

CHARACTERISTICS OF ELASTASE STRAIN **K-REPEAT-IN-TOXIN FUSION PROTEIN** OVEREXPRESSED FROM NEWLY CONSTRUCTED GENETIC TOOLS

NURUL HAZWANI BINTI SHAMSUDIN

UNIVERSITI PENDIDIKAN SULTAN IDRIS

2021

CHARACTERISTICS OF ELASTASE STRAIN K-REPEAT-IN-TOXIN FUSION PROTEIN OVEREXPRESSED FROM NEWLY CONSTRUCTED GENETIC TOOLS

NURUL HAZWANI BINTI SHAMSUDIN

O 5-4506832 pustaka.upsi.edu.my f Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah PustakaTBainun brbupsi

THESIS SUBMITTED IN FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY (BIOLOGY)

FACULTY SCIENCE AND MATHEMATICS UNIVERSITI PENDIDIKAN SULTAN IDRIS

2021

UPSI/IPS-3/BO 32
Pind : 00 m/s: 1/1

Please tick (√)
Project Paper
Masters by Research
Master by Mixed Mode
PhD

INSTITUTE OF GRADUATE STUDIES

DECLARATION OF ORIGINAL WORK

i. Student's Declaration:

I, _	Nuru	l Hazwani Binti Shamsudin, P20131001201, Faculty of Science and Mathematics	(PI	LEASE
INDICA	ATE	STUDENT'S NAME, MATRIC NO. AND FACULTY) hereby declare that	the	work
entitle	d	Characterization of Elastase Strain K-Repeat-in-Toxin Fusion Protein Overexpres	ssed fr	om
Newly	Const	ructed Genetic Tools	is	my
origina	al wo	rk. I have not copied from any other students' work or from any other sou	rces e	except
where	due	reference or acknowledgement is made explicitly in the text, nor has any	y part	t been
writter	n for	me by another person.		

Signature of the student

ii. **Supervisor's Declaration:**

I Associate Prof. Dr. Muhammad Aqil Aryan Wong (SUPERVISOR'S NAME) hereby certifies that the work entitled Characterization of Elastase Strain K-Repeat-in-Toxin Fusion Protein Overexpressed from Newly Constructed Genetic Tools

(TITLE) was prepared by the above named student, and was submitted to the Institute of Graduate Studies as a * partial/full fulfillment for the conferment Doctor of Philosophy (Biology) of ___ _ (PLEASE INDICATE THE DEGREE), and the aforementioned work, to the best of my knowledge, is the said student's work.

Date

Signature of the Supervisor

INSTITUT PENGAJIAN SISWAZAH / INSTITUTE OF GRADUATE STUDIES

BORANG PENGESAHAN PENYERAHAN TESIS/DISERTASI/LAPORAN KERTAS PROJEK DECLARATION OF THESIS/DISSERTATION/PROJECT PAPER FORM

Tajuk / Title:

Characterization of Elastase Strain K-Repeat-in-Toxin Fusion Protein

Overexpressed from Newly Constructed Genetic Tools

No. Matrik / <i>Matric's No.</i> :	P20131001201
Saya / I :	Nurul Hazwani Binti Shamsudin
-	

(Nama pelajar / Student's Name)

mengaku membenarkan Tesis/Disertasi/Laporan Kertas Projek (Kedoktoran/Sarjana)* ini disimpan di Universiti Pendidikan Sultan Idris (Perpustakaan Tuanku Bainun) dengan syarat-syarat kegunaan seperti berikut:-

acknowledged that Universiti Pendidikan Sultan Idris (Tuanku Bainun Library) reserves the right as follows:-

- 1. Tesis/Disertasi/Laporan Kertas Projek ini adalah hak milik UPSI. The thesis is the property of Universiti Pendidikan Sultan Idris
- 2. Perpustakaan Tuanku Bainun dibenarkan membuat salinan untuk tujuan rujukan dan penyelidikan. *Tuanku Bainun Library has the right to make copies for the purpose of reference and research.*
- 3. Perpustakaan dibenarkan membuat salinan Tesis/Disertasi ini sebagai bahan pertukaran antara Institusi Pengajian Tinggi. *The Library has the right to make copies of the thesis for academic exchange.*
- 4. Sila tandakan ($\sqrt{}$) bagi pilihan kategori di bawah / Please tick ($\sqrt{}$) for category below:-

SULIT/CONFIDENTIAL

Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub dalam Akta Rahsia Rasmi 1972. / Contains confidential information under the Official Secret Act 1972

Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan ini dijalankan. / Contains

TERHAD/RESTRICTED

restircted information as specified by the organization where research was done. TIDAK TERHAD / OPEN ACCESS

(Tandatangan Pelajar/ Signature)

(Tandatangan Penyelia / Signature of Supervisor) & (Nama & Cop Rasmi / Name & Official Stamp)

Tarikh: _____

Catatan: Jika Tesis/Disertasi ini **SULIT** @ **TERHAD**, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan ini perlu dikelaskan sebagai **SULIT** dan **TERHAD**.

Notes: If the thesis is CONFIDENTAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentiality or restriction.

iv

ACKNOWLEDGEMENT

All praises to Allah the Almighty for giving me the strength, health, passion and patience to complete this research project.

I would like to express my heartfelt gratitude to my supervisor, Dr. Wong Chee Fah, who constantly conveyed a positive spirit of adventure in regards to research and give me so much advise to improve myself in all aspects. I would not been possible to complete this project without his persistent help, invaluable guidance and overwhelming kindness.

I would also like to express a deepest appreciation to my co-supervisor, Prof. Dr. Raja Noor Zaliha Raja Abd. Rahman and Dr. Mohd Shukuri Mohamad Ali for their great assistance, insightful discussion and suggestions.

A million thanks to all EmTech members, Dr. Ely, Suzana, Adura Syamimi, Farhani, Nur Shakila, Zarir, Aisyah, Fatin Farziana, Nadzmi, Wahidah, Atie, Asmah and Aswhini who have been extraordinarily helpful, tolerant and supportive. This beautiful friendship is a priceless treasure and will be cherished forever.

A deepest appreciation to my beloved family and husband for their unduly love and prayers. Thank you for being unconditionally supportive and understanding throughout this challenging study period. Words can't describe how grateful and thankful I am to you in my life.

And for those who involved directly or indirectly in this project, I sincerely thank you.

ABSTRACT

This study was intended to construct a new *Escherichia coli-Pseudomonas* shuttle vector for overexpression of elastase strain K in both E. coli and Pseudomonas as well as for rapid purification using new RTX-tag. A 6.5 kb novel shuttle vector, designated as pSIT/RTX, was constructed from pCon2(3) as to improvise the expression of pCon2(3). pSIT/RTX was employed with tightly regulated promoter $P_{T7(A1/O4/O3)}$ for controlling gene expression, stabilizing fragment (SF) for replication and maintenance of plasmid in E. coli and P. aeruginosa, attB gene for genome integration, elastase strain K as passenger enzyme and RTX-tag which is located at C-terminal for rapid purification. E. coli TOP10/pSIT/RTX was chosen to proceed with purification as the highest amount of proteolytic activity was detected at 12 h after incooperation with 0.6 mM IPTG (Isopropyl β - d-1-thiogalactopyranoside). Elastase strain K-RTX fusion protein was purified using Ca²⁺ as novel ligand in immobilized-metal affinity chromatography (IMAC) with 28 % recovery and 3.8 fold. The estimated molecular weight as observed on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was 73 kDA, with optimal temperature and pH were 40°C and pH6, respectively. The proteolytic activity was significantly enhanced by increasing the concentration of Na⁺ and Cu²⁺ ions and more stable in phenylmethylsulfonyl fluoride (PMSF), Tween20 and Triton-X-100. On the downside, Ni²⁺, Zn²⁺, n-dodecane, ntetradocane, dithiothreitol (DTT) and SDS showed strong inhibition on the proteolytic activity. Elastase strain K exhibited preference towards 25% (v/v) of Dimethyl sulfoxide (DMSO), methanol and pyridine as their uniqueness as an organic solvent os-solution to be a solution of the substrate for elastase recorded the lowest release of its product. As a concluding remark, experimental work conducted in this study had indeed highlighted several achievements, novelties and findings including construction of vectors which had led to the overexpression of elastase strain K by constructed vectors, the using of RTX-tag for purification via IMAC and most importantly, the remarkable stability of elastase strain K in hydrophilic organic solvents.

vi

PENCIRIAN ELASTASE STRAIN K MENGULANGI DALAM TOKSIN PROTIN LAKURAN PENGEKSPRESAN DARI PEMBINAAN ALAT GENEETIK BARU

ABSTRAK

Tumpuan utama kajian bertujuan untuk membina vector ulang alik Escherichia coli-Pseudomonas yang baru bagi tujuan pengekspresan elastase strain K di dalam E. coli dan Pseudomonas dan bagi penulenan pantas menggunakan RTX-tag baru. 6.5 kb Vektor ulang-alik baru, ditetapkan sebagai pSIT/RTX dibina dari pCon2(3) bagi penambaikkan penekspresan pCon2(3). pSIT/RTX mengandungi promoter kawalan ketat, P_{T7(A1/O4/O3)} untuk meningkatkan pengekspresan gen, serpihan pnstabilan (SF) untuk mereplikasi and mengekalkan plasmid di dalam E. coli dan Pseudomonas aeruginosa, gen attB bagi integrasi genom, elastase strain K sebagai enzim penumpang dan RTX-tag an terletak di terminal C untuk penulenan pantas. E. Coli TOP10/pSIT/RTX telah dipilih untuk meneruskan kajian penulenan setelah aktiviti proteolitik yang tertinggi di kesan selepas 12 jam dengan kerjasama 0.6 mM IPTG (Isopropyl β- d-1-thiogalactopyranoside). Elastase strain K-RTX ditulenkan menggunakan Ca2+ sebagai ligan terbaru dalam komatografi keafinan logam tidak bergerak (IMAC) dengan 28 % pemulihan dan 3.8 lipatan. Berat molekul yang dianggarkan pada SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis) ialah 73 kDA. Optimum suhu dan pH adalah masing-masing 40°C dan pH6. Aktiviti proteolitik adalah ketara dengan peningkatan kepekatan ion Na⁺ dan Cu²⁺ dan lebih stabil pada PMSF (phenylmethylsulfonyl fluoride), Tween20 dan Triton-X-100. Disebaliknya, Ni²⁺, Zn²⁺, n-dodekana, n-tetradocane, DTT (dithiothreitol) dan SDS menunjukan kesan penceratan yang kuat pada aktiviti proteolitik. Elastase strain K menunjukan keutamaan terhadap 25 % (v/v) daripada DMSO (Dimethyl sulfoxide), methanol, piridina kerana keunikan sebagai enzim pelarut organic. Congo-red sebagaimana yang dinyatakan substrat bagi elastase merekodkan pelancaran produk yang terendah. Kesimpulannya, eksperimen yan dijalankan dalam kajian ini telah mencapai beberapa pencapaian dan penemuan baru termasuklah pembinaan vector yang mampu mengekspresikan elastase strain K, pengunaan ta RTX bagi proses penulenan melalui IMAC dan yang penstabilan elastase strain K di dalam pelarut organik hidrofilik.

CONTENTS

Page

DECLARATION OF ORIGINAL WORK	ii
DECLARATION OF THESIS	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	V
ABSTRAK	vi
CONTENTS	vii
LIST OF TABLES	xiii
LIST OF FIGURES	xiv
LIST OF SYMBOLS AND ABBREVATIONS	XX

CHAPTER 1 INTRODUCTION

 1.1
 Research Background
 1

 05-4506832
 pustaka.upsi.edu.my
 Perpustakaan Tuanku Bainun

 1.2
 Pustaka.upsi.edu.my
 Perpustakaan Tuanku Bainun

 1.2
 Pustaka.upsi.edu.my
 1

 1.2
 Pustaka.upsi.edu.my
 1

 1.2
 Pustaka.upsi.edu.my
 1

 1.2
 Pustaka.upsi.edu.my
 1

 1.3
 1
 1

 1.4
 1
 1

 1.5
 1
 1

 1.6
 1
 1

 1.7
 1
 1

 1.8
 1
 1

 1.9
 1
 1

 1.0
 1
 1

 1.1
 1
 1

 1.2
 1
 1

 1.3
 1
 1

 1.4
 1
 1

 1.5
 1
 1

 1.6
 1
 1

 1.7
 1
 1

 1.8
 1
 1

 1.9
 1
 1

 1.9
 1
 1

 1.9
 1
 1.2 **Problem Statements** Objective of the Research 1.3 6 **CHAPTER 2 LITERATURE REVIEW** 2.1 Introduction 7 2.2 Enzymes Produced by Pseudomonas aeruginosa 7

	2.2.1	Alkaline Protease	8		
2.3	2.2.2	Elastase	9		
	2.2.3	Lipases	10		
	Gene Expression Technology in Bacteria				
	2.3.1	Expression in <i>E. coli</i>	12		
	2.3.2	Expression in Pseudomonas	16		
	2.3.3	Other Bacterial Expression Systems	19		

		•
V	11	1
۰.		

			2.3.3.1 Lactic Acid Bacterium System	20
			2.3.3.2 Bacillus System	21
	2.4	Classi	fication of expression tools	22
		2.4.1	Plasmid	23
		2.4.2	Transposon	25
		2.4.3	Bacteriophage Lambda	29
		2.4.4	Cosmids	30
	2.5	Manip	oulation of Genetic Tools in Expression Vector	31
		2.5.1	pCon2(3)	32
		2.5.2	Promoters	33
		2.5.3	Stabilizing Fragment (SF)	37
		2.5.4	Integration Gene (attB)	38
05-4506832	pustaka.upsi.e	2.5.5	Replicons akaan Tuanku Bainun Sultan Abdul Jalil Shah	40 ptbup
	2.6		oulation of Expression Vectors for Recombinant n Purification	42
		2.6.1	Recombinant Protein Fusion Tags	43
			2.6.1.1 Repeat-in-Toxin Tag (RTX tag)	43
			2.6.1.2 Polyhistidine Tag	45
			2.6.1.3 Glutathione S-transferase Tag	46
		2.6.2	Purification Techniques for Recombinant Protein	47
			2.6.2.1 Affinity Chromatography	47
			2.6.2.2 Ion-Exchange Chromatography (IEX)	50
			2.6.2.3 Hydrophobic Interaction Chromatography (HIC)	53
			2.6.2.4 Gel Filtration Chromatography (GC)	56

CHAPTER 3 METHODOLOGY

	3.1	Introduction	58
	3.2	Sources of Bacteria and Plasmid	59
	3.3	Workflow	59
	3.4	Construction of <i>Escherichia-Pseudomonas</i> Shuttle Expression Plasmid	60
		3.4.1 Construction of pTEL	61
		3.4.2 Construction of pESK	63
		3.4.3 Construction of pLIP	63
		3.4.4 Construction of pSIT/RTX	63
	3.5	Sequence Analysis of pSIT/RTX	64
		3.5.1 Transformation of pSIT/RTX into <i>E. coli</i> Strain	65
pustal		 3.5.2 Analysis of pSIT/RTX from <i>E. coli</i> TOP10 3.5.3 DNA Sequencing of pSIT/RTX 	65 66
	3.6	Transformation and Integration of pSIT/RTX into Genom of <i>Pseudomonas</i>	ne66
	3.7	Expression of Elastase Strain K in Various <i>E. coli</i> Strains and <i>P.aeruginosa</i> PAO1	s 67
	3.8	Extraction of Elastase Strain K from <i>E. coli</i> and <i>Pseudomonas aeruginosa</i> PAO1	68
	3.9	Proteolytic Assay	68
	3.10	Optimization of Gene Expression	69
		3.10.1 Effect of Induction Time on Gene Expression	69
		3.10.2 Effect of IPTG Concentrations on Gene Expression	on 70
		3.10.3 Effect of induction A _{600nm} on Gene Expression	70
	3.11	Plasmid Stability Assay	70
	3.12	Solubilization of Elastase Strain K Inclusion Bodies	71

5

Х

3.13	Purific pSIT/R		se Strain K from pTEL and	72
	3.13.1	Preparation of	Crude Extract	72
	3.13.2	Immobilized- (IMAC)	Metal Affinity Chromatography	73
	3.13.3	Determination	of Protein Concentration	73
3.14		terization of E //pSIT/RTX	lastase Strain K from	73
	3.14.1	Molecular We	right Determination	74
		3.14.1.1	Sodium Dodecyl Sulphate- Polyacrylamide Gel Electrophoresis (SDS-PAGE)	74
		3.14.1.2	Gel Filtration Calibration Chromatography	74
	3.14.2	Effect of Tem	peratures on Proteolytic Activity	75
pustaka.upsi.e	3.14.3	Effect of Tem	peratures on Enzyme Stability	75 pt
	3.14.4	Effect of Expo Activity	osure Time at 40 °C on Proteolytic	76
	3.14.5		turation Analysis of Elastase Strain Dichroism Spectropolarimeter	76
	3.14.6	Effect of pH of	on Enzyme Stability	76
	3.14.7	Effect of pH of	on Enzyme Stability	77
	3.14.8	Organic Solve	ent Stability of Elastase Strain K	77
	3.14.9	Effect of Meth Stability	nanol Concentrations on Enzyme	78
	3.14.10) Effect of Met Structure	hanol on Protein Secondary	78
	3.14.11	Effect of Met	al Ions on Proteolytic Activity	79
	3.14.12	2 Effect of Prot Activity	tease Inhibitors on Proteolytic	79

05-4506832

xi

			3.14.1	3 Effect of Denaturing and Reducing Agents on Proteolytic Activity	79
			3.14.14	4 Substrate Specificity of Elastase Strain K 80	
CHA	APTER 4	RESU	LTS A	ND DISCUSSION	
		4.1	Introdu	action	81
		4.2	pCon2	(3) as Source of Vector Construction	82
		4.3	Constr	ruction of Escherichia-Pseudomonas Shuttle Vectors	\$85
			4.3.1	Construction of pTEL	86
			4.3.2	Construction of pESK	87
			4.3.3	Construction of pLIP	88
			4.3.4	Construction of pSIT/RTX	91
		4.4		ssion Analysis of pTEL and pSIT/RTX on Various s of <i>E. coli</i> and Pseudomonas <i>aeruginosa</i> Strain PAC	100 D1
	g pust		4.4.1	Effect of Induction Time on Gene Expression	106
			4.4.2	Effect of IPTG Concentration on Gene Expression	108
			4.4.3	Effect of Induction A600nm on Gene Expression	110
		4.5	Plasmi	d Stability of TOP10/pTEL and TOP10/pSIT/RTX	112
		4.6	Expres Expres	ssion of Soluble Protein and Inclusion Bodies (IBs)	113
			4.6.1	Solubilization of the Elastase Inclusion Bodies (IBs)	114
		4.7		eation of Elastase Strain K-RTX from <i>E. coli</i> D/pSIT/RTX	117
			4.7.1	Purification Using Immobilized-Metal Affinity Chromatography (IMAC)	118
		4.8	Charac	cterization of purified elastase strain K	123
			4.8.1	Molecular weight determination	123
			4.8.2	Gel Filtration Calibration Chromatography	125

xii

4.8.3	Effect of temperatures on elastase strain K activity and stability	127
4.8.4	Effect of pH on elastase strain K activity and stability	130
4.8.5	Effect of organic solvents on protease stability	133
4.8.6	Effect of methanol concentration on protease activity and structure	138
4.8.7	Effect of Metal Ion on Protease Stability	141
4.8.8	Effect of Denaturing and Reducing Agents on Protease Stability	144
4.8.9	Substrate Specificity of Elastase Strain K	146
CHAPTER 5 CONCLUSIO	ONS AND RECOMMENDATIONS	

	5.1	Introduction		149
	5.2	Conclusions		150
05-4506832	pustal5.3psi.e	Recommendations and Lank Bainun		151 ptbups
REFERENCES			153	
AP	PENDICES			182

xiii

LIST OF TABLES

Table No.		Page
2.1	Comparison between E. coli, Pseudomonas, Bacillus and Lactic acid bacteria expression system	12
2.2	Characteristics of E. coli expression systems	13
2.3	Characteristics of promoter (Source: Terpe, 2006)	34
3.1	Elements and Function of pSIT/RTX	64
3.2	Strains involved in transformation of pSIT/RTX	67
3.3	Buffers for Determination of Optimum pH and pH Stability	77
4.1	Hypothesis test summary of Kruskal-Wallis Test for expression of elastase strain K, pTEL and pSIT/RTX in various type of E. coli and Pseudomonas aeruginosa strains.	105
4.2	Purification of elastase strain K-RTX from E. coli TOP10/pSIT/RTX by IMAC	120
05-450684:3	Stability of elastase strain K in various concentration of methanol	139 ptbupsi
4.4	Substrate specificity of elastase strain K.	147

xiv

LIST OF FIGURES

Figure No.		Page	
2.1	Construction of recombinant plasmid in which a foreign DNA fragment is inserted into a plasmid vector. Adapted from Jacobus and Gross (2015)	24	
2.2	Transposition process. Adapted from O'Brochta et al. (2014)	27	
2.3	LipAMS8 predicted 3D structure. The structure is composed of catalytic (green), non-catalytic (blue) domains and yellow is calcium. Adapted from Ali et al., 2013.	45	
3.1	Workflow of this study	60	
3.2	Construction of Recombinant Plasmid; pSIT/RTX. (Diagram is drawn using Clone Manager and does not accordingly to scale)	62	
4.1	Confirmation on the presence of insert $(T7_{(A1/O4/O3)})$ promoter and elastase strain K) in pCon2(3) by PCR. Lane M: GeneRuler TM 1 kb DNA Ladder (Fermentas, USA); Lane 1 and 2: PCR product of pCon2(3)	84	
05-45068422	Zones of lysis around the colonies on SMA plate	85 ptbups	
4.3	Construction of pTEL. Lane M: GeneRuler TM 1 kb DNA Ladder (Fermentas, USA); Lane 1: pTEL.	87	
4.4	Construction of pESK. Lane M: GeneRuler TM 1 kb DNA Ladder (Fermentas, USA); Lane 1 and 2: pESK.	88	
4.5	Gel electrophoresis from the constructed plasmid pLIP. (A) Extraction of pLIP from E. coli TOP10/pLIP. (B) Single digestion of pLIP by NdeI. Lane M: GeneRuler TM 1 kb DNA Ladder (Fermentas, USA); Lane 1: pLIP;Lane 2 and 3: NdeI digested-pLIP.	90	
4.6	Confirmation of insertion 30 bp attB gene (A) Confirmation of 30 bp attB via single digestion. (B) conformation of genome integration in P. aeruginosa PAO1. Lane M: GeneRuler TM 1 kb DNA Ladder (Fermentas, USA); Lane 1, 2, 3 and 4: SspI-digested-pSIT/RTX; Lane 5 and 6: genome integration.	92	

- o ptbups
 - XV

93

- Physical maps of constructed shuttle vectors with an expression cassette controlled by P_{T7(A1/O4/O3)}. (A) pLIP and (B) pSIT/RTX. Maps are generated by Clone Manager 9 Basic Edition (Scientific and Educational Software, USA) and not drawn according to scale.
- 4.8 Nucleotide sequence of constructed vector carrying PT7(a1/O4/O3), 100 30 bp attB, SF, bla and elastase strain K pSIT?RTX. Putative promoters (-10 and -33) are underlined. Bold and italicised letters indicate putative operators of 04 and 03. Open arrows (→ and ←) underneath the sequence designate functional fragments in the constructed vector. Arrows with rounded start and bold sharp end (→ and →) illustrate directions of gene expression. The dotted lines, meanwhile represent restriction endonuclease cutting sites of SspI (AAT↓AAT), NdeI (CA↓TATG) and PstI (CTGCA↓G) in which heterogenous gene is inserted.
- 4.9 Expression of organic solvent tolerant elastase strain K of pTEL() 104 and pSIT/RTX () in various type of E. coli and Pseudomonas strains. The cell lysate was analysed for it proteolytic activity in various type of E. coli strain at 6 hr induction time of 1.0 mM IPTG at A_{600nm} = 0.5. Activities are represented by mean value ± standard deviations (n= 3).
- 4.10 Effect of induction time on the expression of organic solvent tolerant local elastase strain K. The cell lysate was analysed for its proteolytic activity at different induction time of 1.0 mM IPTG at A_{600nm} = 0.5. Activities are represented by mean value ± standard deviations (n= 3).
- 4.11 Effect of IPTG concentration on the expression of organic solvent 110 tolerant elastase strain K. The cell lysate was analysed for its proteolytic activity after 12 h of induction by various IPTG concentration at A_{600nm} = 0.5. Activities are represented by mean value ± standard deviations (n= 3).
- 4.12 Effect of induction A_{600nm} on the expression of organic solvent 112 tolerant elastase strain K. The cell lysate was analysed for its proteolytic activity after 12 h induction by 0.6 mM IPTG at various induction A_{600nm} . Activities are represented by mean value \pm standard deviations (n= 3).
- 4.13 Comparison of plasmid stability of E. coli TOP10/pTEL and E.
 113 coli TOP10/pSIT/RTX. Error bars show the standard deviation from triplicate data.

- D ptbup
- xvi

116

- 4.14 Effect of urea concentration on the expression of organic solvent tolerant elastase strain K. The cell lysate was analysed for its proteolytic activity based on the proteolytic assay mentioned in Section 3.10.3. Activities are represented by mean value \pm standard deviations (n= 3).
- 4.15 Effect of incubation time on the expression of organic solvent tolerant 116 elastase strain K. The cell lysate was analysed for its proteolytic activity after incubation with 6 M urea based on the proteolytic assay mentioned in Section 3.10.3. Activities are represented by mean value \pm standard deviations (n= 3).
- 4.16 Illustration of three ain steps in IMAC. represent affinity resin with 121 ligand, Ca²⁺, represent RTX elastase strain K and , and and represent other proteins.
- 4.17 Elution profile of elastase strain K of pTEL and pSIT/RTX in IMAC. 124 Each step in the protein purification ptotocol: FT, flowthrough; W, washing; E, elution; WAE, wash after elution, is separated by dotted lines. The features used in this purification were protein absorbance of pTEL(280 nm) (♦), proteolytic activity of pTEL (x), protein absorbance of pSIT/RTX (280 nm) (▲) and proteolytic activity of pSIT/RTX (■).
- 4.18 Electrophoresis of elastase strain K on SDS-PAGE. Estimation of molecular weight is assisted by Unstained Protein Molecular Weight Marker (Fermentas, Canada) in lane M. Abbreviation: crude, lane C; IMAC, lane 1-6.
 - 4.19 The molecular weight of elastase strain K on a Sephacryl S-200 HP 126 column. The standard proteins: conalbumin (75 kDa), ovalbumin (43 kDa), carbonic anhydrase (29 kDa) and RNase A (13.7 kDa) were fractionated on the same column.
 - 4.20 Effect of temperature on elastse strain K activity. The relative activity 128 at 40°C was taken as 100%. Relative activity are represented by mean value \pm standard deviation (n= 3). Absence of bar indicates that errors were smaller than symbols.
 - 4.21 Thermal stability of elastase strain K activity. The relative activity at 129 40°C was taken as 100%. Relative activity are represented by mean ± value standard deviation (n=3). Absence of bar indicates that errors were smaller than symbols

05-450


```
akaTBainur
```

xvii

4.22 CD spectra for determination of thermal denaturation point of elastase 130 strain K.

pustaka.upsi.edu.my

- 4.23 Effect of pH on activity of elastase strain K. The buffering systems 132 (50 mM) used in this study were sodium acetate (♦), potassium phosphate (■), Tris-Cl (▲), glycine-OH (x) and sodium hydrogen phosphate (*). Proteolytic activity in sodium acetate buffer of pH 6.0 was regarded as 100 %. Relative activities are represented by mean value ± standard deviations (n=3). Absence of bar indicates that errors were smaller than symbols.
- 4.24 The pH stability profile of elastase strain K at 37 °C for 30 min. The 134 buffering systems (50 mM) used in this study were sodium acetate (♦), potassium phosphate (■), Tris-Cl (▲), glycine-OH (x) and sodium hydrogen phosphate (*).Elastinolytic activity in sodium acetate buffer of pH 6.0 was regarded as 100 %. Relative activities are represented by mean value ± standard deviations (n=3). Absence of bar indicates that errors were smaller than symbols
- 4.25 Stability of elastase strain K in the presence of 25 % (v/v) organic 136 solvents. Log P_{o/w} value for each organic solvent is stated in bracket. Elastinolytic activity in aqueous solution (without organic solvent) is regarded as control (100 %). Relative activities are represented by mean value ± standard deviations (n=3). Absence of bar indicates that errors were smaller than bars. psiedumy Perpendicular Abdul Jail Shah PustakaTBanun PustakaTB
- 4.26 Far UV spectra of elastase strain K in various concentrations of 140 methanol. Enzymes was pre-treated with 0 (♦), 25 (■), 50 (▲), 75 (x) and 90 % (+) of methanol for 30 min at 37°C prior to protease assay.
- 4.27 Stability of elastase strain K in metal ions. All metal ions were used at 143 final concentrations of 5 (■) and 10 mM (■). Elastinolytic activity in non metal ion containing enzyme solution is regarded as control (100 %). Relative activities are represented by mean value ± standard deviations (n=3)
- 4.28 Stability of elastase strain K in various denaturing and reducing agents. 145 Concentration of 0.5 % (v/v) (■) and 10 % (■) was used for all agents. Elastinolytic activity in non-denaturing and reducing agents containing enzyme solution is regarded as control (100 %). Relative activities are represented by mean value ± standard deviations (n=3).

O 5-4506832 pustaka.upsi.edu.my f Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah PustakaTBainun btupsi

xviii

LIST OF SYMBOLS AND ABBREVATIONS

	%,	percent
	°C	degree Celcius
	А	Ampere
	A ₂₈₀	absorbance at 280 nm
	A440	absorbance at 440 nm
	A ₄₅₁₃	absorbance at 513 nm
	A495	absorbance at 495 nm
	A_{600}	absorbance at 600 nm
	bp	base pair
	dH ₂ O	distilled water
05-4508	BDTT 🕐 pust	a dithiothreitol f Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah 💟 PustakaTBainun 🗗 ptbupsi
	EDTA	ethylenediaminetetraacetic acid
	g	gram
	g/L	gram per litre
	h	hour
	IPTG	isopropyl-β-D-galactoside
	kb	kilobase pair
	kDa	kiloDalton
	L	litre
	LB	Luria Bertani
	Μ	molar
	mg	milligram
	mg/mL	milligram per milliliter

•	
X1	Х

	min	minute
	mL	milliliter
	mM	millimolar
	MW	molecular weight
	nm	nanometer
	OD ₆₀₀	Optical density at 600 nm
	ORF	Open Reading Frame
	PCR	Polymerase Chain Reaction
	PMSF	phenylmethylsulfonyl fluoride
	rpm	rotation per minute
	RTX	Repat-in-toxin
	SDS	sodium dodecyl sulphate
05-4506	SDS-PAGE	sodium dodecyl sulphate-polyacrylamide gel electrophoresis
	T_m	thermal denaturation
	U	unit
	U/mL	unit per milliliter
	V	volt
	V/V	volume per volume
	W/V	weight per volume
	μg	microgram
	μL	microlitre
	μm	micrometer

LIST OF APPENDICES

- Bradford Standard Curve А
- В Genetic elements in constructed vectors
- С List of Publication

O 5-4506832 pustaka.upsi.edu.my f Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah PustakaTBainun of ptbupsi

CHAPTER 1

INTRODUCTION

Research Background Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

The primary goal of gene vector construction is to tune vector expression to the maximum level of protein production while minimizing the input cost and time. Nonetheless, in many circumstances, lesser protein production than maximum production is desirable. At a certain point, proteins could become harmful and toxin to the growth of the cell which indirectly make protein ineffectively folded and unable to express at high levels. However, a rapid development in molecular biology field has now made vector is possible to overexpress at desired points.

Presently, Escherichia coli is the most common expression system, used in recombinant protein production due to the well-characterized genome and a variety of mature tools obtainable for genetic manipulation (Liu et al., 2013). Unfortunately,

2

genes from Pseudomonas aeruginosa and other Pseudomonas host cannot be expressed at an adequate level in E. coli (Raftari et al., 2013). The ability for cloning vector to be able to replicate in both E. coli as well as Pseudomonas is due to the two different origins of replication (Maj et al., 2013) which are rep (pMB1) that actives in E. coli and stabilizing fragment (SF) for Pseudomonas (Wong et al., 2017; Riley et al., 2013). Therefore, in this research, stabilizing fragment (SF) from the pUCP19 multiple cloning sites (MCS) was used as it conserved all of the needed features including: (i) blue-white screening for recombinant, (ii) the employment of commercial available primer for sequencing and PCR amplification of inserts and (iii) regulated expression from Plac.

The presence of mini-stabilization fragment (mSF) in pSS124 was useful in controlling the cloning, sequencing and expression of gene (Riley et al., 2013). The presence of 1.8kb PstI stabilizing fragment (SF) of pRO1614 becomes an essential genetic tool in gene manipulation. Wood and Ohman (2015) reported that pBR322 which containing stabilizing fragment (SF) was not only able to replicate in E. coli and P. aeruginosa, but also in P. putida, P. fluorescens and Klebsiella pneumoniae.

Besides SF, an insertion of strong promoter can optimize the yield of gene expression (Pitzer et al., 2016). Considering that, well-studied promoter that suitable for a high level of protein expression in *E. coli* was selected for this research. *T7*_(A1/O4/O3) consists of A1 which is known as a stronger promoter compared with other commonly used promoter including E. coli operons P_{lac}, P_{tac} and P_{bla} (Haris, 2014). The strength modified promoter $T7_{(A1/O4/O3)}$, used in this project was designed based on segments originally created by Lanzer and Bujard (1988). Lanzer and Bujard (1988) constructed a suite of promoter by inserting *lac1* operator sequence into two sites; first site was a

sequence that consisted of 29 bp native *E. coli* lac operon in position homologous to P_{lac} (*O3*) and the other one was *O4* which was a sequence carried 17 bp core region of the wild type lac operator as spacer between -10 and 133 hexamer. In consequence of the specific interaction of operator/promoter region and DNA polymerase, the spacing between -10 and -35 is generally tightly conserved (Fulcrand et al., 2016). Comprehensively, $T7_{(A1/O4/O3)}$ promoter is reported to be repressed tightly because it contains two *lac* operator sites for binding of Lac repressor expressed by *lacl^q* (Lanzer

and Bujard, 1988).

According to Zhang and colleges (2016), gene fusion technology offers an analyzing expression of many genes encoded by bacterial genome in order to maintain the plasmid in the particular host. In order to enhance the integration of vector in the *Pseudomonas*, a certain gene is needed. For example, specialized mini-CTX vectors containing the insertion of gene cassette of 30 bp *attB* sequence have been used to construct *P. aeruginosa* host strains allowing regulated expression from *T7* and *lac* promoters and also for studying gene expression using *lac* and *lux*-based reporter genes (Gilbertsen and Williams, 2014).

Nowadays, scientist is eager to over-express their protein in order to facilitate the next steps in research like purification, crystallization and protein structure. Therefore, in this research, as to enhance rapid purification, repeat-in-toxin (RTXtagged) was added to the construct. RTX-tagged belongs to the Family 1.3 lipase. Family 1.3 lipase is composed of 617 amino acid residues (Cheng et al., 2014) that distinguish the residue from other lipases not only in amino acid sequence but also in their secretion mechanism (Morgan et al., 2017, Chenal et al., 2015). Family 1.3 lipase

is classified under type 1 secretion system (T1SS) (Cheng et al., 2014). This make the family to have the ability to be secreted by a three components ATP-binding cassette (ABC) transporter system (one step pathway) (Morgan et al., 2017, Chenal et al., 2015). Protein that secreted under ABC transporter has several repeats of nine-residue GGXGXDXUX sequence motif (X: amino acid; U: hydrophobic residue) at C-terminal secretion signal (Sotomayor-Pérez et al., 2015). The first six residues of this motif form a loop and each Ca^{2+} ion binds between pairs of the loop. These repeated form a β -roll structure motif (Sotomayor-Pérez et al., 2015)

Resulted from the characteristics, a construction of genetic and molecular tools consists of: (1) 1.8 kb PstI stabilizing fragment (SF) (ATCC 87110) for replication and maintenance of plasmid in both E. coli and P. aeruginosa, (2) a tightly regulated T7_(A1/O4/O3) promoter/repressor system for control of gene expression (Wong et al., 2017), (3) the 30 bp attB sequence for integration of gene cassettes into Pseudomonas genome (Yu et al., 2014), and (4) RTX -tag for purification purpose is done.

1.2 **Problem Statements**

Recently, various techniques have been developed for over-expressing and purifying the desired recombinant protein in a bulk quantity due to the enormous potential for biotechnology application (Al-Hejin et al., 2018). Yet, the progress of technique development is still continuously being made due to some problems often found throughout the process such as poor growth of the host, inclusion body (IB) formation, protein inactivity and even the failure to obtain any protein at all.

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shal

5

In 2017, Wong and colleagues reported that constructed vector known as pCon2(3), which harboured two expression cassettes was unable to exhibit greater protease activity in *E. coli*. However, in *Pseudomonas aeruginosa*, PAO1, pCon2(3) was able to overexpress greater elastinolytic activity. This is consequence from fact that pCon2(3)/*E.coli*TOP10 is capable to utilize *Lac* promoter for protein expression only.

Therefore, the improvised shuttle expression vector is design in this study in order to achieve a higher expression of protease in both *E. coli* and *Pseudomonas* strains. The new construct pSIT/RTX will greatly assist by modified *T7* promoter/repressor, $T7_{(A1/O4/O3)}$. The fact that tightly regulated *T7* promoter system consist of two lac promoter sites, *O3* and *O4* make it efficiently in controlling the expression level (Haris, 2014) and important to avoid leaky expression (Osasumwen, 2017). This may result in higher rate of promoter clearance that lower the occupancy of the promoter by RNA polymerase, thereby increase the repression factor (Osasumwen, 2017).

Another focus of this study is to visualize the functionality and specificity of new and novel RTX tag in purify recombinant protein. Thus, a widely employed method utilizes immobilized metal-affinity chromatography (IMAC) is employ for single-step purification to attain relatively more than 80 % pure protein (Hong et al., 2017). IMAC interaction mechanism is based on interaction between affinity-tag consisting of polyhistidine residues (Sun et al., 2014; Cimen et al., 2016)) and transition metal ions like Co²⁺, Ni²⁺, Cu²⁺, Ca²⁺ and Zn²⁺. Therefore, modified purification step should be develop to suit with target protein and RTX-tag.

6

1.3 **Objective of the Research**

The specific objectives of the project are:

- To construct a new Escherichia coli-Pseudomonas shuttle expression vector 1)
- 2) To overexpress recombinant protein from constructed vector in E. coli and Pseudomonas
- 3) To purify and characterize recombinant protein using a new and novel RTXtag

🕓 05-4506832 😵 pustaka.upsi.edu.my 🚹 Perpustakaan Tuanku Bainun 💟 PustakaTBainun 🚺 ptbupsi

