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This thesis aimed to investigate digital methods for identification, classification, and 

correction of particle images using digital holographic microscopy. The work begins 

with a micro-scale flow experiment employing a digital off-axis holographic 

microscope. To overcome noise from out-of-focus particle images due to the increase 

in the particle concentration, a new particle image identification algorithm with three-

dimensional reconstruction was introduced. It shows that individual particle images 

could be identified at about 62% of the expected number of particles. However, a 

cylindrical micro-channel used in the experiment was found as the main source of 

astigmatism. Following this, an automatic image classification using neural network 

was proposed to classify reliable and astigmatic particle images. A feed-forward 

backpropagation neural network with two class classifier was trained, achieving 

overall accuracy of 99.8%. Next, an original method of aberration correction using a 

priori information and digital wavefront aberration processing was applied. 

Astigmatism introduced by the micro-channel was modelled according to quadratic 

phase function and optimized using peak detection algorithm. The results show that 

astigmatism in the detected particle images was effectively compensated. A variant 

digital off-axis holographic microscope was later developed for large-scale flow 

measurement, allowing for the first time both amplitude and phase of the 

holographically reconstructed images to be registered simultaneously. The aberration 

introduced by a tilt in the optical hologram during the reconstruction was effectively 

corrected using adaptive optics. In overall, the work discussed in the thesis has proven 

effective to overcome noise and aberration. The main implication is that the 

holographic techniques can be successfully employed in complex three-dimensional 

fluid flow measurements.  
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Kajian ini bertujuan untuk menyiasat pelbagai teknik digital menggunakan mikroskop 

holografi untuk proses mengenalpasti, mengklasifikasi, dan membaiki imej zarah-

zarah bagi mengatasi masalah hingar dan aberasi. Kajian ini bermula dengan 

menjalankan eksperimen berskala kecil menggunakan mikroskop holografi digital. 

Untuk mengatasi masalah hingar yang berpunca oleh imej zarah-zarah yang tidak 

fokus, satu teknik pengenalpastian imej telah disyorkan. Hasilnya, sebanyak 62% imej 

zarah-zarah berjaya dikenal pasti. Eksperimen ini mendapati penggunaan kolong 

saluran mikro merupakan punca utama astigmatisma. Klasifikasi imej secara otomatik 

menggunakan rangkaian neural disyorkan untuk mengklasifikasi imej zarah-zarah 

yang bagus dan yang dipengaruhi oleh astigmatisma. Klasifikasi imej dua kelas 

berdasarkan rangkaian neural feed-forward backpropagation telah dilatih dan hasilnya 

mampu untuk mengenalpasti imej pada kadar ketepatan 99.8%. Satu kaedah telah 

dihasilkan untuk mengatasi masalah astigmatisma dengan menggunakan pemprosesan 

aberasi digital dan informasi priori. Astigmatisma yang wujud akibat penggunaan 

kolong saluran mikro telah dimodelkan berdasarkan fungsi fasa kuadratik dan 

dioptimumkan menerusi algoritma pengesanan puncak. Astigmatisma yang 

terkandung dalam imej zarah-zarah berjaya diperbetulkan. Sebuah mikroskop 

holografi digital yang tidak berpaksi telah dibina untuk eksperimen berskala besar. 

Untuk pertama kalinya, kedua-dua amplitud dan fasa yang terhasil daripada proses 

rekonstruksi imej secara holografi berjaya direkodkan serentak. Imej zarah-zarah yang 

direkodkan menggunakan filem hologram didapati dipengaruhi oleh aberasi yang 

berpunca akibat kedudukan hologram yang serong. Aberasi tersebut berjaya 

diperbetulkan menggunakan optikal adaptasi. Secara keseluruhannya, teknik-teknik 

digital yang telah disyorkan di dalam tesis ini telah terbukti efektif untuk mengatasi 

masalah hingar dan aberasi. Implikasinya, teknik-teknik holografi ini mampu 

menjayakan pengukuran bendalir kompleks yang bersifat tiga dimensi. 
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1  CHAPTER 1 

 

 

 

 

 

 

 

 

1.1 Introduction and Research Background  

 

Swirls, tornados and cyclones are interesting examples of turbulent flows that exist in 

nature. In industry, turbulence plays some important roles to increase rate of mixing 

and heat transfer (Pope, 2000) that in turn depend on the formation of vortices 

(eddies) which appear on many different length scales. On the other hand, blood flow 

inside the human body is by nature pulsatile and laminar, ensuring consistent delivery 

of vital nutrients, oxygen and antibodies throughout the system (Lima, Ishikawa, 

Imai, and Yamaguchi, 2012). However, the blood flow becomes turbulent when blood 

vessels are abnormally constricted. In general, turbulent flows are highly complex and 

inherently three-dimensional. In order to understand and characterise the physics 

which underpin various turbulent phenomena, it is important to resolve both large and 
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small scale vortices (Choi and Lee, 2009; Glezer and Coles, 1990; Liu, Dey, Boss, 

Marquet, and Javidi, 2011; Von Ellenrieder, Kostas, and Soria, 2001; Westerweel, 

Elsinga, and Adrian, 2013; Zhang, Tao, and Katz, 1997). 

 

There are several flow measurement techniques commonly used and 

commercially available. These include hot wire anemometry (HWA), laser Doppler 

anemometry (LDA), particle image velocimetry (PIV), and holographic particle 

image velocimetry (HPIV). Both hot wire anemometry and laser Doppler anemometry 

are established point measurement technique where the latter is more favorable since 

it is a non-intrusive optical measuring technique. Meanwhile, particle image 

velocimetry in its original form is limited to in-plane two-dimensional two-component 

(2D-2C) displacement and velocity measurements. Although it is possible to extract 

the out-of-plane component through stereoscopic viewing (2D-3C), the useful 

measurement volume remains limited to a light sheet of several millimeters thick. On 

the other hand, integration of holography in the particle image velocimetry technique 

has finally realised whole-field, three-dimensional three-component (3D-3C) 

displacement and velocity measurements (Hinsch, 2002). In brief, holography was 

invented by Gabor to correct for the spherical aberration of the electron lenses by 

means of two-step imaging process: (a) recording and (b) reconstruction steps (Gabor, 

1948; Gabor, 1949). 
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Holographic particle image velocimetry is a promising technique to probe and 

characterize complex flow dynamics (Hinsch, 2002; Katz and Sheng, 2010). It simply 

records the coherent light scattered by small seeding particles (several micrometres in 

diameter) that are assumed to faithfully follow the flow and uses it to reconstruct the 

event afterward. A hologram records objects in the form of complex interference 

fringes and contains useful amplitude and phase information that provide the means to 

make three-dimensional three-component measurements. Displacement (or velocity) 

of particle images can be extracted by focusing the images using a travelling video 

microscope. Due to cumbersome chemical processing associated with holographic 

films as recording medium, attention of the fluid community has shifted to using CCD 

sensors. This offers enormous advantages since digital hologram of particle images 

can be analysed numerically. As a result, 3D flow measurement technique using 

holography eventually has emerged in the form of digital HPIV (DHPIV) and micro-

digital HPIV (µDHPIV) techniques. 

 

 

1.2 Problem Statement 

 

Characterization of both large and small scale vortices is directly related to spatial 

resolution which in turn depends on concentration of the seeding particles. Although 

it is desirable to seed the flow under investigation with a relatively high particle 

concentration for more precise characterization, this consequently results in the 
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increase of noise contributed by out-of-focus particle images. This type of noise 

increases with the increase of particle concentration (Katz and Sheng, 2010; Royer, 

1974; Sheng, Malkiel, and Katz, 2006), causing problems especially in (a) 

differentiating between noise and particle image, and (b) unintentionally masking 

neighbouring particles that lie above and below, in which the mask is applied to avoid 

detecting the same particle twice. It is noted that this particular noise remains exist 

even though the employed optical imaging system is ideally free from other physical 

noise.  

 

Another dominant problem that exists in these three aforementioned 

measurement techniques (HPIV, DHPIV and µDHPIV) is aberrations. Aberration is 

detrimental as it causes reconstructed particle images to appear in the shape of 

complex 3D morphology, making identification of particle images difficult and 

inaccurate determination of particle centroid. Aberration also severely restricts the 

maximum number of particle images that can be extracted. Sources of aberrations 

include: (a) experimental apparatus (Verrier, Coëtmellec, Brunel, and Lebrun, 2008; 

Verrier, Remacha, Brunel, Lebrun, and Coëtmellec, 2010), (b) optical misalignment 

(Cho, Kim, Yu, Shin, and Jung, 2009; Colomb, Montfort, Kühn, Aspert, Cuche et al., 

2006; Zhang et al., 1997), and (c) non-uniform shrinkage of a holographic film 

(Barnhart, Adrian, and Papen, 1994). For example, often cylindrical channels are 

utilised in the laboratory setup to simulate actual flow down to the minutest details, 

however, this causes aberration (for example, astigmatism) in the particle images. In 

large-scale flow, use of corrective optics was found useful to correct for the distortion 
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introduced by a thick cylindrical window (Alcock, Garner, Halliwell, and Coupland, 

2004). Nonetheless, this approach is not foreseen as a practical step in a micro-scale 

flow.  

 

In comparison to digital techniques (DHPIV and µDHPIV), conventional 

HPIV recording using holographic films is often subject to aberrations introduced in 

the reconstruction step. Correction of the aberrations is usually done optically and 

laboriously time consuming (Hinsch, 2002; Katz and Sheng, 2010), whereby the 

resulting intensity image is continuously recorded and checked using the travelling 

video microscope. In this process, the phase information of the reconstructed particle 

image is completely loss and this is considered as the main drawback. To the best of 

author’s knowledge, none of the reported holographic reconstruction methods in the 

literature has managed to record both amplitude and phase simultaneously, limiting 

the possibility to perform digital aberration correction.  

 

In order to extract as greater number of particle images as possible thereby 

offering increased spatial resolution, care must be taken to consider the effects of 

noise and aberration. This thesis deals with the techniques to maximize detection of 

particle images, automate pattern recognition for image classification and correction 

of the aberrations in the particle images recorded either using CCD sensors or/and 

holographic films.    

 


