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ABSTRACT 
 
 
This study aimed to determine the response of cyanobacteria and macrophytes 
communities on selected nutrients in Slim River Lake ecosystem. The sampling was 
carried out twice a month at six sampling sites for 13 months for lake water and 12 
months for stormwater runoff. Lake water level was measured monthly to develop a 
bathymetric map. Total phosphorus and total nitrogen concentration in lake water and 
stormwater runoff were analyzed using ascorbic acid and hydrazine reduction methods, 
respectively. Internal nutrients loading was calculated during five identified dry 
periods, while external nutrients loading was calculated at every storm event. Total 
chlorophyll-a of all phytoplankton taxa, cyanobacteria biomass, cyanobacteria 
biovolume, and total macrophyte abundance were also measured throughout the 
sampling period. The result indicated that Slim River Lake has a mean depth of 3.84 m. 
In-lake total phosphorus and total nitrogen concentrations were found to be 
significantly correlated with internal total phosphorus (r=0.82, p<0.05) and total 
nitrogen (r=0.60, p<0.05) loading. Meanwhile, total chlorophyll-a, cyanobacteria 
biomass, and total cyanobacteria biovolume significantly correlated with internal total 
phosphorus loading. In contrast, total macrophyte abundance significantly correlated 
with external total phosphorus (r=0.50, p<0.05) and external total nitrogen (r=0.44, 
p<0.05) loading. Based on PCA model, internal nutrients loading is a primary 
contributor to the lake's eutrophication progression. In conclusion, sediment’s nutrient 
is a significant source of nutrient which mainly enhance the primary productivity in 
Slim River Lake. This research implicates that internal nutrients loading should be 
reduced to manage eutrophication problem in this lake. 
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RESPON SIANOBAKTERIA DAN KOMUNITI MAKROFIT KE ATAS 

NUTRIEN TERPILIH DALAM EKOSISTEM TASIK SLIM RIVER 

 

 

ABSTRAK 

 
 
Kajian ini bertujuan untuk menentukan respon sianobakteria dan komuniti makrofit ke 
atas nutrien terpilih dalam ekosistem Tasik Slim River. Persampelan dilakukan dua kali 
sebulan pada enam lokasi persampelan selama 13 bulan untuk air tasik dan 12 bulan 
untuk air larian hujan. Paras air tasik diukur setiap bulan untuk membangunkan peta 
batimetri. Kepekatan total fosforus dan total nitrogen dalam air tasik dan air larian hujan 
masing-masing dianalisis menggunakan kaedah asid askorbik dan penurunan hidrazin. 
Pemuatan nutrien dalaman dikira semasa lima tempoh kering yang telah dikenalpasti, 
manakala pemuatan nutrient luaran dikira pada setiap hari hujan. Total klorofil-a bagi 
kesemua taxa fitoplankton, biojisim sianobakteria, isipadu sianobakteria dan total 
kelimpahan makrofit juga diukur sepanjang tempoh persampelan. Hasil kajian 
menunjukkan Tasik Slim River mempunyai purata kedalaman 3.84 m. Kepekatan total 
fosforus dan total nitrogen dalam tasik didapati mempunyai kolerasi yang signifikan 
dengan pemuatan dalaman total fosforus (r=0.82, p<0.05) dan total nitrogen (r=0.60, 
p<0.05). Manakala, total klorofil-a, biojisim sianobakteria, dan isipadu total 
sianobakteria didapati mempunyai kolerasi yang signifikan dengan pemuatan total 
fosforus dalaman. Sebaliknya, total kelimpahan makrofit didapati mempunyai kolerasi 
yang signifikan dengan pemuatan total fosforus (r=0.50, p<0.05) dan total nitrogen 
(r=0.44, p<0.05) luaran. Berdasarkan model PCA, pemuatan nutrien dalaman adalah 
penyumbang utama kepada perkembangan eutrofikasi di tasik. Kesimpulannya, nutrien 
sedimen adalah sumber nutrien yang penting dalam meningkatkan produktivti utama 
dalam Tasik Slim River. Implikasi kajian ini menunjukkan pemuatan nutrien dalaman 
seharusnya dikurangkan bagi menguruskan masalah eutrofikasi di tasik ini. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

This chapter provides an overview of this research. This chapter discusses water 

quality issues, research background, problem statement, research objectives, research 

significance, and also research limitation.  

 

 

1.1 Water resources and quality in Malaysia 

 

Water is essential for humans; while also serve as a habitat for aquatic life species 

(Hossain & Mahmud, 2019). Among other vital functions, water acts as a universal 

solvent and involves in most physical or chemical reactions. Water bodies consist of 

rivers, lakes, ponds, reservoirs, groundwater, and coastal streams (Zakaria & Sharip, 

2007). In Malaysia, lakes and reservoirs contributed to almost 90% of the nation's 

water source (Hossain & Mahmud, 2019).  In recent years, water demand has 



2 
 

increased remarkably as population growth increases. This demand has resulted in the 

increment of water pollution (Bashar Bhuiyan et al., 2013). Water pollution is caused 

by either natural processes or man-made activities. The natural process of 

eutrophication is caused by lake aging across time, climate change, atmospheric 

deposition, or weathering rocks (Khatri & Tyagi, 2015). Along with that, 

urbanization, man-made activities such as deforestation for construction have 

worsened the situation as water bodies have been used as dumping sites or sewers that 

complicated their uses (Hossain & Mahmud, 2019; Rajendran, Rajan, Raja, Prathipa, 

& Dheenadayalan, 2015).   

 

Water pollutants can be classified into various categories, including physical, 

inorganic, organic compounds, biological, and radiological. Physical pollutants refer 

to turbidity, suspended solids, or temperature. Meanwhile, an organic and inorganic 

compound such as oil and grease, detergent, coal, heavy metal, cyanide, and others is 

also one of the pollutants found in lakes. Additionally, biological pollutants such as 

viruses or bacteria and radiological pollutants like uranium might affect the water 

quality in lakes (Teow, Mohamad, Ramli, Sajab, & Mohamad Mazuki, 2018).  

 

The increasing pollutants load into water bodies causes continuous 

degradation to its quality (Sharip, Zaki, Shapai, Suratman, & Shaaban, 2014). 

Focusing on the lake ecosystem, excessive pollutants could develop a toxic algae 

bloom, fishes death, excessive growth of macrophytes, and interfered with the water 

supply as well as economic losses (Du et al., 2019; Tibebe, Kassa, Melaku, & Lakew, 

2019). 
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Therefore, water quality needs to be monitored from time to time to ensure the 

safety of the domestic water supply (Chan, Lee, & Zakaria, 2016). Besides, good 

water quality in various aquatic ecosystems will ensure optimum species survival 

(Naubi, Zardari, Shirazi, Ibrahim, & Baloo, 2016). In Malaysia, water quality 

monitoring is carried out by the Department of Environment (DOE) and the 

Engineering Services Division of the Ministry of Health. Water Quality Index (WQI) 

has been used as a reference to measure water quality. Water samples are collected at 

monitoring stations and analyzed to determine their physicochemical and biological 

features. The water quality is assessed based on parameters including dissolved 

oxygen, pH, temperature, suspended solids, nutrients, heavy metal, alkalinity, or 

electrical conductivity. These parameters gave a different range, which determines 

water quality status. Specifically, to the lake ecosystem, its water quality can be 

classified as oligotrophic, mesotrophic, or eutrophic based on physicochemical and 

biological features (Bhateria & Jain, 2016; Gorde & Jadhav, 2013). 

 

Hence, to protect the water bodies, the primary cause of water pollution should 

be well understood. The mechanisms leading to water pollution and its associated 

ecosystem responses should be assessed on a local basis due to its site-specific nature 

(Sinang, Reichwaldt, & Ghadouani, 2015). Upon understanding the mechanisms, any 

suitable treatment or solution can be discussed and implemented to lessen the water 

pollution issues.  
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1.2 Research background 

 

Lakes are one of the most crucial water resources provide a support system for the 

ecosystem and human beings. Lakes are also common in use for various recreational 

activities such as kayaking and swimming (Zakaria & Sharip, 2007). In Malaysia, 

there are three natural lakes known as Chini lake, Kenyir lake, and Bera lake, and 

around 73 man-made lakes. These lakes engage with their own functional for 

maintaining a dynamic ecosystem (Sharip & Zakaria, 2008). Lakes or reservoirs 

function as water supply, hydroelectricity sites, flood mitigation, aquaculture, and 

eco-tourism (Sharip, Zaki, Shapai, Suratman, & Shaaban, 2014). Anthropogenic and 

natural influences, climate, geological factors, and hydrological factors have been 

reported as recognized factors in affecting lake water quality (Low et al., 2016). 

 

To date, eutrophication is a global problem that continuously deteriorates 

lakes' water quality (Du et al., 2019; Withers, Neal, Jarvie, & Doody, 2014). 

Eutrophication can be interpreted as the excessive growth of algae biomass and 

aquatic plants due to the enrichment of nutrients (Ansari & Gill, 2014; Frumin & 

Gildeeva, 2014; Lewis, 2011; Smith, Wood, McBride, Atalah, & Hamilton, 2016). 

Sharip and Zakaria (2008) had reported that around 60% of 90 lakes in Malaysia are 

experiencing eutrophication.  

 

 Eutrophication devalues the water quality in terms of pH, dissolved oxygen, 

turbidity, odor, or taste (Frumin & Gildeeva, 2014). Chlorophyll-a, total phosphorus, 

and total nitrogen are critical indicator in evaluating eutrophication levels in lake 

ecosystems (Du et al., 2019).  As eutrophication has become a global interest, further 
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clarification of mechanisms involved in eutrophication progression is needed. The 

sources or determinants for eutrophication might differ between lakes, and this has 

become the crucial element in determining the trophic state of the lake (Najib, Ismail, 

& Omar, 2017; Sharip & Zakaria, 2008). 

 

 Water quality in lakes is influenced by external input into the lake, nutrient 

cycling, and internal loading (Yuk, Shin, Khia, & Teang, 2015). Nutrients are known 

as an accelerator for eutrophication (Ansari & Gill, 2014). Nitrogen (N) and 

phosphorus (P) are the main elements that contribute to eutrophication (Ansari & Gill, 

2014; Dodds & Smith, 2016). In fact, some studies have suggested that phosphorus by 

itself is the leading cause of eutrophication (Kane, Conroy, Richards, Baker, & 

Culver, 2014; Schindler, Carpenter, Chapra, Hecky, & Orihel, 2016). Phosphorus is 

the limiting factor for eutrophication and significantly increases phytoplankton 

growth (Carpenter et al., 1998; Xu et al., 2015). Phosphorus is a fundamental nutrient 

that needs to be controlled to reduce eutrophication as it can be found naturally or 

artificially (especially in agriculture) (Lee, 1973). Phosphorus enters the lake either in 

organic or inorganic forms. In a lake, phosphorus can be categorized into dissolved 

inorganic phosphorus (DIP), dissolved organic phosphorus (DOP), particulate 

inorganic phosphorus (PIP), and particulate organic phosphorus (POP) (Ready, 

Kadlec, Flaig, & Gale, 1999). 

 

Previous research has established that other than phosphorus, nitrogen also 

plays a crucial role in eutrophication (Jiang et al., 2016; Monchamp, Pick, Beisner, & 

Maranger, 2014; Rabalais, 2002). The high solubility of mineral nitrogen entered the 

lake more than molecules or organic forms of nitrogen (Zieliński, Dunalska, 
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Grochowska, Bigaj, & Szymański, 2013). High nitrogen concentration in lakes caused 

by nitrogen retention, which is determined by three factors known as denitrification, 

sedimentation, and uptake by aquatic plants (Saunders & Kalff, 2001). Lakes that are 

sensitive to excessive nitrogen due to the nitrogen cycle gave an insight that there is a 

need for combined phosphorus and nitrogen removal management (Paerl et al., 2016). 

 

Nutrient input into lakes arises from two distinct external pollution sources, 

point and non-point sources. For example, point sources may include industrial waste, 

while non-point sources include surface runoff from agriculture or residential areas 

(Ashraf, Maah, & Yusoff, 2010). Point sources are manageable. In contrast, non-point 

sources elicit more significant areas and difficult to control (Carpenter et al., 1998).  

 

In addition to the inputs from external sources, phosphorus, and nitrogen input 

into the lake ecosystems can also be described in terms of internal loading. Internal 

loading of phosphorus originates from lake sediments (Pettersson, 1998; Zhang, Liu, 

& Lu, 2015). Internal phosphorus loading is different in a deep lake and shallow lake. 

In a deep lake, lake stratification influences the release of phosphorus compared to the 

shallow lake, where sediment and water are fused regularly (Johnson, 2010). 

 

Figure 1.1 presents an overview of the internal and external nutrients loading 

into a lake ecosystem. Phosphorus and nitrogen enter the lake and remain in sediment. 

Then, the dissolved phosphorus returns to the water column via various mechanisms 

(Søndergaard, Jensen, & Jeppesen, 2003). Ekholm, Malve, and Kirkkala (1997) 

outlined that the internal loading of phosphorus dispensation due to anoxia and 

flowing of the organic and inorganic bottom sediments. Distinctive mechanism of 
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phosphorus released into the water column includes resuspension, temperature, redox, 

pH, iron-phosphorus ratio, chemical diffusion and bioturbation, mineralization and 

microbial processes, and submerged macrophytes (Søndergaard et al., 2003). 

Meanwhile, nitrogen enters lakes in the form of ammonia or nitrate, which can be 

released back into the water column from sediment (Zhang, Wang, & Wu, 2014).  

 

 

 

Figure 1.1. Sources of internal and external nutrients loading in lake’s ecosystem. 
Adapted from Xia et al. (2018) and Ready et al. (1999) 

 

External phosphorus and nitrogen loading due to human activities are known 

as the primary cause of increasing eutrophication worldwide (Fastner et al., 2016; Shi 

et al., 2019). Smith, Wood, McBride, Atalah, and Hamilton (2016) agreed that human 

activities enhance the input of phosphorus, causing eutrophication and inflate the algal 

growth. Likewise, various nitrogen sources include domestic and industrial sewage 

discharge, atmospheric deposition, livestock manure, fertilization, and soil nitrogen 
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mineralization, are known to affect water quality (Zhang et al., 2018). Particularly, 

internal and external phosphorus and nitrogen loading in the lake bring an impact on 

the lake's ecosystem. 

 

 Since 1960, aquatic organisms, biomass, and community structure changes 

due to the elevation of phosphorus and nitrogen in lakes (Köhler et al., 2005). Even in 

low nutrient levels, a high abundance of cyanobacteria biomass can be detected. This 

is due to the fact that some cyanobacterial physiology is capable of altering nutrient 

cycling in the lake (Cottingham, Ewing, Greer, Carey, & Weathers, 2015). Anoxia 

and high water turbidity are also common symptoms of lake eutrophication (Schindler 

et al., 2008).  

 

In conclusion, phosphorus and nitrogen inputs either from external 

anthropogenic sources or internal sediment release can lead to eutrophication 

progression in lakes (Schindler et al., 2016). In-line with the growing concern of lake 

eutrophication, further studies on the influence of internal and external phosphorus 

and nitrogen loading on eutrophication progression are needed for more sustainable 

lake protection. 

 

 

1.3 Problem statement 

 

Eutrophication has been the subject of recent investigations as it is considered a 

significant threat to the vital sources of water (Mir, Sahid, Gasim, & Rahim, 2015; 

Sharip & Zakaria, 2008).  Waste from municipal and industries, sewage treatment 
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plants, animal farms, and agriculture are the rising factors recognized as significant 

water pollution sources in Malaysia (Daud, Abdulrahman, & Idrus, 2016; Mir et al., 

2015). These anthropogenic activities are known to cause eutrophication  (Schindler 

et al. 2016) due to their abundant phosphorus and nitrogen content (Brase, Sanders, & 

Dähnke, 2018; Wu, Wu, Liang, Liu, & Wang, 2018). 

 

Phosphorus retains either in organic or inorganic forms through physical, 

chemical, and biological processes in lakes (Reddy, Newman, Osborne, White, & 

Fitz, 2011). Phosphorus enrichment enhances the primary productivity in lakes (Smith 

et al., 2016). Soluble reactive phosphorus from sediments has also been identified to 

stimulate primary productivity (Roy, Nguyen, Bargu, & White, 2012). For example, 

phytoplankton biomass is influenced by nutrient accumulation in lakes (Dubourg et 

al., 2015). However, environmental factors, such as turbidity and light influence 

primary productivity (Tse et al., 2015). Apart from phosphorus, nitrogen is also 

involved in contributing to eutrophication in water bodies. Nitrogen from agriculture, 

land clearing activities, anoxic conditions of the lakes, and organisms’ decay raise the 

nitrogen concentration in lakes (Suratman, Bedurus, & Seng, 2017).  

 

To date, many studies had been carried out to investigate the role of 

phosphorus, nitrogen, and its abatement in controlling the lake's eutrophication. It is 

generally accepted that reducing phosphorus concentration in the lake would reverse 

the eutrophication process (Schindler,2012). Moreover, Wu et al. (2018) and 

Woodland et al. (2015) highlighted that reducing external phosphorus and nitrogen 

inputs is the prevalent practice in controlling eutrophication. Even so, the dynamics of 

different phosphorus and nitrogen inputs as either internal or external in regulating the 
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eutrophication symptoms remain widely unexplored. Kane et al. (2014) had described 

that there is a lack of information on the patterns of external and internal phosphorus 

loading and how the lakes respond to the loads from different sources. In addition, 

reducing eutrophication becomes complicated as the continuous release of phosphorus 

from sediments throughout the year (North et al., 2015). Likewise,  nitrogen content 

from fertilizer brings high risk in lake water quality, and reducing internal and 

external nitrogen input from different sources might mitigate the lake from becoming 

more eutrophic (Gao et al., 2019). Therefore, it shows that there is less understanding 

of the phosphorus and nitrogen cycle that regulates eutrophication in lakes. 

 

Moreover, climate changes play as one influential factor that will likely 

increase the internal and external phosphorus and nitrogen loading by rising sediment 

oxygen demand and phosphorus or nitrogen release (Nürnberg, LaZerte, Loh, & 

Molot, 2013; Qiu, Huang, Zeng, & Zhou, 2019;  Xia et al., 2016).  However, the 

effect depends on the lake and seasons (Wagner & Erickson, 2017). Sinha, Michalak, 

and Balaji (2017) highlighted that precipitation would play an essential factor in 

determining eutrophication status in lakes as high precipitation increases runoff that 

transports nutrients into lakes (Wagner & Erickson, 2017). Therefore, eutrophication 

also depends on climate change, which varies between regions that can positively or 

negatively impact the lake's ecosystem (Ventelä et al., 2011). 

 

On the other hand, nutrient loading might react with another site-specific 

response, thus produces different in-lake responses (Sinang et al., 2015). Lake 

morphometry can also significantly influence lake water quality (Noges, 2009). It was 

suggested that low water levels might worsen the eutrophication condition in a lake 
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(Sharip, Yusoff, & Jamin, 2018). The variability in climatic conditions or lake water 

depths influences the phosphorus and nitrogen retention in lakes, which is 

proportionally related to high nutrient inputs (Barbosa, Bellotto, Silva, & Lima, 

2019). Yet, fewer studies that have focused on the impact of water level on 

eutrophication (Robertson, Juckem, Dantoin, & Winslow, 2018). Therefore, it is 

crucial to investigate a relationship of nutrient loading with eutrophication symptoms 

and progression on site-specific basis, as the lake's water quality varies based on their 

climate, local geology, and land use (Ashraf, Maah, & Yusoff, 2012). 

 

To date, the eutrophication model focused only on the nutrients and 

phytoplankton, which likely limits the understanding of eutrophication. More 

complex predictive models, especially between internal and external nutrients loading 

on eutrophication progression, are needed to understand and manage the 

eutrophication process (Hellweger, 2017; Sharip et al., 2016; Vinçon-Leite & 

Casenave, 2019). Also, about 60% of lakes in Malaysia were eutrophic (Sharip et al., 

2014). Since eutrophication is generally critical in Malaysia, a deep understanding of 

nutrient loading, especially phosphorus and nitrogen, need to be further investigated. 

Lake morphology will also be highlighted as only a few studies discussed this, 

although it is vital to understand lake water quality status (Fazli et al., 2016). In this 

study, Slim River Lake was chosen as a sampling site to explore and understand the 

role of different phosphorus and nitrogen input in regulating eutrophication symptoms 

and progression. Moreover, this study also investigate the connection between 

cyanobacteria and macrophyte growth to variations in phosphorus and nitrogen 

loading patterns into the lakes. Model development in this study potentially brings 
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additional knowledge to understand eutrophication progression in a shallow 

freshwater lake. 

  

 

1.4 Research objectives  

 

Five objectives were identified to investigate the role of phosphorus and nitrogen as 

the pollutants that contribute to cyanobacteria and macrophyte growth in Slim River 

lake. In more specific, this study aims to: 

 

1. Establish the hydro morphology profiles for Slim River Lake. 

2. Determine temporal variations of water physicochemical properties for Slim 

River Lake. 

3.  Analyze the correlation between different nutrient loads and in-lake total 

phosphorus and in-lake total nitrogen levels. 

4. Measure the effect of different nutrient loading on cyanobacteria biomass, 

cyanobacteria community structure, and total macrophyte abundance. 

5. Develop a PCA model for eutrophication progression forecast based on 

nutrient loading patterns and water column physicochemical properties. 

 

The question of concern in this study is: 

 

1. What are the hydro morphology profiles of Slim River Lake? 

2. What are temporal variations of water physicochemical properties in the Slim 

River Lake? 
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3. How does internal or external nutrients loading correlate with in-lake total 

phosphorus and in-lake total nitrogen levels?  

4. How does internal and external nutrients loading affects cyanobacteria 

biomass, cyanobacteria community structure, and total macrophyte 

abundance? 

5. How the progression of eutrophication can be forecasted based on nutrients 

loading patterns and water column physicochemical properties? 

 

The hypotheses of this study include: 

 

1. The variability of in-lake total phosphorus and in-lake total nitrogen loading is 

influenced by either internal or external total phosphorus and total nitrogen 

loading. 

2. Fluxes of internal and external nutrients loading promote the rapid 

cyanobacteria growth and cyanobacteria dominance and increase total 

macrophyte abundance. 

 

 

1.5 Significance of the study 

 

This study is essential to understand the role of phosphorus and nitrogen in the 

eutrophication process. In this present study, the internal and external loading of 

phosphorus and nitrogen are the critical factor in investigating eutrophication in the 

lake. This study added to the body of knowledge in understanding eutrophication 

progression in an urban shallow lake ecosystem, especially phosphorus and nitrogen 
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from the lake's sediment and stormwater runoff. In addition, this study developed a 

model to explained the role of internal and external nutrients loading in regulating 

eutrophication indicators in the Slim River Lake. In conclusion, the lack of knowledge 

on the lake's responses to different phosphorus and nitrogen loading sparks an interest 

in exploring how this phosphorus and nitrogen input leads to eutrophication.  With 

this knowledge, accessible treatment to restore lakes from eutrophication can be 

taken. Any suitable treatment will help improve water quality so that there is no effect 

on humans' health and the ecosystem. 

 

 

1.6 Limitation of the study 

 

This study highlighted several limitations. Firstly, the sampling area is only limited to 

Slim River lake with 13 months sampling duration. Slim River Lake is chosen as this 

lake is surrounded by different land uses. This lake is also a popular spot for various 

recreational activities among the local communities. Furthermore, this lake had been 

reported to have high algal bloom in the previous studies. Secondly, this study solely 

focused on the internal and external loading of phosphorus and nitrogen in Slim River 

lake. Phosphorus and nitrogen are only quantified as total phosphorus and total 

nitrogen. Thirdly,  this study only highlighted the primary producers such as 

cyanobacteria and macrophyte as eutrophication symptoms. 

 

 

 




