical 

power (Ducharme et al., 2016; Royal-Thomas, McGee, Sinha, Osmond, & Forrester, 

2015) and maintenance of data records (Long et al., 2017). Longitudinal data also vary 

in terms of usage; some researchers used these data for answering research questions 

(Buckley et al., 2015), conducting investigations (Simpkin et al., 2017; Tamilia, 

Formica, Scaini, & Taffoni, 2016), performing comparisons (McCormick, O'Connor, 

Cappella, & McClowry, 2013), testing models (Shaw et al., 2014; Torres, Domitrovich, 

& Bierman, 2015), providing clarifications (Bellin et al., 2013), examining effects (C. 

E. Baker & Iruka, 2013; Carlson, Sonderegger, & Bane, 2014; Heatly, Bachman, & 

Votruba-Drzal, 2015; Maslow et al., 2017) and  determining findings (Jeon, Peterson, 

& DeCoster, 2013). Longitudinal data therefore is a very capable and rich type of data 

filled with large volume of information, such data are not like the usual type, since it 

requires commitment and large financial support. This data type is not an easy one to 

start and maintain, since it requires huge resources which can be found in governments 

and large scale institutions (i.e. UK Millennium Study).  Despite its large and vast 
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academic and scientific worth, such type of data might lost its significance (brightness) 

and not meet its expectations due to human and technical errors (Van den Broeck, 

Cunningham, Eeckels, & Herbst, 2005) (e.g. missing data, outliers, unprofessional 

reporting, etc.). 

 

Missing data is an inevitable occurrence associated with the data collection 

process, especially when the data collected are huge and contains large number of 

inputs. This issue can cause several drawbacks affecting the findings later on. Among 

the drawbacks of the missing data comes the possibility of bias findings (R. Miller, 

2017; Vandecandelaere, Vansteelandt, De Fraine, & Van Damme, 2016), reducing the 

sample size (Singh, Winsper, Wolke, & Bryson, 2014), excluding data (Gordon, 

Colaner, Usdansky, & Melgar, 2013) and the inability to understand changes in the data 

(Derrington et al., 2013). However,  missing data should be taken into account specially 

when dealing with repeated measurement (L.-W. Chen et al., 2016). The importance of 

dealing with the missing data should begin during the data collection stage, and all 

suitable environments should be setup in advance to encourage participants to fill up 

the data efficiently and reduce the ratio of missing occurrences. Missing data thus can 

be handled by means of statistical procedures, by means of machine learning, or by 

elimination. 

 

1.3 Problem Statement 

Observing the academic literature suggested different challenges when it comes to early 

childhood research. Most of these challenges are (in away or other) related to the data 

as seen in Figure 1.1. Five classes of challenges are summarized, namely, processing 
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of data, collection/acquisition of data, nature of data, the procedure of reporting, and 

finally sample size. Each of these classes are associated with a number of aspects. The 

first challenge reported in the academic literature is concerned with elements of data 

collection, includes missing data (i.e. refers to incomplete data received by participants) 

(Lê, Roux, & Morgenstern, 2013; Pluymen et al., 2016; Singh et al., 2014), bias 

reporting of data, including reporting data of children by their parents (C. E. Baker & 

Iruka, 2013; De Luca et al., 2017; Green, Tarte, Harrison, Nygren, & Sanders, 2014; 

Hartman et al., 2016; Jones, Champion, & Woodward, 2013; Keyser et al., 2017; 

McKelvey, Selig, & Whiteside-Mansell, 2017; Meuwissen & Englund, 2016; Nath, 

Russell, Kuyken, Psychogiou, & Ford, 2016), their teachers (Brotman et al., 2016; 

Caemmerer & Keith, 2015; Heatly et al., 2015), children themselves (Aschengrau et 

al., 2016; Contzen, Meili, & Mosler, 2015; Sunny et al., 2017), and their parents (C. E. 

Baker & Iruka, 2013; Meuwissen & Englund, 2016; Nath et al., 2016), and finally data 

reporting by unprofessional (i.e. refer to the commitment of personnel who are in charge 

of gathering the data and key it in the system correctly (Tharayil et al., 2017). Bias 

reporting can effect integrity of data, and reducing the benefit of analysis result. 

Another challenge is presented within the nature of data, includes the following aspects, 

structure, (i.e. refers to the structure format of the data) (Caemmerer & Keith, 2015), 

and accuracy (i.e. refers to certainty of reported records in their actual and scheduled 

time) (Sunny et al., 2017). The third challenge identified in literature involves different 

elements with respect to the method of data sampling. The first is sample size, (i.e. 

population representation, and number of participants) (Ifflaender, Rüdiger, 

Konstantelos, Wahls, & Burkhardt, 2013; Yuan et al., 2016; Zare, Rezvani, & Benasich, 

2016) , another aspect associated with data sampling involves the time points (i.e. refers 

to participants in survey with uncompleted/limited to one or few time points) (Kremer, 
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Flower, Huang, & Vaughn, 2016; McCormick, O’Connor, & Barnes, 2016) . Different 

challenge involves different aspects linked to processing of data, includes statistical 

power (Aschengrau et al., 2016; McDonald et al., 2013; Tamayo, Manlhiot, Patterson, 

Lalani, & McCrindle, 2015), noise (i.e. refers to data entries which are not relevant to 

the rest of entries like 0 value where it is  supposed to be a number) (S. T. Baker, Leslie, 

Gallistel, & Hood, 2016; Bhattacharya, Ehrenthal, & Shatkay, 2014; Tharayil et al., 

2017), and finally outliers (i.e. refers to extreme data records which cannot be achieved 

by any means) (Agyei, van der Weel, & van der Meer, 2016; Brown, Gyllenberg, 

Hinkka-Yli-Salomäki, Sourander, & McKeague, 2017; Long et al., 2017).   
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Figure 1.1. Problem Statement Main Components 

 

The last challenge present those aspects linked with the way data is reported. 

This includes inability to draw casual conclusions (i.e. do not meet the expectations of 

the findings, or uncertain conclusions) (Heatly et al., 2015; Yang & Yang, 2015) , and 

the inability to generalize the findings to whole population (Guevara et al., 2016; Zare 

et al., 2016). 
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These issues are deemed significant and play an important role in the findings. 

A brief screening has been conducted for early childhood, data analysis and data types 

studies considering the scope of age between infancy and 5 years old as per the available 

data in National Child Development Research Center (NCDRC). It is found out that out 

of 233 studies identified, (n=127/233) was done in the in the United State of America 

followed by 13 studies from the United Kingdom. Within the scope of this research, 

Asian countries produce limited number of research articles with (n=23/233). It seems 

that the interest in Asia is considered slim compared with countries like USA, and even 

among the ones in Asia, Malaysia had no study found, see section 2.5.1. In Malaysia, 

NCDRC is a very capable center to produce strong findings associated with various 

early childhood topics and the overall records are estimated to be around 96000 records 

for more than 16000 child. However, as any source of big longitudinal data, there are 

some issues that hamper the integrity of such massive records. In NCDRC, the records 

available are around 96000 records but the ones with no missing value and completed 

are only around 168 records across all the time points for 12 child. Similar to academic 

literature, most of the issues reported in the academic literature are identified within 

NCDRC dataset, in particular, missing data, unprofessional data reporting, bias, 

outliers, noise and so on. 

 

It is clearly identified that data holds major share of issues reported in previous 

literature. The less missing data, the larger sample size, the more generalizable findings, 

the more representative samples. Nevertheless, other benefits including, producing 

highly accurate and solid findings 
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Looking back at means of imputing missing data, it is identified that most of 

them follow statistical analysis approaches. Moreover, most of the previous attempts 

only imputed data within small scales without understanding the overall nature of data 

and its variables. Bearing that in mind, if dataset was understood thoroughly, a big 

chance that it could be utilized for its maximum (Hahn & Haisken‐ DeNew, 2013) and 

therefore rebuilt considering the correlations between its variables. Therefore, the idea 

of imputing data via statistical means is excluded. On the other hand, machine learning, 

(even though not widely presented within such application for early childhood studies 

at least in the selected set of papers in this systematic literature review) shows 

promising results in imputing data (Jerez et al., 2010). It is believed that the utilization 

of machine learning can aid in the missing data imputation and maintain data integrity 

in the process. 

 

For several reasons mentions in section 3.8, existing missing data imputation 

approaches (i.e. machine learning imputation) are not directly applicable to our dataset. 

A generic and unique framework for imputation of missing data across different dataset 

with different characteristics is yet to be identified in the academic literature. Thus, 

three machine learning algorithms (K-nearest Neighbor, Decision Tree, and Naïve 

Bayes) proposed for imputing missing data are to be experimented upon, with different 

experiments and different settings until final conclusion is observed for best performing 

one in this dataset.  
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This research is an attempt to rebuild parts of NCDRC dataset towards 

increasing an applicable part of the data. This can be achieved by imputing the largest 

missing data portion possible using machine learning without affecting the overall 

integrity of the dataset.  

 

Towards this end, NCDRC would compete with great centers of early childhood 

studies across the glove (i.e. UK Millennium project) in terms of academic studies in 

addition to social side which may aid children development and health. Table 1.1 

presents the most common previous gaps (i.e. related to this study) with their full 

references. 

 

Table 1.1 

Gaps with Full References 

 

Gap Full References 

Inability To 

Generalize The 
Findings 

(Apouey, 2016; Bellin et al., 2013; Boxum et al., 2014; Bradley-Hewitt et al., 2016; Burgess, Audet, & 

Harjusola-Webb, 2013; J. Y. Choi, Jeon, & Lippard, 2018; Derrington et al., 2013; Fenstermacher & 
Saudino, 2016; Goelman, Zdaniuk, Boyce, Armstrong, & Essex, 2014; Green et al., 2014; Guevara et al., 

2016; Ifflaender et al., 2013; B. Jensen et al., 2017; Kildare & Middlemiss, 2017; Kim et al., 2014; S. J. 

Lee, Altschul, & Gershoff, 2015; Mallan, Fildes, Magarey, & Daniels, 2016; Mann, Mcdermott, Pan, & 
Hardin, 2013; McCormick et al., 2013; Merritt & Klein, 2015; Nelson et al., 2013; Price, Higa-McMillan, 

Kim, & Frueh, 2013; Sisson et al., 2016; Strobino et al., 2016; Tamayo et al., 2015; Taveras et al., 2017; 

Torres et al., 2015; Uzark, Smith, Donohue, Yu, & Romano, 2017; Xu, Wen, Hardy, & Rissel, 2016; 
Yoon, 2017; Zare et al., 2016; X. Zhang & Lin, 2015; Y. Zhang et al., 2017) 

Biased Reporting 
by Parents 

For 
Children 

(Bellin et al., 2013; J.-H. Chen, 2014; Christiana, Battista, James, & Bergman, 2017; De 

Luca et al., 2017; Fang et al., 2014; Gibbs & Forste, 2014; Girard et al., 2017; Hermanns, 
Asscher, Zijlstra, Hoffenaar, & Dekovič, 2013; Koulouglioti et al., 2014; Kremer et al., 

2016; Lê et al., 2013; Lewis, McElroy, Harlaar, & Runyan, 2016; F. Li & Godinet, 2014; 

Mika et al., 2016; Nam & Chun, 2014; Netsi et al., 2017; Shoda et al., 2016; Speirs et al., 
2016; Strobino et al., 2016; Taveras et al., 2017; M. Wang & Saudino, 2015; Xu et al., 

2016; Yoon, 2017) 

For 

Parents 

(C. E. Baker & Iruka, 2013; De Luca et al., 2017; Green et al., 2014; Hartman et al., 2016; 
Jones et al., 2013; Keyser et al., 2017; McKelvey et al., 2017; Meuwissen & Englund, 

2016; Nath et al., 2016) 

Missing Data 

(Aschengrau et al., 2016; Derrington et al., 2013; Gordon et al., 2013; Greenwood et al., 2013; Heatly et 

al., 2015; Lê et al., 2013; Merritt & Klein, 2015; Pluymen et al., 2016; Singh et al., 2014; H. Wang, Tian, 
Wu, & Hu, 2016) 

(Continue) 
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Table 1.1 (Continued) 
 

Gap Full References 

 
 

 

 
 

 

 
 

 

 
 

 

Sample Size 

(Aschengrau et al., 2016; Becker, Miao, Duncan, & McClelland, 2014; Boxum et al., 2014; Brooker & 
Buss, 2014; Brotman et al., 2016; Burgess et al., 2013; Christiana et al., 2017; Contzen et al., 2015; 

Derrington et al., 2013; Gagne & Saudino, 2016; Gauld, Keeling, Shackleton, & Sly, 2014; Geisbush, 

Visyak, Madabusi, Rutkove, & Darras, 2015; Gordon et al., 2013; Guevara et al., 2016; Hardee et al., 
2013; Hermanns et al., 2013; Hoff, Rumiche, Burridge, Ribot, & Welsh, 2014; Ifflaender et al., 2013; 

Iruka, Gardner-Neblett, Matthews, & Winn, 2014; Kildare & Middlemiss, 2017; Lê et al., 2013; Libertus 

& Landa, 2013; Mahalingaiah, Winter, & Aschengrau, 2016; McCormick et al., 2013; Medeiros, Cress, 
& Lambert, 2016; Morgan et al., 2015; Pasick et al., 2014; Pluymen et al., 2016; Russell, Worsley, & 

Campbell, 2015; Sansavini et al., 2014; Singh et al., 2014; Sisson et al., 2016; Speirs et al., 2016; 

Vandecandelaere et al., 2016; Waldie et al., 2014; Walker et al., 2013; H. Wang et al., 2016; M. Wang & 
Saudino, 2013; Warady et al., 2015; Wimmer, Rothweiler, & Penke, 2017; Wood et al., 2017; Yang & 

Yang, 2015; Yuan et al., 2016; Zampoli, Pillay, Carrara, Zar, & Morrow, 2016; Zare et al., 2016; X. 

Zhang & Lin, 2015; Y. Zhang et al., 2017) 

Lack of 

Longitudinal Data 

(Buckley et al., 2015; Caemmerer & Keith, 2015; Davies & Oliver, 2016; De Luca et al., 2017; Dussel 

et al., 2015; Girard et al., 2017; Grabenhenrich et al., 2014; Jeon et al., 2013; Kildare & Middlemiss, 

2017; Kohli, Sullivan, Sadeh, & Zopluoglu, 2015; Kremer et al., 2016; Kroksmark, Stridh, & Ekström, 

2017; Lê et al., 2013; Lewis et al., 2016; C.-W. Liu et al., 2017; Morgan, Farkas, Hillemeier, & Maczuga, 

2016; Morgan et al., 2015; Rachmi, Agho, Li, & Baur, 2017; Royal-Thomas et al., 2015; Rzehak et al., 

2013; Sadeghi et al., 2013; Tamayo et al., 2015; Taye et al., 2016; Torres et al., 2015; Treiman, Pollo, 
Cardoso-Martins, & Kessler, 2013; Xu et al., 2016; Yoon, 2017; Yuan et al., 2016; Zajicek-Farber, 

Mayer, Daughtery, & Rodkey, 2014) 

Incomplete Time 

Points 

(Apouey, 2016; Becker et al., 2014; Darrouzet-Nardi et al., 2016; Flouri, Midouhas, & Joshi, 2014; 
Kremer et al., 2016; Lewis et al., 2016; McCormick et al., 2016; R. Miller, 2017; Yoon, 2017; Zajicek-

Farber et al., 2014) 

Inability to Draw 

Casual Conclusion 

(Crampton & Yoon, 2016; Faes, Gillis, & Gillis, 2016; Goelman et al., 2014; Heatly et al., 2015; Mika 
et al., 2016; Speirs et al., 2016; Uzark et al., 2017; H. Wang et al., 2016; Wood et al., 2017; Wright, 

Sotres-Alvarez, Mendez, & Adair, 2017; Yang & Yang, 2015; Zampoli et al., 2016) 

Noise 

(S. T. Baker et al., 2016; Bhattacharya et al., 2014; Brooker & Buss, 2014; Cornwell, McAlister, & 

Polmear-Swendris, 2014; Gao, Li, Xiong, Shen, & Pan, 2013; Shaw et al., 2014; Shklyar, Pasternak, 
Kapur, Darras, & Rutkove, 2015; Tharayil et al., 2017; Zare et al., 2016) 

Outliers 

(Agyei et al., 2016; Becker et al., 2014; Brooker & Buss, 2014; Brown et al., 2017; Derrington et al., 

2013; Faes et al., 2016; Greenwood et al., 2013; Ladd-Acosta et al., 2016; Long et al., 2017; Meuwissen 
& Englund, 2016; M. R. Miller, Müller, Giesbrecht, Carpendale, & Kerns, 2013; R. Miller, 2017; Pérez-

Moreno, Blanco-Arana, & Bárcena-Martín, 2016; Schleider et al., 2015; Schott et al., 2013; Tamilia et 

al., 2016; H. Wang et al., 2016; Zwaigenbaum et al., 2014) 

 

1.4 Research Objectives 

This research aimed to develop a missing data imputation framework using machine 

learning prediction techniques. The main research objectives are, as follows: 

 To investigate current academic literature of early childhood, data analysis and 

data types via systematic review protocol (SLR).  

 To explore and investigate NCDRC dataset towards understanding the data 

behavior and requirement analysis of missing data framework 

 To analyze and identify the largest continuous applicable records within 

NCDRC dataset using Multi-Criteria Analysis 
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 To explore and design a prediction module for missing data towards 

reconstructing (NCDRC) dataset using soft computing approach 

 To examine and validate the proposed prediction model with respect to data 

integrity 

 To test the developed model on real missing NCDRC dataset scenario  

 

1.5 Research Question  

 What is the current state of art in regard with the studies of early childhood, data 

analysis and data types in the academic literature? 

 What is the current utilized approaches for handling missing data in the 

academic literature within the scope of our systematic review settings? 

 Is the current data of NCDRC ready for missing data prediction? 

 Are the missing data approaches presented in the literature suitable with 

NCDRC data? 

 How accurate is the prediction module that is based on machine learning 

measures? 

 Can machine learning algorithm be used in real case study? 

 

1.6 Research Scope 

This research is aimed to investigate early childhood with respect to available dataset 

in Malaysia, namely National Child Development Research Center (NCDRC). 

Therefore, few points need to be taken into account as the following: 
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 This research is aimed for early childhood studies, though there were some 

discrepancies to best identify this area considering different authors views and 

different countries definition for this period in terms of years. Investigations 

were conducted considering the nature of the data available at NCDRC. 

Therefore, the selection of this research is based on the age between (Infancy – 

5 years) and other rare cases where age was not specially presented in form of 

years; rather it was presented differently such as kindergarten, pre-school. 

 As part of this research scope, the measures considered for data preparation 

visualization, modulation and analysis for the missing data will not rely on 

statistical settings. We focus on machine learning, and thus, parameters and 

preparations are to be considered based on machine learning preferences while 

addressing the data. Some of the parameters cannot be processed with in their 

current format for instance, Text and mix-characters. Therefore, data should 

follow the same data type, due to that, data is converted and grouped to suit 

machine learning preferences. 

 

1.7 Research Significance  

The findings of this thesis would redounds to the benefits of different areas related to 

early childhood and data analysis studies. As for the area of childhood and medical, it 

contributes towards identifying what are the issues that encounter these studies, so early 

actions can be taken to address them. As for the other part of data analysis, it discovers 

how different area like computer science and machine learning prediction can 

contribute towards completing children missing data. Therefore, when having larger 

data, more generalized findings and recommendations can be drawn. For more topics 
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and recommendations that play significance in showing this area of science, please see 

section Motivation 2.4.2. 

 

1.8 Operational Definitions 

Some words and definitions might not be totally clear to some readers, and a 

clarifications for such elements is good to allow the reader to grasp what this words or 

phrase is intended for. Therefore, this section aims to display and clarify terms and 

definitions used in this research, all of them are presented in Table 1.2. 

Table 1.2  

Operational Definition 

 
CH  Conceptual Variable  Operational Definition 

1 

Bias Findings 

Any Systematic Error In An  Study That Results In An Incorrect 

Estimate Of The True Effect Of An Exposure On The Outcome Of 

Interest 

Casual Conclusions Expectations Of The Findings 

Data Noise 
Amount Of Additional Meaningless Information That Is Not 

Suitable For Analysis 

Early Childhood Period From Infancy Until Five Years Of Age 

Longitudinal Data Data Gathered Over A Long Period Of Time. 

Missing Data No Data Value Is Stored For The Variable In An Observation 

Missing Data 

Imputation 

 The Process Of Replacing Missing Data With Substituted Values 

Outliers 
observations that lies an abnormal distance from other values in a 

random sample from a populatio 

Sample Size 
The Act Of Choosing The Number Of Observations Or Replicates 

To Include In A Study 

Time Points Periods of time where records of children were recorded regularly 

Module 
Any process taken in this thesis whetherein literature, 

preprocessing or after pre processing 

Framework The collection of many modules towards a certain goal. 

2 

(PRISMA) Statement  

 

PRISMA is an evidence-based minimum set of items for reporting 

in systematic reviews and meta-analyses. 

Search Query 
A search query or search term is the actual word or string of words 

that a search engine user types into the search box 

Inclusion Criteria 
 characteristics that the downloaded articles must have if they are 

to be included in this thesis 

Exclusion Criteria 
characteristics that disqualify downloaded articles from inclusion 

in the thesis 

Taxonomy 
the process of naming and classifying articles into groups within a 

larger mapping, according to their similarities and differences 

 

 
 (Continue) 
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Table 1.2 (Continued) 

CH  Conceptual Variable  Operational Definition 

 

3 

 

Alternative 

  

Available options for the decision to be made 

Attributes 
Also referred to as criteria and used interchangeably in the MCDM 

contex 

Weight significances of criteria 

 

1.9 Thesis Layout 

This thesis consists of eight chapters; chapter one provided a background about the area 

of early childhood and data analysis measures in addition to data types. After that, a 

brief about the current gaps concluded by the state of the problem with regards to 

missing data, research objective, scope and research questions, the rest of the thesis is 

organized as the following: 

 

Chapter Two: In Chapter Two, in-depth investigation was conducted for the 

early childhood studies. This includes defining the terms (Queries) used for 

investigating the current literature. An (SLR) systematic literature review protocol is 

adapted to review and analyses the literature towards constructing taxonomy. Articles 

selected were distributed to map out this area of science and extract important elements 

like challenges which later on allow us to draw our gaps and research problem. 

 

Chapter Three: In Chapter Three, an overview of (NCDRC) National Child 

Development Research Center) in Malaysia and brief history about the center. In 

addition, we highlight this center related reports, data types and funds granted since we 

are using their data set in this thesis.  In addition, last point in this chapter identifies the 

missing data in the dataset and how it affect it 
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Chapter Four: in this chapter, the research methodology and the flow of the 

research are deigned and reported. In addition to that, the main experiments to achieve 

the research objectives are designed. This includes experiments for data preparation. 

The main purpose of the data preparation is to transfer the data which is not suited for 

analysis into a form that unite all the data types in terms of its applicability for analysis. 

This data is then, grouped by unifying the different ones into one type and make it ready 

for analysis across groups. 

 

Chapter Five: in this chapter, data modulation and preparation phases starts by 

navigating data, and describing its parameters and completed statistics, in addition to 

cleansing all parameters from noise and outliers, and finishing by listing all completed 

statistics for across different time points in ascending and descending matter to ensure 

their maximum number. 

 

Chapter Six: in this chapter, all the completed parameters statistics from 

previous chapter statistics are introduced as alternatives and best one is identified via 

multi criteria decision making analysis. After that, it is analyzed for correlation, and 

introduced to next step where missing making scenarios are created with different 

settings. After the imputation of all scenarios, all the results are compared with original 

data before missing making to identify their significance differences with the use of 

three different tests to ensure that best settings and machine learning algorithms for 

imputations is selected. 
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Chapter Seven: this chapter includes the selection of actual missing case study 

data from the NCDRC dataset with settings identified from previous chapter in order to 

guarantees best results. After selection of best scenario where a good portion of data 

could be imputed (n=399), best performing ML would be utilized to impute it 

considering it performed best compared with its peers in previous chapter. Last is to 

measure correlation and significance difference level after the imputation in order to 

determine if there were significance changes. In addition, a conclusion summary of this 

entire dissertations including how objectives were achieved across the dissertation, 

future works, and limitations. 




