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ABSTRACT

The research aimed to determine the effective radius (r*) of a trapped polystyrene
microbead near a water-air interface and to develop a 3-dimensional piezostage control
module for optical trapping within micrometre range. This study involved the
development of a control program so called PZStage and the determination of r* near the
water-air interface. PZStage was developed on the LabVIEW platform to control laser
focus location in the trapping medium. A 3 um bead was trapped in water at several
heights towards the free space in a special design test cell. The temporal displacement
data of the trapped bead was recorded by a quadrant photodiode (QPD) and analysed by a
custom made program namely OSCal to determine r*. PZStage was well developed
which enabled precise laser focus control in 20 um range in three mutually orthogonal
directions. The result showed that r* was constant at any focus height at fixed water
thickness and laser power. Besides, r* depended on laser power at fixed laser focus
height and water thickness in the form of exponentially decaying relation. In conclusion,
PZStage was successfully developed to precisely control laser focus toward water-air
interface, and the r* was found to be dependent on laser power rather than laser focus
height within the set experimental conditions. The research implied that the low laser
power was possible for optical trapping near the water-air interface with appropriate
water thickness selection. However, consideration must be taken into account since the
trap was shifted away from the laser focus as the focus height increases due to scattering
force.



PENENTUAN JEJARI BERKESAN BAGI TABURAN MIKROMANIK
POLISTERINA YANG TERPERANGKAP SECARA OPTIK
BERDEKATAN ANTARAMUKA AIR-UDARA

ABSTRAK

Kajian ini bertujuan untuk menentukan jejari berkesan (r*) bagi mikromanik yang
terperangkap berdekatan antaramuka air-udara dan untuk membangunkan modul kawalan
piezopentas 3-dimensi untuk perangkap optik dalam julat mikrometer. Kajian ini
melibatkan pembangunan program pengawal yang dinamakan PZStage dan penentuan r*
berdekatan antaramuka air-udara. PZStage dibangunkan di atas platform LabVIEW untuk
mengawal lokasi fokus laser di dalam medium perangkap. Manik 3 um diperangkap
dalam air pada beberapa ketinggian menghampiri ruang bebas dalam sel uji yang direka
khas. Data sesaran temporal manik terperangkap tersebut direkod dengan fotodiod
kuadran (QPD) dan dianalisis dengan program buatan tersuai iaitu OSCal untuk
penentuan r*. PZStage yang telah dibangunkan dengan baik membolehkan lokasi fokus
laser dilaras dalam julat 20 um pada tiga arah berortogon. Keputusan menunjukkan r*
tidak berubah dengan tinggi fokus dalam keadaan ketebalan air dan kuasa laser
dimalarkan. Tambahan pula, r* bergantung kepada kuasa laser pada ketinggian fokus
laser dan ketebalan air dimalarkan membentuk hubungan pereputan eksponen. Sebagai
kesimpulan, PZStage berhasil dibangunkan dengan jayanya untuk mengawal fokus laser
secara tepat berdekatan antaramuka air-udara dan r* bergantung kepada kuasa laser
berbanding tinggi fokus laser dalam keadaan experimen yang ditetapkan. Implikasi kajian
ini adalah pemerangkapan optik berdekatan antaramuka air-udara boleh dilakukan pada
kuasa laser yang rendah dengan ketebalan air yang sesuai. Namun begitu, pertimbangan
hendaklah diambil kira kerana perangkap akan beralih jauh dari fokus laser apabila
ketinggian fokus meningkat disebabkan oleh daya serakan.
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CHAPTER 1

INTRODUCTION

1.1 Background of Research Study

Optical tweezers is one of the tools being used to manipulate micron sized objects or
smaller using light. The optical tweezers fundamentally works by highly focus a laser
beam via a high numerical aperture objective to produce a trap spot. Optical trapping
field pioneered by Arthur Ashkin is awarded by Nobel Prize in Physics 2018 due to his
invention on using optical tweezers to manipulate biology particle (The Nobel Prize,

2018). In the same manner, optical trapping term refers to the technique of using the



optical trap force that can attract transparent microscopic particle to get stuck in it a trap
center. The optical trap force is produced due to two different forces which are gradient
and scattering forces. The gradient force is depended on light intensity profile while the
scattering force is due to change of momentum of light (photon). The resultant of these
two forces will result an optical force or trapped force. To sum up, optical tweezers create
a certain level of intensity gradient by highly concentrating beam laser to a single point to

physically hold and manipulate micron sized particle (Gutiérrez-Campos, 2010).

Figure 1.1. The working principle of optical trapping (Lynn, 2003).

The working principle of optical trapping is illustrated in Figure 1.1. In this study,
the trapped particle size is bigger than laser wavelength. Thus, ray optics approach is
used to explain the trapping mechanism. Ray 1 and ray 2 are refracted when they enter

the dielectric sphere due to the difference in refractive indices of the two media. The



refracted ray 1 and 2 resulted a net force on the particle that has a direction toward to the
focus of the laser beam. This resulted net force causes the particle to get pushed trapped
toward to the focus of rays and finally being trapped. That was the summarization on how
optical trapping occurred and caused it to be significance in manipulating micron-sized

particles ( Ashkin, 1992).

The optical tweezers nowadays become very significance tool compared to
traditional mechanical tweezers such as micropipette (Jiao & Zhang, 2013). This is
because optical tweezers provide manipulation of a particle without being contacted
physically. Therefore the damage minimization of delicate samples is made possible.
Optical tweezers are widely used to study biological microscopic particle. Optical force is
used in optical tweezers to control and dominate bacteria and small cells rather than using
mechanical force. As biological sample is fragile and sensitive, non-contact tweezers can
prevent flaw of sample and satisfy the requirement of application such as in biomedical
field (Conteduca, Dell’Olio, Ciminelli, Krauss, & Armenise, 2016). There are many
applications of optical tweezers. The mechanical learning of single biological molecules
has been revolutionized with the advance of optical trapping techniques for the last 20
years. Optical trapping are worthwhile tools to study the properties of micro-molecules
such as position, stiffness, elasticity and viscosity (Aziz, Ayop, & Riyanto, 2015; Deufel

& Wang, 2006).



Most of the applications involve in manipulation of microscopic particles are in
liquid. It would be interesting to study the ability of optical force at another level to open

up a wide research opportunity; trapping particle at liquid-air interface.

1.2 Problem Statement

Optical tweezers have been widely used to trap and manipulate particle in a liquid. For
example, most of biological microscopic particle need to be trapped in liquid.
Measurement of viscoelasticity of numerous biopolymers like DNA, protein fibers,
chromosomes, cell membrane and others in aqueous solution can be done with the help of
optical tweezers as a probe (Gow, 2000). These types of samples need fluidic
environment. However, not all the time, trapping is done in a liquid system. Some system
needs the optical tweezers to trap particle at the interface between two media. For
example, a particle needs to be brought at the interface then the extended potential benefit
of optical trapping can take place. Laser trapping of calixarene thin film on water surface
at the interface causes it to change in assembly form; is one of the possible applications
of trapping at interface opening a new area of field of trapping chemistry. A
crystallization of molecular system such as glycerin in supersaturated solution occurs
when trapping is performed at liquid-air interface (Sugiyama, Adachi, & Masuhara,
2007). It is very challenging to trap particle at the interface of two media. The different of

two or more media will cause the highly focused laser beam to change its refraction



angle. This will result the loss of energy. The loss of energy will affect the ability of
optical tweezers to hold and trap particle at the interface. The existing system needs
modification in order to maintain trapping condition. Since trapping particle is very
critical at the interface, high precision control of the laser spot is very significant to avoid
mechanical vibration due to manual adjustment. Therefore, a mechanical control of
piezostage which hold the objective lens of optical trapping is very important. The optical
trap must be located precisely using piezostage at the interface. So the aim is to establish
a micrometer range control of optical tweezers for trapping near water-air interface by
using piezostage. Prior research qualitatively describes the behavior of trapped bead at
interface (Dasgupta, Ahlawat, & Gupta, 2007). To date, no research has been reported to
quantify the optical force for optical trapping at liquid-air interface. This proposed
research also attempts to quantify the behavior by determining the optical stiffness near
water-air interface in term of effective radius of particle displacement distribution at the

trap spot.

1.3 Research Objective

There are two objectives as the core of this study:

e To develop 3D piezostage control module for optical trapping within micrometer
range.

e To determine the effective radius near water-air interface.



1.4 Significance of Research

The aim of this study is to develop a 3D control optical tweezers for water-air interface
applications. This would be useful for researcher that studies light and matter interaction
of the particle at liquid-air interface. This study provides understanding related
manipulation of particle at the interface region. Besides, this study also provides the
precision improvement for the piezostage control compared to manual adjustment. The
additional vibration that might influence the particle motion can be reduced and
minimized. This is important because trapped particle hold by pico newton optical force

might get away from trap spot due to external mechanical vibration.

This research is not limited to study the optical trap near interface of water-air but
it is useful for study another type of liquid. Each liquid has different viscosity. The
optical stiffness also depends on the liquid viscosity. For example, the researcher might
substitute the liquid-air interface with other liquid like oil, alcohol, maybe solutions or
others. Therefore, this research would contribute to the study of optical trap near and at

liquid-air interface; specifically water-air interface for this research.



1.5 Limitation of Research

This research is limited to study the trapping of particle towards water-air interface.
Therefore the trapping of micron sized dielectric particle was done near water-air

interface region. In this study, 3 micrometer polystyrene bead size was used as probe.

The Optical Tweezers was established using Modular Optical Tweezers, OTKB
(/M) series. Since every optical tweezers is unique and have different sensitivity, we
would expect the different results if different of optical tweezers is used. The laser power
used is relatively low within 1.7 mW until 16.1 mW. The optical stiffness was expected
weak due to low laser power used. However, low power trapping is preferable to avoid

heating effect on the trapped particle.

In addition, the oil-immersion objective lens with 1.25 numerical aperture was
used throughout the study. The laser trap force was directly influenced by the type of
objective lens used. The immersion objective lens are powerful than air-type objective

lens in minimizing laser power loss due to different in media.

The working distance of the objective lens used was 0.23 mm which is very short.
The range of axial distance was limited by this working distance. No optical trapping is

possible beyond this limit.



1.6 Thesis Outline

This thesis mainly made up of 6 chapters. Chapter 1 highlights on the background of
study and the direction goal of research. The main part of this chapter is problem

statement and research objective.

Chapter 2 discusses the history of software platform and optical stiffness at water-
air interface. Advantage and disadvantage of software is discussed. Also, the previous
study of optical trapping at water-air interface is reviewed and compared. Optical

stiffness is also included for discussion and its relation with effective radius.

Chapter 3 consists of three parts: development of control program, effective
radius determination toward water-air interface and sample preparation procedure . Part 1
discusses on a control program development on LabVIEW platform. The second part
discusses on how depth dependent optical trapping and determination of optical stiffness
towards water — air interface is made. The third part discusses sample preparation

procedure.

Chapter 4 discusses the developed control program, performance and modeling of

piezostage voltage.



Chapter 5 discusses on results and discussion of effective radius near water air

interface and also optical stiffness toward water — air interface.

Chapter 6 discusses the conclusion of the research finding on the results of
research. A few recommendations are made to improve research and extend research for

further study.

1.7 Summary

This chapter introduces background of the study, problem statement, research objectives,

significant of study and scope and limitation of study.





