

A TAXONOMIC AND MORPHOLOGICAL STUDY OF CYPERACEAE

PATMAH ZAHRAH BINTI MUSA

THESIS SUBMITTED IN FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER OF SCIENCE (BIOLOGY) (MASTER BY RESEARCH)

FACULTY OF SCIENCE AND MATHEMATICS UNIVERSITI PENDIDIKAN SULTAN IDRIS

2015

ABSTRACT

This study aimed to investigate the taxonomic characteristics based micromorphology and macromorphology of Cyperaceae species and to build the taxonomic key based on these characteristics. The research method involved the use of light and electron microscopy. Sampling was carried out in four areas of Tanjong Malim, Ipoh, Kuala Kangsar and Gerik covering different ecology of open areas, wetlands and limestone. The findings showed that four out of the thirteen studied species; Cyperus compactus, C. compressus, C. iria, and C. kyllingia are common species found in all studied areas. Cyperus sphacelatus is limited to Gunung Lang, Ipoh while C. pulcherrimus often found in Pulau Banding, Gerik. This study showed the diagnostic characteristics of flower and spikelet is in agreement with the classification of Koyama, Eiten, Dahlgren, Tucker, Bruhl and Goetghebeur. Its diagnostic macromorphological characters have successfully been applied for developing the taxonomic key of Cyperaceae. The findings also revealed the micromorphological characters of exine and cuticular ornamentation of spikelet can be used as supportive diagnostic evidence in identification of the species. Multivariate phylogenetic analyses using 30 of both macromorphological micromorphological characters showed that there is a close evolutionary relationship between species of Cyperus, Bulbostylis and Fimbristylis. The phylogenetic tree demonstrated a close evolutionary relationship with high bootstrap values for C. compressus and C. sphacelatus, moderate for C. kyllingia and C. rotundus, while the rest are weak As a conclusion or this astudy has successfully manipulated both macromorphological and micromorphological characters in identification of Cyperaceae and a taxonomic key based on macromorphology has successfully constructed. This key can benefit the researchers to systematically identify the species of Cyperaceae especially in Malaysia.

PENELITIAN MORFOLOGI DAN PEMBINAAN KEKUNCI TAKSONOMI CYPERACEAE

ABSTRAK

Kajian ini adalah untuk meneliti ciri taksonomi makromorfologi dan mikromorfologi

spesies Cyperaceae dan untuk membina kekunci taksonomi berdasarkan ciri tersebut. Kaedah penelitian melibatkan penggunaan mikroskop cahaya dan elektron. Persampelan dilakukan di empat kawasan iaitu Tanjong Malim, Ipoh, Kuala Kangsar dan Gerik yang meliputi ekologi berbeza iaitu kawasan terbuka, kawasan tanah bencah dan batu kapur. Dapatan kajian menunjukkan di antara tiga belas spesies yang dikaji, Cyperus compactus, C. compressus, C. iria, dan C. kyllingia merupakan spesies lazim yang dijumpai di semua kawasan kajian. Cyperus sphacelatus dijumpai terhad di Gunung Lang, Ipoh manakala C. pulcherrimus banyak dijumpai di Pulau Banding, Gerik. Kajian ini menunjukkan ciri-ciri diagnosis pada spikelet dan bunga adalah selari dengan pengelasan oleh Koyama, Eiten, Dahlgren, Tucker, Bruhl dan Goetghebeur. Ciri diagnosis makromorfologi telah berjaya dijadikan kekunci taksonomi. Dapatan juga telah menemui ciri mikromorfologi eksin dan hiasan kutikel pada spikelet boleh digunakan sebagai ciri diagnosis sokongan dalam pengecaman Analisis multivariat dan filogenetik dengan menggunakan 30 ciri spesies. makromorfologi dan mikromorfologi menunjukkan bahawa terdapat hubungan evolusi yang rapat antara spesies Cyperus, Bulbostylis dan Fimbristylis. Pohon genetik menunjukkan hubungan evolusi yang rapat dengan nilai *bootstrap* yang kuat di antara C. compressus dan C. sphacelatus, manakala C. kyllingia dan C. rotundus mempunyai hubungan yang sederhana. Spesies lain menunjukkan hubungan evolusi yang lemah. Kesimpulannya, kajian ini telah berjaya menggandingkan ciri makromorfologi dan mikromorfologi dalam pengecaman Cyperaceae dan kekunci taksonomi berdasarkan makromorfologi telah berjaya dibina. Kekunci ini dapat dimanfaatkan oleh para pengkaji untuk mengecam spesies Cyperaceae dengan lebih sistematik terutamanya di Malaysia.

TABLE OF CONTENTS

	Page
DECLARATION	i
ACKNOWLEDGEMENTS	iii
ABSTRACT	iv
ABSTRAK	V
TABLE OF CONTENTS	vi
LIST OF TABLES	X
LIST OF FIGURES	xi
CHAPTER 1 INTRODUCTION	
05-4506832 P4s The troduction Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah	ptbups
1.2 Background of the Study	6
1.3 Problem Statements	8
1.4 Research Objectives	10
1.5 Research Questions	10
1.6 Significance of the Study	11
1.7 Research Frameworks	12
CHAPTER 2 LITERATURE REVIEW	
2.1 Introduction	15
2.2 Habitat and Distribution of Sedges	20
2.3 Taxonomic History of Tribe Cypereae	21

05-4506832	pustaka.upsi.edu.my Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah PustakaTBainun	O ptbupsi		
		Page		
	2.4 Phylogeny, Character Homology Assessment and Generic Circumscription	22		
	2.5 Inflorescence Morphology in <i>Cyperus</i>	27		
	2.6 Floral Morphology and Development in <i>Cyperus</i>	29		
	2.7 Subfamily Relationships	30		
	2.8 Economic, Ecological and Cultural Value	34		
CHAPT	TER 3 MATERIALS AND METHODS			
	3.1 Introduction	37		
	3.2 Collection, Preservation and Identification	41		
	3.3 Macromorphological Study	42		
05-4506832	3.4 Micromorphological Study pustaka.upsi.edu.my f Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah 3.5 Morphological Phenetic and Phylogenetic	45 ptbupsi		
	3.5.1 Introduction	45		
	3.5.2 Numerical Analysis	46		
	3.5.3 Phylogenetic Analysis	49		
	3.5.4 Taxa and Characters	5(
СНАРТ	TER 4 RESULTS			
	4.1 Introduction	54		
	4.2 Diversity and Distribution of Cyperaceae	55		
4.3 Map of Diversity and Distribution of Cyperaceae in Sampling Areas				

4.4 Key to the Genera of Cyperaceae

62

05-4506832	pustaka.upsi.edu.my Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah PustakaTBainun	ptbupsi
		Page
	4.5 Key to the Species of <i>Cyperus</i>	62
	4.6 Description of the Cyperaceae	64
	4.7 Description of Species	
	4.7.1 Bulbostylis barbata (Rottb.) C.B. Clarke	66
	4.7.2 Cyperus compactus Retz.	70
	4.7.3 Cyperus compressus L.	74
	4.7.4 Cyperus digitatus Roxb.	78
	4.7.5 Cyperus distans L.	82
	4.7.6 Cyperus iria L.	86
	4.7.7 Cyperus kyllingia Endl.	90
	4.7.8 Cyperus pilosus Vahl	94
05-4506832	puz 1999 Cyperus pulcherrimus aWild Jexa Kunth Pustaka TBainun	ptbu 9 8
	4.7.10 Cyperus rotundus L.	102
	4.7.11 Cyperus sphacelatus Rottb.	107
	4.7.12 Fimbristylis dichotoma (L.) Vahl	111
	4.7.13. Fimbristylis miliacea (L.) Vahl	115
	4.8 Spikelet Structure	119
	4.9 Pollen Grains Exine	123
	4.10 Cuticular Ornamentation of Spikelets	126
	4.11 Character Scoring	129
	4.12 Numerical Analysis	130
	4.13 Phylogenetic Analysis	131

Page

CHAPTER 5	DISCUSSION, CONCLUSION AN	D
	RECOMMENDATIONS	

5.1 Introduction	136
5.2 The Diversity of Cyperaceae	137
5.3 The Best Characterstics Used to Identify Cyperaceae	
5.3.1 Macromorphological Characters	139
5.3.2 Micromorphological Characters	
5.3.2.1 Pollen Exine	144
5.3.2.2 Cuticle Ornamentation	145
5.4 Morphological Phenetics and Phylogenetics	
5.4.1 Numerical Analysis	146
7 4 0 DI 1	1.47

147 ptbupsi

148

5.6 Recommendation 149

REFERENCES 150

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

APPENDIX F

APPENDIX G

APPENDIX H

LIST OF TABLES

No. of Table		
3.1	List of Species and Their Systematic Position	40
3.2	Frequency of Matches and Mismatches of the Presence and Absence of a Single Variable	47
4.1	Distribution of Cyperaceae Species Based on Genus Affiliation and Weed Type in Selected Areas of Tanjong Malim, Gunung Lang (Ipoh), Pulau Banding (Gerik) and Chenderoh Lake	56
4.2	Abundance of Sedge Species Based on Genus Affiliation and Weed Type in Selected Place, Tanjong Malim, Gunung Lang (Ipoh), Pulau Banding (Gerik), and Chenderoh Lake	61
4.3	The Type of Pollen Grains Exine	125
4.4	The Type of Cuticular Ornamentation of Spikelets	128
pusta	rka.upsi.edu.my	ptbupsi

LIST OF FIGURES

	List of Fig	gure	Page
	1.1	Research Framework	12
	2.1	Maximum parsimony strict consensus tree of Cypereae based on heuristic analysis of plastid DNA sequence data	24
	2.2	Maximum parsimony strict consensus tree of Cyperaceae, showing the outgroup and Cyperaceae tribes Hypolytreae (<i>Hy</i>), Chrysitricheae (<i>Ch</i>), Trilepideae (<i>Tr</i>), Schoeneae (<i>Sc</i>), Sclerieae (<i>Scl</i>), Bisboeckelereae (<i>Bi</i>) and Cryptangieae	33
	4.1	Pulau Banding, Gerik area of sampling	57
	4.2	Gunung Lang, Ipoh area of sampling	58
	4.3	Tanjong Malim area of sampling	59
05-45068	32 4. pust	aka Chenderoh Lake e Penggong area of sampling ustaka TBainun	ptb.60
	4.5	Bulbostylis barbata	68
	4.6	Bulbostylis barbata (illustration)	69
	4.7	Cyperus compactus	72
	4.8	Cyperus compactus (illustration)	73
	4.9	Cyperus compressus	76
	4.10	Cyperus compressus (illustration)	77
	4.11	Cyperus digitatus	80
	4.12	Cyperus digitatus (illustration)	81
	4.13	Cyperus distans	84
	4.14	Cyperus distans (illustration)	85
	4.15	Cyperus iria	88

			Page
4.	.16	Cyperus iria (illustration)	89
4.	.17	Cyperus kyllingia	92
4.	.18	Cyperus kyllingia (illustration)	93
4.	.19	Cyperus pilosus	96
4.	.20	Cyperus pilosus (illustration)	97
4.	.21	Cyperus pulcherrimus	100
4.	.22	Cyperus pulcherrimus (illustration)	101
4.	.23	Cyperus rotundus	105
4.	.24	Cyperus rotundus (illustration)	106
4.	.25	Cyperus sphacelatus	109
4.	.26	Cyperus sphacelatus (illustration)	110
05-4506832 4.	27 pustaka	Fimbristylis dichotomaan Tuanku Bainun nupsi.edu.my I Kampus Sultan Abdul Jalil Shah	113 ptbupsi
4.	.28	Fimbristylis dichotoma (illustration)	114
4.	.29	Fimbristylis miliacea	117
4.	.30	Fimbristylis miliacea (illustration)	118
4.	.31	Spikelet structure	121
4.	.32	Spikelet structure	122
4.	.33	SEM micrographs of pollen grains exine	123
4.	.34	SEM micrographs of pollen grains exine	124
4.	.35	SEM micrographs of pollen grains exine	125
4.	.36	SEM micrographs of cuticular ornamentation of spikelets	126
4.	37	SEM micrographs of cuticular ornamentation of spikelets	127
4.	38	SEM micrographs of cuticular ornamentation of spikelets	128

		Page
4.39	Dendrogram based on UPGMA for morphological characters of Cyperaceae	131
4.40	A cladogram of parsimonious trees based on morphological characters	133
4.41	Neighbour-joining tree based on morphological characters	135

CHAPTER 1

INTRODUCTION

1.1 Introduction

Cyperaceae Juss., the third largest monocotyly comprises postaka. Upstaka. Upstaka.

Cyperaceae are well represented in temperate, sub-arctic, and especially tropical regions worldwide from sea-level to over 5000 m (absent from Antartica). The family has several very large cosmopolitan genera including Carex L. (ca. 2000 spp.) and Cyperus L. (ca. 600 spp.; Goetgthebeur, 1998). Genus Fimbristylis (L.) Vahl is the fourth largest genus within the Cyperaceae, having 306 species including several homogenous subunits (Bruhl, 1995; Wilson, 2007) distributed worldwide in tropical and temperate zones. While Bailey (1963) stated that most species occur in mesic to hydric habitats, though the family is represented in almost all terrestrial environments and abundant in swampy regions. These species are widely distributed, with the centers of diversity for the group occurring in tropical Asia and tropical South America (Reznicek, 2012). A large family found in all parts of the world, usually in damp, wet places, and very common weeds of rice-field in Malaysia (Henderson,

Goetghebeur (1998) organized the family into four subfamilies and 14 tribes based on a combination of characters from flower, inflorescence and embryo morphology. Goetghebeur's (1998) scheme is as follows with subfamilies followed by their respective tribes parenthetically: 1. Mapanioideae (Hypolytreae, Chrysitricheae); 2. Cyperoideae (Scirpeae, Fuireneae, Eleocharideae, Abildgaardieae, Cypereae, Dulichieae, Schoeneae); 3. Scleriodeae (Cryptangieae, Trilepideae, Sclerieae, Bisboeckelereae, two monotypic genera Incertasedis including Exochogyne and Koyamaea; and 4. Caricoideae (Cariceae).

However, Kern (1974) organized the family into two subfamilies and five tribes 1. Subfamily Cyperoideae: i. Tribe Hypolytreae (Scirpodendron, Capitularina, Perpustakaan Tuanku Bainun

Lepironia, Thoracostachyum, Mapania, Paramapania, Hypolytrum; ii. Tribe Cypereae: (Scirpus, Fuirena, Lipocarpha, Eleocharis, Bulbostylis, Fimbristylis, Cyperus; iii. Tribe Rhynchosporeae: (Tetraria, Costularia, Carpha, Lepidosperma, Tricostularia, Schoenus, Oreobolus, Cladium, Machaerina, Gahnia, Rhynchospora: 2. Subfamily Caricoideae: iv. Tribe Sclerieae: (Scleria) v. Tribe Cariceae: Kobresia, Carex, Uncinia.

The family is closely related to the Gramineae or Poaceae, from which it differs in the often 3-ranked leaves, solid stems, the absence of pallets and of regular empty glumes, and the presence, in most cases, of a perianth and 3 carpels (Bailey, 1963). However, they differ in many characteristics, particularly in the structure of the inflorescence. Along with the similarities to grasses there are many features that

obtaining uish sedges (such as usually leaves arranged in threes, and usually a solid stem that is triangular in cross section, and usually a conspicuously bracteate inflorescence), but they are not all observable with the naked eye (Archer, 2000).

The basic inflorescence unit in Cyperaceae is a spikelet. Eiten (1976) described the cyperaceous spikelet as a racemosely branched structure consisting of an axis (rachilla) of potentially indefinite growth bearing lateral true flowers, each subtended by a floral scale. Indeed, the branching pattern or ultimate branching orders of the inflorescence are important characters used to divide the family into subfamilies, tribes, and sub-tribes (Holttum, 1948; Eiten, 1976). Spikelet and inflorescence structure, together with other evidence, forms the basis for classification within the family (Archer, 2000). Because the spikelet is very small and the inflorescence structure very complex, interpretation is difficult and there is still

controversy over recognition of subfamilies, tribes and genera (Archer, 2000). Most novice cyperologists must first familiarize themselves with myriad inflorescence and spikelet arrangement of the family in their flora before attempting the use of diagnostic key, and before accurate identifications can be made. This task is complicated by the extremely contracted inflorescences and reduced floral parts. The family, though well defined, comprises many taxonomically challenging taxa.

Over the past 15 years, suprageneric relationships in Cyperaceae have been evaluated using both morphological and molecular data. Using phylogenies inferred from morphological data, Goetghebeur (1998) classified the family into four subfamilies and 15 or 17 tribes whereas Bruhl (1995) classified the family into two subfamilies and 12 tribes. Both workers recognized the same number of genera in the offamily but differed in their interpretation. And but homologies in stronger morphological characters, especially in the flower and spikelets. A phylogeny based on DNA sequence data of 40 genera in Cyperaceae (Muasya et al., 1998) showed some incongruence with both classifications. The placement of the juncaceous genus *Oxychloe* has been questioned.

The family has considerable economic importance; many members are serious agricultural weeds, whereas others provide food, fuel and medicines together with construction, weaving, and perfumery materials (Simpson & Inglis, 2001). They also have importance in conservation as dominant components of many wetland ecosystems and are reliable indicators of habitat deterioration in such systems. The rhizomes of several species of *Carex* were formerly used as a remedy in syphilis

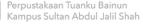
constituent of wetlands and riverside vegetation, where their densely tangled rhizomes contribute to erosion control and water purification (Archer, 1998).

Nowadays, the number of large cities is increasing. Although small communities can find the necessary water locally water demands of large cities are drawn from extensive drainage areas or aquifers. Therefore, in order to prevent water quality degradation wastewater should be treated properly prior to disposal. Archer (1998) reported that a modern usage for sedges is in artificially constructed water purification beds, because the rhizomes of several species are able to grow anaerobically, at least for a period of time.

We should also not forget that two of the world's worst weeds, *Cyperus* 105 roundus and Colesculentus half from the sedge family (Archer, 2000): He also said that in irrigated lands, ploughing spreads their tubers and corms to such an extent that the crop plant is totally smothered, necessitating the use of herbicides to combat these weeds (Archer, 2000). The efficient ways to destroy the species is needed, so the study of morphological characters of the species is very important. Furthermore the morphological studies of this family can help to destroy the weed that compete with others crops more effectiveness. One species, *Cyperus rotundus*, has the dubious reputation of being termed "the world's worst weed" (Holm et al., 1977). Nowadays the cost of pesticides to destroy this species is very high. The new ways must be discovered to destroy this weed in more effectives way with a minimize cost. The infestation pattern of weed species in Muda area changed between their surveys due to continuous adoption of a single weed control method. Repeated use of a particular herbicide greatly influenced weed species composition and dominance. Ismail et al.

(1998) observed that widespread use of molinate herbicide which selectively suppressed Echinochloa crus-gallihas resulted in the gradual increase of Leptochloa chinensis. The plots repeatedly applied with 2-4 D amine resulted in drastic increased of Echinochloa crus-galli (Azmi, 2002) and Fimbristylis miliacea (Watanabe, 2000), whereas effective in suppressing Scirpus grossus and Monochoria vaginalis (Azmi, 2002). Therefore, Moody (1989) stated that herbicide use moves the agroecosystem towards low species diversity with new problem weeds appearing, stressing the need for an ecological approach to weed control. Moreover, annual weeds react very quickly to alternation of their environment.

1.2 Background of the Study


05 The morphology of the Cyperaceae has received attention from taxonomists for many years but the data gathered and used by them are largely from dissection and superficial examination. Since modern morphology has shown the importance of microscopic study, the more basic structure in this specialized family should be of value in tracing ancestry and specialization. Three genera used in these studies are Bulbostylis, Cyperus and Fimbristylis.

Furthermore, this research is very important to develop a resource base for Cyperaceae which will be available and of interest to a wide range of stakeholders, especially in conservation and sustainable use and for other researcher in further study. We hope to construct a key to species of the sedges which larger research involving families of high conservation value could be based. It will help to develop

determination of priorities or provision of advice for both habitat and species conservation to be carried out more effectively and with greater accuracy.

In this study the focus is on the Cyperaceae in Perak which is the second largest state in Peninsular Malaysia with 21,006 km² land area, comprise of 6.4% the whole Malaysia by Emap (2009) and many types of forest and developed areas. Perak is also unique because it has great influence factors: Perak subprovince at the northwest part, Titiwangsa main range, and seasonal asiatic intrusion from the Asian mainland (Wong, 1998). In addition, Perak has a huge limestone hills complex, which many studies show that limestone hills are rich with endemic plant species (Wong 1998; Fatimah 2009).

on the current, composition, abundance, importance and sedge status is needed for further study. Currently, a total of 31 species of *Cyperus* was recorded in FRIM for Perak. The selected sampling areas are Tanjong Malim, Gunung Lang, Ipoh, Pulau Banding, Gerik, and Chenderoh Lake, Lenggong. The four areas represent disturbed and less disturbed areas. Temengor is selected it is an 'Environmentally sensitive area' to disallow development, agriculture and logging. Tanjong Malim has abundant of plantations, waste land and quarries. Ipoh is selected because this area has limestone hills and maintained with regular cuttings and weedicide sprayings. While, Gerik is selected because it borders with Kelantan and close to Titiwangsa range which is less disturbed and near to the wetland, Pulau Banding. Chenderoh Lake is selected because it is a big

wetland interconnected with several small lakes and rivers, and this area is less developed.

In this study, the phylogeny of the Cyperaceae was evaluated using the macromorphological and micromorphological data sets. These analyses represent the first step in developing a comprehensive phylogeny analyses of the family.

1.3 Problem Statement

There is no comprehensive study on Cyperaceae in Malaysia for 89 years since Ridley (1925). Turner (1995) had listed the genera and species but the comprehensive studies on taxonomy and morphology of Cyperaceae was not done. Kern and Nooteboom of Cyperaceae was not done. Kern and Nooteboom description of Cyperaceae. Yet, there are not much scientific research carried out to explore the family of Cyperaceae in Malaysia. The current revision is very important to record the status of sedges in Peninsular Malaysia as many of the species shows economic and biological importance. There is currently insufficient taxonomic capacity to keep abreast of the rate of new discoveries as our herbaria already contain numerous unnamed species (e.g. FRIM Herbarium (KEP), Universiti Putra Malaysia Herbarium, Universiti Pendidikan Sultan Idris Herbarium and others in Malaysia).

The taxonomy of the sedges genera is complex, and under review by botanists.

Recent studies have resulted in the creation of several new genera, including the genera *Schoenoplectus* and *Bolboschoenus*; others including *Blysmus*, *Isolepis*,

Nomochloa, and Scirpoides have also been used (Wilson, 2012).

05-4506832

Thus, this research aims to map the diversity of Cyperaceae in Perak to represent Peninsular Malaysia. The information of sedges species and its diversity and distribution will be important for future references.

There is conflict in identification of Cyperaceae species. Many of previous taxonomists used different diagnostic keys to identify the species and very much rely on reproductive morphology such as inflorescence, spikelets, glumes and nut. Those characters are known as macromorphology. In addition to macromorphological characters, Sminitand (1993), also use plant habit as part of his identification key. This research focuses not only focus on comprehensive macromorphological but also complemented by micromorphological characteristics. Simpson (2003) in pollen research on another species successfully discovered based on the specialization of 550 mee taxa in terms of their pollination biology, and taxanomical significant. The key of genera and species using spikelets need to review for diagnose the best morphological characteristics used to identify Cyperaceae.

Many phylogenetic research that focus on certain DNA, but the placement of Cyperaceae does not resolved. In this study we evaluated the phylogeny of Cyperaceae using gross macromorphological and micromorphology data sets, analysed both individually and in combination. These analyses represent the first step in developing a comprehensive phylogeny of the family based on macromorphological and micromorphological data.

1.4 Research Objectives

The primary objectives of this research were to review and diagnose the best morphological characteristics used by the previous researchers. Species studied during the course of this research included *Cyperus compactus*, *C. compressus*, *C. digitatus*, *C. distans*, *C. iria*, *C. kyllingia*, *C. pulcherrimus*, *C. rotundus*, *C. sphacelatus*, *C. pilosus*, while the outgroup species are *Bulbostylis barbata*, *Fimbristylis dichotoma* and *F. miliacea*. Results was derived from a macromorphological and micromorphological study based on the examination of specimens from herbaria, supplemented with field studies in Perak. An enumeration of the specific problems investigated are as follows:

- 05-7606832 To review and diagnose the perpustakaan Tuanku Bainun logical and micromorphologypsi characteristic used to identify Cyperaceae.
 - ii) To construct key to species of Cyperaceae.
 - iii) To survey the diversity of Cyperaceae.
 - iv) To map the distribution of Cyperaceae.

1.5 Research Questions

- i) What are the best macromorphological and micromorphology characters of taxonomic value of each species of Cyperaceae?
- ii) What are the practical key characteristics that will characterise the species?
- iii) How diverse is the species of Cyperaceae?
- iv) What is the distribution of Cyperaceae?

1.6 Significance of the Study

- We can review their viability and identify diagnostic characters used by the previous researchers.
- ii) The practical key to species can be constructed in this research that will be used by other researchers.
- The knowledge of number, type, and economic important of species in Cyperaceae can be used by other researchers and contribute to conservation and weed control.
- iv) The map of the Cyperaceae diversity is available for other references.

1.7 Research Frameworks

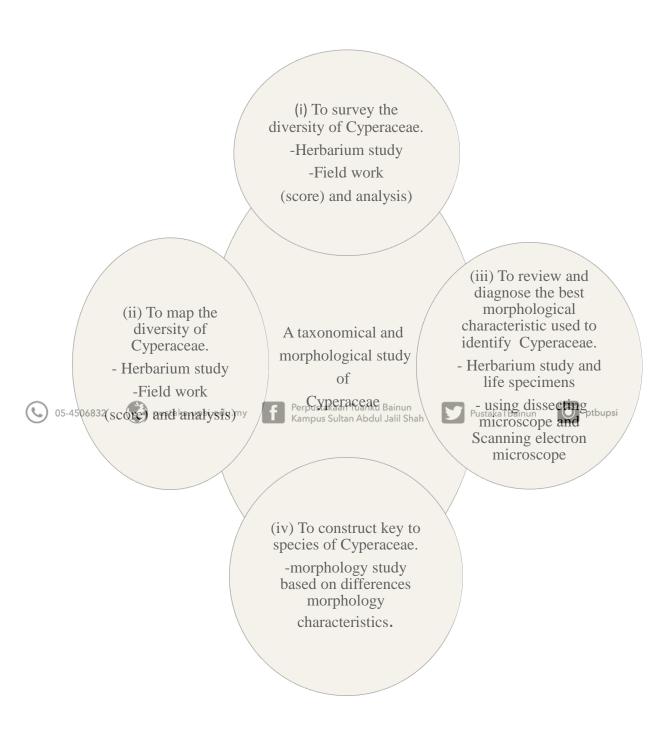


Figure 1.1. Research Frameworks

Taxonomy has had various meanings over the past one hundred and fifty years, and particular confusion has prevailed with systematic. The early documented use of the term systematic can be traced (as systematic botany) at least as far back as Linnaeus (1753, 1754), and it has persisted to the present day although in modified form. Linnaeus (1753) states that "we reject all the names assigned to plants by anyone, unless they have been either invented by the systematist or confirmed by them".

The research framework was divided into four objectives (Figure 1.1). This studies mostly use the macromorphological and a few micromorphological features (using SEM) and accordingly grouped based on similarities and/or differences was (and still is) called classification. Data are gathered from surveys and their morphology characteristics used to answer question about classification, phylogeny,

The surveys done in herbarium at FRIM, Kepong and field work was done in four areas. From the surveys, it was used to map the diversity and distribution of Cyperaceae. To diagnose the best morphological characteristic used to identify the species.

The key to species of Cyperus used spikelets to constructed using the morphological characteristics. The key is very important to recognize the species. In this study, we are leveraging of fieldwork and undertake revision of the sedge genus Bulbostylis, Cyperus, and Fimbristylis and the embedded genera of tribe Cypereae (in Family Cyperaceae) under Kern (1974) classification. Cyperus is among the third

largest flowering plant genera worldwide.

