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ABSTRACT 

This study is aimed to synthesize carbon nanotubes (CNTs) for the large scale 

production (in term of high volume production around 500 mg per day) by utilizing the 

novel waste cooking palm oil (WCPO) as carbon feedstock. The method used were 

modified thermal chemical vapor deposition (TCVD) that equipped with a peristaltic 

sprayer in order to continuously supply the precursor and catalyst into the system. 

Various synthesis parameters, such as effect of vaporization and synthesis temperature, 

synthesis time interval, precursor flow rate, post annealing treatment, nozzle diameter, 

and catalyst concentration were conducted in order to find out the optimum parameter 

to produce high quantity and good quality of CNTs. The total amount of 1000 ml 

WCPO precursor was sprayed continuously during the experiment with ferrocene as 

catalyst via modified TCVD system. The samples were characterized using field 

emission scanning electron microscopy, energy dispersive X-ray, high resolution 

transmission electron microscopy, micro-Raman spectroscopy and thermogravimetric 

analysis. The optimum samples were then used as nanofiller for supercapacitor 

application and as an adsorbent material for adsorption heavy metal ions application. 

The findings showed that the total of 433 g CNTs were produced with high carbon 

conversion rate of 56 %. Growth of dense CNTs with a high purity of 90 % and good 

crystallinity (ID/IG ratio 0.43) occurred at combination temperature of 500 and 800 C 

of vaporization and synthesis temperature, respectively, time interval between spraying 

process of 15 min, precursor flow rate of 30 mLmin-1, annealing treatment at 500 C 

for 4 h, nozzle diameter of 0.25 mm and catalyst concentration of 5.33 wt% using 

modified TCVD system. The CNTs/natural rubber-latex (NRL) nanocomposite 

exhibited a good capacitance performance with a specific capacitance of 81.82 F/g. 

Meanwhile, CNTs from WCPO shows an excellent ability in order to remove heavy 

metal ion from aqueous solutions which match well with the Langmuir isotherm model 

with higher correlation coefficient and maximum adsorption capacity metal ions of 

0.9894 and 31.25 mg/g, respectively. In conclusion, this study determined that a high 

production of WCPO based-CNTs using modified TCVD method provided benefits for 

its utilization as composite and adsorbent materials especially for supercapacitor and 

adsorption of heavy metal ions application. The implication of this study is used a 

simple method, economical and green approach in order to produces higher production 

and good quality of CNTs. 
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PENGELUARAN BESARAN NANOTIUB KARBON DARIPADA MINYAK 

MASAK TERPAKAI DENGAN KAEDAH PEMENDAPAN WAP KIMIA 

TERMA YANG DI UBAH SUAI DAN APLIKASINYA 

ABSTRAK 

Kajian ini bertujuan untuk mensintesis nanotiub karbon (NTK) untuk pengeluaran 

secara besaran (dengan jumlah pengeluaran yang tinggi iaitu sekitar 500 mg sehari) 

dengan menggunakan pendekatan baharu minyak masak terpakai (MMT) sebagai 

bahan mentah karbon. Kaedah yang digunakan adalah pemendapan wap kimia terma 

(TCVD) yang diubah suai dilengkapi dengan penyembur peristaltik untuk 

membekalkan prekursor dan pemangkin secara berterusan ke dalam sistem. Pelbagai 

kajian parametrik seperti kesan pengewapan dan suhu sintesis, selang masa sintesis, 

kadar aliran prekursor, rawatan pasca penyepulih-indapan, diameter nozel, dan 

kepekatan pemangkin telah dijalankan untuk mengetahui parameter yang optimum bagi 

menghasilkan kuantiti yang banyak dan kualiti NTK yang baik. Sebanyak 1000 ml 

MMT prekursor disembur secara berterusan semasa eksperimen dengan ferosena 

sebagai pemangkin melalui sistem TCVD yang telah diubahsuai. Sampel tersebut 

dicirikan menggunakan mikroskopi pengimbas pancaran medan elektron, analisis 

tenaga sinar-X, mikroskopi pengimbas pancaran medan elektron, spektroskopi mikro-

Raman dan analisis termogravimetri. Sampel yang optimum kemudiannya digunakan 

sebagai pengisi-nano untuk aplikasi superkapasitor dan bahan penyerap bagi aplikasi 

penjerapan ion logam berat. Penemuan menunjukkan bahawa jumlah 433 g NTK 

dihasilkan dengan kadar penukaran karbon tinggi iaitu sebanyak 56%. Pertumbuhan 

NTK yang padat dengan kemurnian tinggi 90% dan kristaliniti yang baik (nisbah ID / 

IG 0.43) berlaku pada suhu gabungan 500 dan 800 C pengewapan dan suhu sintesis, 

masing-masing, selang masa antara proses semburan selama 15 minit, kadar aliran 

prekursor pada 30 mLmin-1, rawatan penyepulindapan pada 500 ° C selama 4 jam, 

diameter muncung penyembur 0.25 mm dan kepekatan pemangkin sebanyak 5.33 

peratus berat pemangkin dengan menggunakan sistem TCVD yang diubahsuai. 

Nanokomposit NTK / getah asli-latek mempamerkan prestasi kapasitans yang baik 

dengan nilai kapasitan khusus sebanyak 81.82 F/g. Sementara itu, NTK dari MMT 

menunjukkan keupayaan yang sangat baik untuk menyingkirkan ion logam berat 

daripada larutan akueus dan sepadan dengan model isoterm Langmuir dengan pekali 

korelasi yang lebih tinggi dan kapasiti ion penjerapan yang maksimum dengan masing-

masing 0.9894 dan 31.25 mg/g. Kesimpulannya, kajian ini mendapati bahawa 

pengeluaran tinggi NTK berasaskan MMT dengan menggunakan kaedah TCVD yang 

diubahsuai memberikan faedah untuk kegunaannya sebagai bahan komposit dan 

penyerap terutama untuk superkapasitor dan penjerapan aplikasi ion logam berat. 

Implikasi kajian ini adalah menggunakan pendekatan kaedah yang mudah, ekonomi 

dan hijau bagi menghasilkan pengeluaran NTK yang lebih tinggi dan kualiti yang baik. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

This chapter discusses the research background of the large scale carbon nanotubes 

(CNTs) using natural sources and waste materials as carbon precursor by thermal 

chemical vapour deposition method (TCVD), as well as the application of CNTs as 

nanocomposites and adsorbent materials in supercapacitor and adsorption of heavy 

metal ions, respectively.  The research background and problems are extensively 

discussed in this chapter. The next section of this chapter covers the research objectives, 

scope and limitation of study. At the end of this chapter, thesis organisation is also 

presented.  
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1.2 Research Background 

 

CNTs have become the building blocks for the nanoscience and nanotechnology field. 

They have various potential applications that range from electrical, mechanical, and 

chemical applications, and are conventionally produced by using fossil fuel-based 

precursors. Potential applications of CNTs include batteries for engine powered hybrid-

electric and fuel cell powered vehicles (Burke, 2007), chemical sensors for security 

systems (Perkins, E. S. Snow & Robinson, 2006), hydrogen storage for electrochemical 

devices (Chen et al., 2008), electron field emitter for flat panel displays (Bonard, 2002), 

scanning probe for atomic force microscope (AFM) (Bunch, Rhodin & McEuen, 2004), 

wires for quantum electronics (Dekkar, 1999), electrodes for discharge tubes (Miao, 

Lue & Ouyang, 2006), adsorbent materials (Song et al., 2015) and electrochemical 

capacitor for energy storage (De Volder, 2013). Therefore, the up-scale production of 

CNTs in abundant amount is highly needed.  

 

To date, one of the companies that successfully produce large-scale CNTs is 

Shenzhen Nano-Technologies Port. Co., Ltd., which is based in China (Eklund et al., 

2007). They produce 40 kg CNTs per day using a cycled vertical CVD system. 

Production of 3 kg/h aligned CNTs from ethylene as carbon source via fluidized bed 

CVD reactor was reported by Fei et al. (Zhang, Zhao, Huang, Nie & Fei, 2010). 

However, the use of fossil fuel-based carbon sources is not preferable because these 

resources will not be renewable in the coming decades. Large-scale production of CNTs 

(1 kg/h) from natural precursor camphor powder using CVD reactor has been 

successfully achieved by Meijo Nano Carbon Co. Ltd., Japan (Kumar & Ando, 2010). 



3 
 

Catalytic decomposition using conventional precursors such as methane (Latorre et al., 

2011), benzene (Frusteri et al., 2013), acetylene and xylene (Raza et al., 2016), have 

been studied for mass production of CNTs. However, other than expensive, they are 

also non-renewable sources. Hence, their availability is expected to be limited in the 

next future.  

 

However, the use of natural precursors, such as camphor (Kumar & Ando, 2010; 

Asli, Shamsudin, Suriani, Rusop & Saifollah, 2013], palm (Suriani, Azira, Nik, Md 

Nor, & Rusop, 2009; Zobir et al., 2012), olive, corn, sesame, and coconut oil (Azmina 

et al., 2012; Paul & Samdarshi, 2011) for large-scale production of CNTs is unfavorable 

because this approach opposes the main usage of the precursors in the food sector and 

medical industries (Suriani et al., 2015). This approach may also contribute to 

environmental damage as the precursors are grown on land converted from rainforests, 

peatlands, savannas, and grasslands (Fargione, Hill, Tilman, Polasky & Howthorne, 

2008). Therefore, the use of waste material such as waste cooking palm oil (WCPO), 

waste engine oil (WEO), waste chicken fat (WCF) and gutter oil (GO) as carbon 

feedstock for bulk CNTs production is a more economical and greener practice. These 

precursors served as renewable sources and low cost raw materials for large scale CNTs 

production. 

 

There are several methods for large scale production of CNTs including TCVD 

(Mukul & Ando, 2010), laser ablation (Scott, Arepalli, Nikolaev & Smalley, 2001) and 

arc discharge (Senthil Saravanan, 2010) method. The laser ablation method is able to 

produce CNTs with high purity and good graphitization degree of CNTs (Zhang et al., 

2014) but the operating cost is very expensive for large scale production. Meanwhile, 
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arc discharge method can yield large scale CNTs but this method produce CNTs in low 

quality with a lot of impurities. The TCVD method is the most commonly used method 

for synthesis of CNTs. This method represents simplest preparation set-up where the 

CNTs can be grown under mild synthesis condition (such as normal pressure and low 

growth temperature), simple facility, and low cost as the use of high quality substrate 

and chemicals is not required (Zhang et al., 2006). This method also considered to be 

an economic and practical process for large scale production of high purity CNTs 

(Prasek et al., 2011).  

 

There have been a lot of studies on the application of CNTs in supercapacitor 

devices (Ajayan & Zhou, 2001; Trassati & Kurzweil, 1994; Zheng et al., 2012). 

Supercapacitor is also called as ultracapacitors or electrochemical capacitors with 

unique characteristics such as cost effective storage, long cycle life, safe in operation, 

high specific power and environmentally friendly (Trassati & Kurzweil, 1994). Zheng 

et al. (2012) reported the low performance of activated carbon as electrode have brought 

CNTs to this application. While, Chen et al. (2014) reported the fabrication of electrode 

materials for supercapacitor using CNTs composited with potassium hydroxide as 

electrolyte. It was found that the high specific capacitance of 166 Fg-1 at current density 

0.3 Ag-1 was obtained. This showed that CNTs can improve the performance of 

supercapacitor due to their high surface area and conductivity (Boyea, Camacho, 

Turano & Ready, 2007). Research in this area has led to the development of energy 

storage devices which can replace the existing batteries and fuel cells for the 

development of nanotechnology. 
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Meanwhile, the removal of heavy metals from the water was main issues today. 

Various techniques have been explored for the removal of these heavy metals from the 

polluted water such as chemical precipitation, ion-exchange, electrodialysis, reverse 

osmosis and adsorption (Ahmadpour, Efekhari & Ayati, 2014; Bernard & Jimoh, 2013; 

Kouakou, Ello, Yapo & Trokourey, 2013). Most of the methods become ineffective and 

uneconomical when the concentrations of heavy metals are raised up to 500 mg/L then 

the permissible limits of ~1 mg/L (Balintova, Holub & Singovszka, 2012). Considering 

from economy and effectiveness, adsorption process is regarded as one of the promising 

and widely used methods to solve this problems (Adeli, Yamini & Faraji, 2012; 

Siddiqa, Shahid, Gill, 2015).  

Qu et al. (2008) developed CNTs filled with Fe2O3 particles for removal heavy 

metal from aqueous solution. Meanwhile, Tang et al. (2012) reported magnetic CNTs 

as adsorbent for removal heavy metals of atrazine and Cu (II) from aqueous solution 

simultaneously. However, the method involved some modification and 

functionalization for production magnetic CNTs. The present methods for synthesizing 

magnetic CNTs have drawback such as expensive, time-consuming, environmentally 

friendly, fussy method and leading to a low yield (Wright et al., 2012; Bollen et al., 

2016; Liu et al., 2010). Hence, the introduction of metal catalyst by TCVD method was 

the simple technique in order to produced CNTs with filled metal nanoparticles as an 

adsorption of heavy metal ions in solution.   
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1.3 Problem Statement 

 

In the previous work, the CNTs from waste precursor namely WCPO (Suriani, Md Nor 

& Rusop, 2010; Suriani et al., 2015; Suriani et al., 2016), WEO (Suriani et al., 2015), 

WCF (Suriani et al., 2013; Suriani et al., 2016) and GO (Suriani, Dalila, Mohamed, 

Soga & Tanemura, 2015) have successfully synthesized. synthesis was carried out in a 

TCVD furnace. A wide range of synthesis parameters were optimized (Suriani et al, 

2015; Suriani, Md Nor & Rusop, 2010; Suriani et al., 2015; Suriani et al., 2013; Suriani, 

Dalila, Mohamed, Soga & Tanemura, 2015) to synthesize CNTs with desired 

characteristics. The effect of varying synthesis parameters was studied in detail by using 

electron microscopy, micro-Raman spectroscopy, and thermogravimetric analysis 

(TGA), among others. The CNTs produced from WCPO, WCF, WEO, and GO showed 

a high purity between 81–89% with good graphitization of 0.52–0.66 ID/IG ratio. The 

samples also demonstrated good field electron emission (FEE) characteristic (Suriani 

et al, 2015; Suriani, Md Nor & Rusop, 2010; Suriani et al., 2015; Suriani et al., 2013; 

Suriani, Dalila, Mohamed, Soga & Tanemura, 2015).  

 

The measured FEE properties from the cathodes of the CNTs structure achieved 

a current density range of a few mAcm-2 orders at reasonable fields; the attained range 

is suitable for application in flat panel displays and flat lamps (Hu et al., 2015; Madani 

et al., 2015). However the problem of the current TCVD system used for WCPO-based 

CNTs production was low/batch-by-batch CNTs production because of non-continuous 

supply of both catalyst and carbon feedstock. The existing furnace can produce only a 

maximum of 19.7 g of CNT in a day with a maximum furnace input of 45 ml oil (Suriani 

at al., 2009; Suriani, Md Nor & Rusop, 2010; Suriani et al., 2015; Suriani et al., 2013; 
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Suriani, Dalila, Mohamed, Soga & Tanemura, 2015). To achieve high-volume CNTs 

production, the growth of CNTs needs to be repeated continuously; batch production is 

discouraged because of difficulty in controlling the quality of CNTs. 

 

Here, we report the first scaled-up prototype of a CNTs production system by 

utilizing WCPO as a carbon feedstock. In contrast to existing systems (Asli, Shamsudin, 

Suriani, Rusop & Saifollah, 2013; Suriani et al, 2015; Suriani, Md Nor & Rusop, 2010; 

Suriani et al., 2015; Suriani et al., 2013; Suriani, Dalila, Mohamed, Soga & Tanemura, 

2015), the modified TCVD system is equipped with a peristaltic sprayer to ensure a 

continuous supply of oil and catalyst to the furnace; this approach helps to prevent 

carbon source shortages and poisoning of individual catalysts because the catalyst is 

replenished constantly during the synthesis. The continuous addition of both oil and 

catalyst produces a large amount of CNTs for use at industrial level with a high carbon 

conversion rate (56%).  

 

Although the utilization of the sprayer, including medical nebulizer for fossil 

fuel-based CNTs (Yang et al., 2008), reportedly produces good-quality CNTs, the use 

of a sprayer for highly viscous precursors, such as WCPO, is challenging and requires 

a special nozzle. Our prototype is the first feeding system that uses a peristaltic sprayer 

to produce oil-based CNTs in bulk, and such CNTs are comparable to conventional 

CNTs products, with a high purity, minimal non-tubular carbon structures, and good 

crystallinity of loose CNTs powder. The first scaled-up prototype of a CNTs production 

system by utilizing WCPO as a carbon feedstock is economical and environmentally 

beneficial. The zero cost of WCPO reduced the price of 1 gram of CNTs from a range 

of USD 20–100 (Lu, Drzal, Worden & Lee, 2007) to USD 5, and the use of WCPO 
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offers a “green” alternative as a cheap and renewable raw material for industrial volume 

CNTs production.  

 

The bulk CNT produced through this work was then used as a nanofiller in 

natural rubber-latex (NRL) for the fabrication of CNT/NRL nanocomposite, and we 

demonstrate its potential use as an electrode material for supercapacitor devices. In 

addition, CNTs from waste i.e. WCPO has not been systematically studied as adsorbent 

material for removal heavy metal ions application. In this work, we reported the high 

production of CNTs by TCVD method using ferrocene as catalyst and WCPO as carbon 

source. We find that, the Fe nanoparticles encapsulated by CNTs tube, which indicate 

as good adsorbent material for removal heavy metal ions. This method were simple, 

economically and high yield production of CNTs as adsorbent material. 

 

 

1.4 Research Objectives 

 

i. To develop a scaled-up prototype of WCPO based-CNTs by using modified TCVD 

system assisted peristaltic sprayer.  

ii. To optimize the structure properties of WCPO based-CNTs by modified TCVD 

system.  

iii. To investigate the growth mechanism of WCPO based-CNTs using modified 

TCVD system. 

iv. To investigate the potential application of WCPO based-CNTs for supercapacitor 

electrode and adsorbent materials. 
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1.5 Scope and Limitations of Study 

 

The synthesis of CNTs was done using WCPO as carbon precursor by modified TCVD 

system assisted peristaltic sprayer. Various synthesis parameters were optimized in 

order to produce WCPO based-CNTs with desired physical characteristics which 

includes the effect of temperature combination of vaporization and synthesis 

temperature (450-550 °C and 750-850 °C), the effect of time interval between spraying 

process (5-25 min), the effect of precursor flow rate (10-50 mLmin-1), the effect of post 

annealing treatment (range temperature: 400-600 °C; duration time: 2-6 h),  the effect 

of nozzle diameter (0.25 and 0.50 mm) and the effect of catalyst concentration (2.33 – 

7.99 wt%).  

 

For direct observation of nanotubes length, diameter size, degree of lateral 

alignment, shape and structure of WCPO based-CNTs, the field emission scanning 

electron microscopy (FESEM) and high-resolution transmission electron microscopy 

(HRTEM) were used. For element identification such as the presence of contaminants 

or catalyst in the specific region in the sample, it was determined using energy 

dispersive X-ray (EDX) while micro-Raman spectroscopy and TGA were used to study 

crystallinity and purity of the samples, respectively. Vibrating sample magnetometer 

(VSM) was used to determine the magnetization of the prepared sample. Fourier 

transform infrared spectroscopy (FTIR) and inductively coupled plasma – optical 

emission spectrometer (ICP-OES) was employed to investigate the physical and 

chemical properties of WCPO based-CNTs as an adsorbent material before and after 

adsorption process. Current-voltage (I-V), cyclic voltammetry (C-V) and charge 
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discharge (C-D) measurements were also conducted for electrical properties 

investigation and capacitance measurements for the supercapacitor application.  

 

 

1.6 Thesis Organization 

 

This thesis is written in five chapters. Chapter 1 is the introduction, background of 

study, research problems, objectives and scope and limitation of studies. A review of 

CNTs is discussed in Chapter 2. Its discovery, general CNTs material properties were 

explained and its physical structure was also described. The various carbon source, 

synthesis method, mass production and the growth mechanism of CNTs were also 

discussed. In concluding Chapter 2, some common characterization techniques used to 

investigate the CNTs structure and potential application for adsorption and 

supercapacitor application of CNTs were also explained in detail. The experimental 

work, the modification TCVD system and characterizations were presents in chapter 3. 

At the end of Chapter 3, the procedure of preparing the samples as an adsorbent material 

in adsorption of metal ions and nanocomposites in supercapacitor application were also 

discussed. The overall flow chart of the experimental work were presented. Chapter 4 

were discusses the results and findings of WCPO based-CNTs produced. In Chapter 4, 

the WCPO based-CNTs as an adsorbent materials in adsorption of metal ions and the 

fabrication of electrode from WCPO based-CNTs latex nanocomposite in 

supercapacitor application which were done on selected samples. Finally, the findings 

were summarized in Chapter 5 and some suggestions were also described for future 

work.
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