

THE DETERMINATION OF AN EFFECTIVE RADIUS OF AN OPTICALLY TRAPPED POLYSTYRENE MICROBEAD DISTRIBUTION NEAR A WATER-AIR INTERFACE

MUHAMAD SAFUAN BIN MAT YENG @ MAT ZIN

UNIVERSITI PENDIDIKAN SULTAN IDRIS 2019

THE DETERMINATION OF AN EFFECTIVE RADIUS OF AN OPTICALLY TRAPPED POLYSTYRENE MICROBEAD DISTRIBUTION NEAR A WATER-AIR INTERFACE

MUHAMAD SAFUAN BIN MAT YENG @ MAT ZIN

THESIS SUBMITTED IN FULLFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER OF SCIENCE (PHYSICS) (MASTER BY RESEARCH)

FACULTY OF SCIENCE AND MATHEMATICS UNIVERSITI PENDIDIKAN SULTAN IDRIS

2019

Please tick (√)
Project Paper
Masters by Research
Master by Mixed Mode
PhD

Signature of the Supervisor

I		
	1	

INSTITUTE OF GRADUATE STUDIES

DECLARATION OF ORIGINAL WORK

NOVEMBER This declaration is made on the
i. Student's Declaration:
I, MUHAMAD SAFUAN BIN MAT YENG @ MAT AIN, FACULTY SEIEN PLEASE MAT INDICATE STUDENT'S NAME, MATRIC NO. AND FACULTY) hereby declare that the work entitled THE DETERMINATION OF AN OPTI EFFECTIVE RADIUS OF AN OPTICALLY TRAPPED POLYSTYERENE MICROREAD NEAR WATER - AIR INTERFACE my
original work. I have not copied from any other students' work or from any other sources except where due reference or acknowledgement is made explicitly in the text, nor has any part been
Signature of the student
ii. Supervisor's Declaration: I SHAHRUL KADRI BIN AYOP (SUPERVISOR'S NAME) hereby certifies that the work entitled THE PETERMINATION OF AN OFFICE CHRECTIVE RABIUS OF AN OPTICALLY TRAPPED POLYSTYRENE MICROBEAD NEAR A WATER-AIR
/NIEKFACE (TITLE) was prepared by the above named student, and was
submitted to the Institute of Graduate Studies as a * partial/full fulfillment for the conferment of MASTER IN SCIENCE (PHYSICS) (PLEASE INDICATE
THE DEGREE), and the aforementioned work, to the best of my knowledge, is the said student's work.
, d

// Date

UPSI/IPS-3/BO 31 Pind.: 01 m/s:1/1

INSTITUT PENGAJIAN SISWAZAH / INSTITUTE OF GRADUATE STUDIES

BORANG PENGESAHAN PENYERAHAN TESIS/DISERTASI/LAPORAN KERTAS PROJEK DECLARATION OF THESIS/DISSERTATION/PROJECT PAPER FORM

Tajuk / <i>Title</i> :	THE DETERM	INATION OF AN EFFECTIVE PADIUS
•	OF AN OPTICE	ALLY TRAPPED POLYSTYRENE MICKOBEAD
	NEAR A WAT	ER-MIR INTERFACE
No. Matrik / <i>Matric No</i> .:	M20162001	629
Saya / <i>I</i> :	MUHAMAD.	SAFUAN BIN MAT YENG @ MAT ZIN
	(N	ama pelajar / Student's Name)
di Universiti Pendidikan kegunaan seperti berikut:-	Sultan Idris (Pe	oran Kertas Projek (Kedoktoran/Sarjana)* ini disimpan rpustakaan Tuanku Bainun) dengan syarat-syarat dris (Tuanku Bainun Library) reserves the right as follows:-
Tesis/Disertasi/Lap The thesis is the property		ini adalah hak milik UPSI. ndidikan Sultan Idris
penyelidikan.		narkan membuat salinan untuk tujuan rujukan dar nke copies for the purpose of reference and research.
antara Institusi Per	gajian Tinggi.	salinan Tesis/Disertasi ini sebagai bahan pertukaran
4. Sila tandakan (√)	bagi pilihan katego	ri di bawah / Please tick (√) from the categories below:-
SULIT/COM	FIDENTIAL	Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub dalam Akta Rahsia Rasmi 1972. / Contains confidential information under the Official Secret Act 1972
TIDAK TER	STRICTED	Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan ini dijalankan. / Contains restricted information as specified by the organization where research was done.
IIDAK TERI	ADTOPEN ACCE	Profesor Madya Dr. Shahrul Kadri Bin Ayor
		Jabatan Fizik, Fakulti Sains dan Matematik Universiti Pendidikan Suitan Idris
(Tandatangan Pe	lajar/ Signature)	(Tandatangan Penyelia / Signature of Supervisor) & (Nama & Cop Rasmi / Name & Official Stamp)
Tarikh: 19 - 11 -	2019	

Catatan: Jika Tesis/Disertasi ini SULIT @ TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan ini perlu dikelaskan sebagai SULIT dan TERHAD.

Notes: If the thesis is CONFIDENTAL or RESTRICTED, please attach with the letter from the related authority/organization mentioning the period of confidentiality and reasons for the said confidentiality or restriction.

ACKNOWLEDGEMENT

First and foremost I would like to thank Allah SWT for everything. Without his blessing I might not able to complete this thesis.

Alhamdulilah I finally succeed to complete my thesis writing that entitle "The determination of an effective radius of an optically trap polystyrene microbead distribution near a water-air interface". This thesis focused on optical trapping near water-air interface which much more complex and critical than optical trapping in water medium. This study was helpful to understanding the behavior of trapped particle at interface.

I would like to thank my supervisor, Prof Madya Dr. Shahrul Kadri bin Ayop. He is one of the expertise in optical trapping and manipulation field in Malaysia. He introduced me to optical trapping (principle and theory) very well. He used simple example to explain complex physics which make physics was fun to be learnt. He gave me well supervision, helping my research in term of discussing and suggestion to levitate my research quality. I also would thank Dr Izan Roshwaty binti Mustapa for helping me in discussing and reviewing my thesis.

I also would like to thank Ministry of Education Malaysia for rewarding me with MyBrainSc scholarship. This funding helped me a lot to support my life in education and life in university. I hope that this program will be offered at all time to support the scientist in field of pure sciences.

Last but not least, I would also like to thank to my dear friends who willing to share their knowledge with me. To my lovely parent, thanks a lot for always be my backbone, motivator for me to success in my life.

The research aimed to determine the effective radius (r^*) of a trapped polystyrene microbead near a water-air interface and to develop a 3-dimensional piezostage control module for optical trapping within micrometre range. This study involved the development of a control program so called PZStage and the determination of r^* near the water-air interface. PZStage was developed on the LabVIEW platform to control laser focus location in the trapping medium. A 3 µm bead was trapped in water at several heights towards the free space in a special design test cell. The temporal displacement data of the trapped bead was recorded by a quadrant photodiode (QPD) and analysed by a custom made program namely OSCal to determine r^* . PZStage was well developed which enabled precise laser focus control in 20 µm range in three mutually orthogonal directions. The result showed that r^* was constant at any focus height at fixed water thickness and laser power. Besides, r^* depended on laser power at fixed laser focus height and water thickness in the form of exponentially decaying relation. In conclusion, PZStage was successfully developed to precisely control laser focus toward water-air interface, and the r^* was found to be dependent on laser power rather than laser focus height within the set experimental conditions. The research implied that the low laser power was possible for optical trapping near the water-air interface with appropriate water thickness selection. However, consideration must be taken into account since the trap was shifted away from the laser focus as the focus height increases due to scattering force.

PENENTUAN JEJARI BERKESAN BAGI TABURAN MIKROMANIK POLISTERINA YANG TERPERANGKAP SECARA OPTIK BERDEKATAN ANTARAMUKA AIR-UDARA

ABSTRAK

Kajian ini bertujuan untuk menentukan jejari berkesan (r^*) bagi mikromanik yang terperangkap berdekatan antaramuka air-udara dan untuk membangunkan modul kawalan piezopentas 3-dimensi untuk perangkap optik dalam julat mikrometer. Kajian ini melibatkan pembangunan program pengawal yang dinamakan PZStage dan penentuan r^* berdekatan antaramuka air-udara. PZStage dibangunkan di atas platform LabVIEW untuk mengawal lokasi fokus laser di dalam medium perangkap. Manik 3 µm diperangkap dalam air pada beberapa ketinggian menghampiri ruang bebas dalam sel uji yang direka khas. Data sesaran temporal manik terperangkap tersebut direkod dengan fotodiod kuadran (QPD) dan dianalisis dengan program buatan tersuai iaitu OSCal untuk penentuan r^* . PZStage yang telah dibangunkan dengan baik membolehkan lokasi fokus laser dilaras dalam julat 20 µm pada tiga arah berortogon. Keputusan menunjukkan r^* tidak berubah dengan tinggi fokus dalam keadaan ketebalan air dan kuasa laser dimalarkan. Tambahan pula, r^* bergantung kepada kuasa laser pada ketinggian fokus laser dan ketebalan air dimalarkan membentuk hubungan pereputan eksponen. Sebagai kesimpulan, PZStage berhasil dibangunkan dengan jayanya untuk mengawal fokus laser secara tepat berdekatan antaramuka air-udara dan r^* bergantung kepada kuasa laser berbanding tinggi fokus laser dalam keadaan experimen yang ditetapkan. Implikasi kajian ini adalah pemerangkapan optik berdekatan antaramuka air-udara boleh dilakukan pada kuasa laser yang rendah dengan ketebalan air yang sesuai. Namun begitu, pertimbangan hendaklah diambil kira kerana perangkap akan beralih jauh dari fokus laser apabila ketinggian fokus meningkat disebabkan oleh daya serakan.

TABLE OF CONTENT

	Pages
DECLARATION OF ORIGINAL WORK	i
DECLARATION OF THESIS	ii
ACKNOWLEDGEMENT	iii
ABSTRACT	iv
CONTENT	vi
LIST OF TABLES	X
LIST OF FIGURES 05-4506832 pustaka.upsi.edu.my LIST OF SYMBOLS Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah	Xi aTBainun ptbupsi XV
LIST OF ABREVIATIONS	xvi
LIST OF APPENDICES	xvii
CHAPTER 1 INTRODUCTION	1
1.1 Background of Research Study	1
1.2 Problem Statement	4
1.3 Research Objective	5
1.4 Significance of Research	6
1.5 Limitation of Research	7
1.6 Thesis Outline	8
1.7 Summary	9

CHAPT	TER 2 LITERATURE REVIEW	10
	2.1 Introduction	10
	2.2 History of Optical Trapping	11
	2.3 Mie and Rayleigh Regime	12
	2.4 Optical Trapping in Mie Regime	13
	2.5 Piezostage Control	14
	2.6 LabVIEW Platfrom	15
	2.7 Optical Trapping Identification	17
	2.8 Optical Trapping at Liquid-Air Interface	19
	2.9 Comparison between Reported Finding for Water-Air Interface Trapping	29
05-4506832	pustaka.upsi.edu.my Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah 2.10 Lateral and Axial Optical Stiffness	ptbup
	2.11 Depth Dependent Trapping	32
	2.12 Equipartition Theorem	34
	2.13 Effective Radius, r^*	36
	2.14 Summary	38
СНАРТ	TER 3 METHODOLOGY	39
	3.1 Introduction	39
	3.2 Optical Tweezers Setup and Alignment	40
	3.2.1 Trapping Module	42
	3.2.2 Observation Module	45
	3.2.3 Detection Module	46

3.2.4 Position Sensor	47
3.2.5 Signal Manipulation and Conditioning	48
3.2.6 QPD Calibration	50
3.3 Program Development for 3 Axis Control of Piezostage	53
3.3.1 Voltage to Position Calibration using Calibration Stick and CCD Camera	54
3.3.2 Program Development using LabVIEW Platform	56
3.4 PZStage Interface Introductory	63
3.5 PZStage Flowchart	65
3.6 Height Control of Piezostage	66
3.7 Effective Radius (r*) Determination Using OSCal	66
3.8 Sample Preparation and Test Cell Design pustaka.upsi.edu.my Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah 3.8.1 Sample Preparation	68 ptbups 68
3.8.2 Test Cell Design and Construction	69
3.9 Determination of Effective Radius (r^*)	72
3.10 Summary	73
CHAPTER 4 PROGRAM DEVELOPMENT	74
4.1 Introduction	74
4.2 Program Development	75
4.3 Program Performance	75
4.4 Modelling Voltage to Position Profile	78
4.5 Summary	80

CHAPTER	5 RESULT AND DISCUSSION	81
	5.1 Introduction	81
	5.2 Laser Current to Laser Power Calibration	82
	5.3 Effective Radius (r^*) Determination	84
	5.3.1 Measurement at Water Thickness, <i>t</i>	85
	5.3.2 Comparison of Effective Radius for Water Medium and Water-Air Interface	97
	5.4 Summary	98
CHAPTER	6 CONCLUSION AND RECOMMENDATION	99
	6.1 Introduction	99
05-4506832	6.2 Conclusion pustaka.upsi.edu.my 6.3 Implication Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah PustakaTBainun	100 ptbups 101
	6.4 Recommendation	103
	6.5 Summary	104
REFEREN	CES	106
APPENDIO	CES	113

LIST OF TABLES

Table No	0.	Pages
2.1	Reported finding and research comparison	29
3.1	Module and components of OTKB	42
3.2	Button and function	64
3.3	Water thickness produced due hole radius and sample volume	69
5.1	Measured power as a function of laser current	82
5.2	Average decay constant (γ) for each sample thickness (t)	94
5.3	Comparison of effective radius (r^*) of 3 μ m polystyrene bead from various study	97
	pustaka.upsi.edu.my Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah PustakaTBainun	

LIST OF FIGURES

Figure No.		Page
1.1	The working principle of optical trapping (Lynn, 2003).	2
2.1	Trapped particle at the focus of an objective lens (Lynn, 2003).	11
2.2	Illustration of scattering and gradient forces in an optical trap	14
	(Lynn, 2003).	
2.3	Snapshot of LabVIEW environment (a) block diagram (b) front	16
	panel.	
2.4	Images of trapped 2 μm polystyrene bead (Ambardekar & Li, 2005).	18
05-4506822.5	The trapping of 2 µm polystyrene bead at water-air interface with trapped power ~20 mW using 25× objective. The trapped bead is indicated with white arrow, the bright spot is a trapped spot (Dasgupta et al., 2007).	20
2.6	Oscillation of Polystyrene Coated with Iron Oxide (PSC) bead at water-air interface when power used is 200 mW. The black arrow indicates the (PSC) bead and "+" sign indicates trapped laser spot (Hong et al., 2017).	22
2.7	Images of a cluster of 9µm polystyrene beads trapped with the tweezers, in an air/water interface in a Langmuir trough, observed with the tweezers video camera at (a) $t = 0$ s, (b) $t = 32$ s, (c) $t = 96$ s, and (d) $t = 140$ s (Gutierrez-Campos, 2010).	24
2.8	Optical trapping of a single 5 μm polystyrene microsphere at the water–air interface. The white arrow indicates fluid flow. "+" indicates the center of the optical trap. Bar = 10 μm (Zhong et al., 2014).	25
2.9	Two-dimensional self-assembly accelerated at the water—air interface by optical tweezers. The NA of the objective is 1.25. The white lines mark the water—air interface at the upper left.	26

28

32

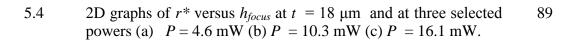
The black arrow indicates the direction of the particles' movement. Scale bar, $10~\mu m$; '+' indicates the optical trap center (Zhong et al., 2017).

- 2.10 High-speed rotation of multiple particles in a doughnut mode of helical index 20 induces a flow of the whole surface, as seen by the rotation of particles in the surroundings of the "vortex pump" (Jesacher et al., 2006).
- 2.11 Visualization of lateral and axial trapping.
- 2.12 Show the light converges as it passes through different media n_1 : cover glass, n_2 : fluid in chamber, $(n_1 > n_2)$. The focus spot of the laser formed likely at point d than point d. This is due to index mismatch that changes the focal spot formation (Neuman et al., 2005).
- 2.13 Shows the graph of spatial distribution along x direction. The histogram is fitted with Gaussian function. The silver region in the graph represents r^* is shown in the graph and defined according to the label.
- Graph count versus displacement distribution.

 37 pustakaTBainun

 38 Schematic diagram of optical tweezers set up.
 - 3.2 A photograph of piezostage with labeled components. 43
 - 3.3 Test cell under observation. 45
 - 3.4 A quadrant photo-diode (PDQ80A, Thorlabs) used for position 47 sensing in optical tweezers.
 - 3.5 Voltage signal display on digital oscilloscope of Yokogawa 49 DL6054.
 - 3.6 Scanning of stuck bead across the laser spot. 51
 - 3.7 Graph of QPD signal (V) versus Position (µm). 52
 - 3.8 Graph of conversion factor β (V/m) versus laser power (mW). 53
 - 3.9 The flow chart for program development process. 54

3.10	Image of microscale viewed by objective lens.	55
3.11	ActiveX of piezostage in form of block diagram.	56
3.12	(a) Boolean block diagram to activate program (b) Boolean block diagram to start motion of piezostage.	57
3.13	(a)-(c) Block diagram for voltage control to piezostage.	58
3.14	(a) Block diagram for delay time (b) Block diagram for voltage increment.	58
3.15	Overall block diagram for PZStage.	60
3.16	GUI interface of complete piezostage control program name PZStage.	61
3.17	Instruction Page of PZstage.	62
3.18	GUI Interface of PZStage.	63
3.19	Flow chart on how to run PZStage.	65
3.20	Interface of Analysis Program for Equipartition Theorem Method.	67
3.21	(a) Apparatus for making sample test cell (b) Completed test	70
	cell.	
3.22	Sample test cell from side view.	71
3.23	Overall effective radius (r^*) determination process.	72
4.1	Screenshot of PZStage.	76
4.2	Modeling voltage to position profile by PZStage	78
5.1	Graph of laser power versus laser.	83
5.2	Visualization of experimental parameter.	84
5.3	3D graphs of r^* versus h_{focus} and P at three selected thicknesses (a) $t = 18$ um (b) $t = 70$ um (c) $t = 141$ um.	87



- 5.5 2D graphs of r^* versus P at $t = 18 \mu m$ and at three selected 91 focus height (a) $h_{focus} = 0 \mu m$ (b) $h_{focus} = 8.8 \mu m$ (c) $h_{focus} = 17.5$
- 5.6 2D graphs of decay constant γ versus h_{focus} at three selected 93 thickness a) $t = 18 \mu m$, b) $t = 70 \mu m$ c) $t = 141 \mu m$.
- 5.7 The sequence of trapping at closer to the bottom (a) to the 96 farther from the bottom (f) at P 1.7 mW. The white arrow indicates the laser trap spot. The black arrow shows the trapped bead. 3 µm scale represents bead size.
- 5.8 The visualization of trapped bead position at different h_{focus} . 96 Trapped bead is represented by hollow circle.

r*		Effective radius [m]
k_B		Boltzman constant [J/K]
T		Temperature [K]
d		Diameter [m]
Λ		Wavelength [m]
γ		Decay constant [µm/mW]
T		Thickness [m]
β		Conversion factor [V/m]
P 5-4506832	pustaka.upsi.edu.my	Perpu Laser power [W] PustakaTBainun

 Δx Displacement of trapped bead [m]

Refractive index n

Height of Piezostage [m] h_{piezo}

Height of laser focus [m] h_{focus}

Standard average displacement [m] < x >

LIST OF ABBREVIATIONS

American Standard Code for Information Interchange **ASCII**

CCD Charged Couple Device

GUI Graphical User Interface

NA Numerical Aperture

PSD Power Spectrum Density

PZStage Piezostage Control Program

QPD Quadrant-Photodiode

WD Working distance

LIST OF APPENDICES

A	LIST OF	ACHIEVEN	JENTS
(1		ACIIL V LIV	

- В PROGRAM INTERFACE (PZSTAGE1) BLOCK DIAGRAM
- EFFECTIVE RADIUS DATA, r^* \mathbf{C}
- **OPTICAL TWEEZERS** D
- E APT USER'S INTERFACE
- F PIEZOSTAGE SPESIFICATION

CHAPTER 1

INTRODUCTION

1.1 Background of Research Study

Optical tweezers is one of the tools being used to manipulate micron sized objects or smaller using light. The optical tweezers fundamentally works by highly focus a laser beam via a high numerical aperture objective to produce a trap spot. Optical trapping field pioneered by Arthur Ashkin is awarded by Nobel Prize in Physics 2018 due to his invention on using optical tweezers to manipulate biology particle (The Nobel Prize, 2018). In the same manner, optical trapping term refers to the technique of using the

optical trap force that can attract transparent microscopic particle to get stuck in it a trap center. The optical trap force is produced due to two different forces which are gradient and scattering forces. The gradient force is depended on light intensity profile while the scattering force is due to change of momentum of light (photon). The resultant of these two forces will result an optical force or trapped force. To sum up, optical tweezers create a certain level of intensity gradient by highly concentrating beam laser to a single point to physically hold and manipulate micron sized particle (Gutiérrez-Campos, 2010).

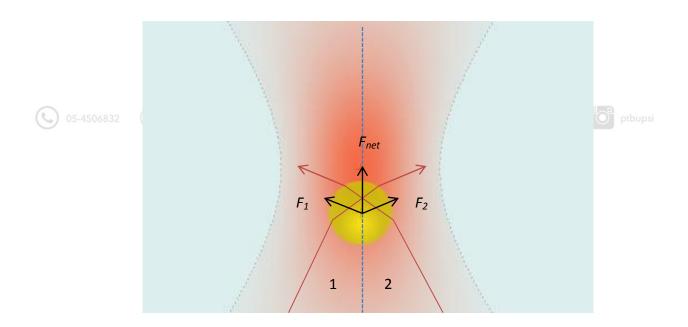


Figure 1.1. The working principle of optical trapping (Lynn, 2003).

The working principle of optical trapping is illustrated in Figure 1.1. In this study, the trapped particle size is bigger than laser wavelength. Thus, ray optics approach is used to explain the trapping mechanism. Ray 1 and ray 2 are refracted when they enter the dielectric sphere due to the difference in refractive indices of the two media. The

refracted ray 1 and 2 resulted a net force on the particle that has a direction toward to the focus of the laser beam. This resulted net force causes the particle to get pushed trapped toward to the focus of rays and finally being trapped. That was the summarization on how optical trapping occurred and caused it to be significance in manipulating micron-sized particles (Ashkin, 1992).

The optical tweezers nowadays become very significance tool compared to traditional mechanical tweezers such as micropipette (Jiao & Zhang, 2013). This is because optical tweezers provide manipulation of a particle without being contacted physically. Therefore the damage minimization of delicate samples is made possible. Optical tweezers are widely used to study biological microscopic particle. Optical force is used in optical tweezers to control and dominate bacteria and small cells rather than using mechanical force. As biological sample is fragile and sensitive, non-contact tweezers can prevent flaw of sample and satisfy the requirement of application such as in biomedical field (Conteduca, Dell'Olio, Ciminelli, Krauss, & Armenise, 2016). There are many applications of optical tweezers. The mechanical learning of single biological molecules has been revolutionized with the advance of optical trapping techniques for the last 20 years. Optical trapping are worthwhile tools to study the properties of micro-molecules such as position, stiffness, elasticity and viscosity (Aziz, Ayop, & Riyanto, 2015; Deufel & Wang, 2006).

Most of the applications involve in manipulation of microscopic particles are in liquid. It would be interesting to study the ability of optical force at another level to open up a wide research opportunity; trapping particle at liquid-air interface.

1.2 Problem Statement

Optical tweezers have been widely used to trap and manipulate particle in a liquid. For example, most of biological microscopic particle need to be trapped in liquid. Measurement of viscoelasticity of numerous biopolymers like DNA, protein fibers, chromosomes, cell membrane and others in aqueous solution can be done with the help of optical tweezers as a probe (Gow, 2000). These types of samples need fluidic environment. However, not all the time, trapping is done in a liquid system. Some system needs the optical tweezers to trap particle at the interface between two media. For example, a particle needs to be brought at the interface then the extended potential benefit of optical trapping can take place. Laser trapping of calixarene thin film on water surface at the interface causes it to change in assembly form; is one of the possible applications of trapping at interface opening a new area of field of trapping chemistry. A crystallization of molecular system such as glycerin in supersaturated solution occurs when trapping is performed at liquid-air interface (Sugiyama, Adachi, & Masuhara, 2007). It is very challenging to trap particle at the interface of two media. The different of two or more media will cause the highly focused laser beam to change its refraction

angle. This will result the loss of energy. The loss of energy will affect the ability of optical tweezers to hold and trap particle at the interface. The existing system needs modification in order to maintain trapping condition. Since trapping particle is very critical at the interface, high precision control of the laser spot is very significant to avoid mechanical vibration due to manual adjustment. Therefore, a mechanical control of piezostage which hold the objective lens of optical trapping is very important. The optical trap must be located precisely using piezostage at the interface. So the aim is to establish a micrometer range control of optical tweezers for trapping near water-air interface by using piezostage. Prior research qualitatively describes the behavior of trapped bead at interface (Dasgupta, Ahlawat, & Gupta, 2007). To date, no research has been reported to quantify the optical force for optical trapping at liquid-air interface. This proposed research also attempts to quantify the behavior by determining the optical stiffness near

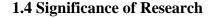
water-air interface in term of effective radius of particle displacement distribution at the

1.3 Research Objective

trap spot.

There are two objectives as the core of this study:

- To develop 3D piezostage control module for optical trapping within micrometer range.
- To determine the effective radius near water-air interface.



The aim of this study is to develop a 3D control optical tweezers for water-air interface applications. This would be useful for researcher that studies light and matter interaction of the particle at liquid-air interface. This study provides understanding related manipulation of particle at the interface region. Besides, this study also provides the precision improvement for the piezostage control compared to manual adjustment. The additional vibration that might influence the particle motion can be reduced and minimized. This is important because trapped particle hold by pico newton optical force might get away from trap spot due to external mechanical vibration.

05-4506832 pustaka.upsi.edu.my Perpustakaan Tuanku Bainun Rampus Sultan Abdul Jalil Shah
This research is not limited to study the optical trap near interface of water-air but it is useful for study another type of liquid. Each liquid has different viscosity. The optical stiffness also depends on the liquid viscosity. For example, the researcher might substitute the liquid-air interface with other liquid like oil, alcohol, maybe solutions or others. Therefore, this research would contribute to the study of optical trap near and at liquid-air interface; specifically water-air interface for this research.

This research is limited to study the trapping of particle towards water-air interface. Therefore the trapping of micron sized dielectric particle was done near water-air interface region. In this study, 3 micrometer polystyrene bead size was used as probe.

The Optical Tweezers was established using Modular Optical Tweezers, OTKB (M) series. Since every optical tweezers is unique and have different sensitivity, we would expect the different results if different of optical tweezers is used. The laser power used is relatively low within 1.7 mW until 16.1 mW. The optical stiffness was expected weak due to low laser power used. However, low power trapping is preferable to avoid heating effect on the trapped particle.

In addition, the oil-immersion objective lens with 1.25 numerical aperture was used throughout the study. The laser trap force was directly influenced by the type of objective lens used. The immersion objective lens are powerful than air-type objective lens in minimizing laser power loss due to different in media.

The working distance of the objective lens used was 0.23 mm which is very short. The range of axial distance was limited by this working distance. No optical trapping is possible beyond this limit.

1.6 Thesis Outline

This thesis mainly made up of 6 chapters. Chapter 1 highlights on the background of study and the direction goal of research. The main part of this chapter is problem statement and research objective.

Chapter 2 discusses the history of software platform and optical stiffness at waterair interface. Advantage and disadvantage of software is discussed. Also, the previous study of optical trapping at water-air interface is reviewed and compared. Optical stiffness is also included for discussion and its relation with effective radius.

Chapter 3 consists of three parts: development of control program, effective radius determination toward water-air interface and sample preparation procedure. Part 1 discusses on a control program development on LabVIEW platform. The second part discusses on how depth dependent optical trapping and determination of optical stiffness towards water – air interface is made. The third part discusses sample preparation procedure.

Chapter 4 discusses the developed control program, performance and modeling of piezostage voltage.

Chapter 5 discusses on results and discussion of effective radius near water air interface and also optical stiffness toward water – air interface.

Chapter 6 discusses the conclusion of the research finding on the results of research. A few recommendations are made to improve research and extend research for further study.

1.7 Summary

This chapter introduces background of the study, problem statement, research objectives, significant of study and scope and limitation of study.

