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ABSTRACT 

 

 

 

The research aimed to determine the effective radius (r*) of a trapped polystyrene 

microbead near a water-air interface and to develop a 3-dimensional piezostage control 

module for optical trapping within micrometre range. This study involved the 

development of a control program so called PZStage and the determination of r* near the 

water-air interface. PZStage was developed on the LabVIEW platform to control laser 

focus location in the trapping medium. A 3 µm bead was trapped in water at several 

heights towards the free space in a special design test cell. The temporal displacement 

data of the trapped bead was recorded by a quadrant photodiode (QPD) and analysed by a 

custom made program namely OSCal to determine r*. PZStage was well developed 

which enabled precise laser focus control in 20 µm range in three mutually orthogonal 

directions. The result showed that r* was constant at any focus height at fixed water 

thickness and laser power. Besides, r* depended on laser power at fixed laser focus 

height and water thickness in the form of exponentially decaying relation. In conclusion, 

PZStage was successfully developed to precisely control laser focus toward water-air 

interface, and the r* was found to be dependent on laser power rather than laser focus 

height within the set experimental conditions. The research implied that the low laser 

power was possible for optical trapping near the water-air interface with appropriate 

water thickness selection. However, consideration must be taken into account since the 

trap was shifted away from the laser focus as the focus height increases due to scattering 

force. 
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PENENTUAN JEJARI BERKESAN BAGI TABURAN MIKROMANIK 

POLISTERINA YANG TERPERANGKAP SECARA OPTIK          

BERDEKATAN ANTARAMUKA AIR-UDARA 

 

 

ABSTRAK 

 

 

Kajian ini bertujuan untuk menentukan jejari berkesan (r*) bagi mikromanik yang 

terperangkap berdekatan antaramuka air-udara dan untuk membangunkan modul kawalan 

piezopentas 3-dimensi untuk perangkap optik dalam julat mikrometer. Kajian ini 

melibatkan pembangunan program pengawal yang dinamakan PZStage dan penentuan r* 

berdekatan antaramuka air-udara. PZStage dibangunkan di atas platform LabVIEW untuk 

mengawal lokasi fokus laser di dalam medium perangkap. Manik 3 µm diperangkap 

dalam air pada beberapa ketinggian menghampiri ruang bebas dalam sel uji yang direka 

khas. Data sesaran temporal manik terperangkap tersebut direkod dengan fotodiod 

kuadran (QPD) dan dianalisis dengan program buatan tersuai iaitu OSCal untuk 

penentuan r*. PZStage yang telah dibangunkan dengan baik membolehkan lokasi fokus 

laser dilaras dalam julat 20 µm pada tiga arah berortogon. Keputusan menunjukkan r* 

tidak berubah dengan tinggi fokus dalam keadaan ketebalan air dan kuasa laser 

dimalarkan. Tambahan pula, r* bergantung kepada kuasa laser pada ketinggian fokus 

laser dan ketebalan air dimalarkan membentuk hubungan pereputan eksponen. Sebagai 

kesimpulan, PZStage berhasil dibangunkan dengan jayanya untuk mengawal fokus laser 

secara tepat berdekatan antaramuka air-udara dan r* bergantung kepada kuasa laser 

berbanding tinggi fokus laser dalam keadaan experimen yang ditetapkan. Implikasi kajian 

ini adalah pemerangkapan optik berdekatan antaramuka air-udara boleh dilakukan pada 

kuasa laser yang rendah dengan ketebalan air yang sesuai. Namun begitu, pertimbangan 

hendaklah diambil kira kerana perangkap akan beralih jauh dari fokus laser apabila 

ketinggian fokus meningkat disebabkan oleh daya serakan. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of Research Study 

 

Optical tweezers is one of the tools being used to manipulate micron sized objects or 

smaller using light. The optical tweezers fundamentally works by highly focus a laser 

beam via a high numerical aperture objective to produce a trap spot. Optical trapping 

field pioneered by Arthur Ashkin is awarded by Nobel Prize in Physics 2018 due to his 

invention on using optical tweezers to manipulate biology particle (The Nobel Prize, 

2018). In the same manner, optical trapping term refers to the technique of using the 
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optical trap force that can attract transparent microscopic particle to get stuck in it a trap 

center. The optical trap force is produced due to two different forces which are gradient 

and scattering forces. The gradient force is depended on light intensity profile while the 

scattering force is due to change of momentum of light (photon). The resultant of these 

two forces will result an optical force or trapped force. To sum up, optical tweezers create 

a certain level of intensity gradient by highly concentrating beam laser to a single point to 

physically hold and manipulate micron sized particle (Gutiérrez-Campos, 2010).  

 

 

Figure 1.1. The working principle of optical trapping (Lynn, 2003). 

 

The working principle of optical trapping is illustrated in Figure 1.1. In this study, 

the trapped particle size is bigger than laser wavelength. Thus, ray optics approach is 

used to explain the trapping mechanism. Ray 1 and ray 2 are refracted when they enter 

the dielectric sphere due to the difference in refractive indices of the two media. The 

1 2 

F1 F2 

Fnet 
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refracted ray 1 and 2 resulted a net force on the particle that has a direction toward to the 

focus of the laser beam. This resulted net force causes the particle to get pushed trapped 

toward to the focus of rays and finally being trapped. That was the summarization on how 

optical trapping occurred and caused it to be significance in manipulating micron-sized 

particles ( Ashkin, 1992). 

 

The optical tweezers nowadays become very significance tool compared to 

traditional mechanical tweezers such as micropipette (Jiao & Zhang, 2013). This is 

because optical tweezers provide manipulation of a particle without being contacted 

physically. Therefore the damage minimization of delicate samples is made possible. 

Optical tweezers are widely used to study biological microscopic particle. Optical force is 

used in optical tweezers to control and dominate bacteria and small cells rather than using 

mechanical force. As biological sample is fragile and sensitive, non-contact tweezers can 

prevent flaw of sample and satisfy the requirement of application such as in biomedical 

field (Conteduca, Dell‟Olio, Ciminelli, Krauss, & Armenise, 2016). There are many 

applications of optical tweezers. The mechanical learning of single biological molecules 

has been revolutionized with the advance of optical trapping techniques for the last 20 

years. Optical trapping are worthwhile tools to study the properties of micro-molecules 

such as position, stiffness, elasticity and viscosity (Aziz, Ayop, & Riyanto, 2015; Deufel 

& Wang, 2006). 
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Most of the applications involve in manipulation of microscopic particles are in 

liquid. It would be interesting to study the ability of optical force at another level to open 

up a wide research opportunity; trapping particle at liquid-air interface. 

 

 

1.2 Problem Statement 

 

Optical tweezers have been widely used to trap and manipulate particle in a liquid. For 

example, most of biological microscopic particle need to be trapped in liquid. 

Measurement of  viscoelasticity of numerous biopolymers like DNA, protein fibers, 

chromosomes, cell membrane and others in aqueous solution can be done with the help of 

optical tweezers as a probe (Gow, 2000). These types of samples need fluidic 

environment. However, not all the time, trapping is done in a liquid system. Some system 

needs the optical tweezers to trap particle at the interface between two media. For 

example, a particle needs to be brought at the interface then the extended potential benefit 

of optical trapping can take place. Laser trapping of calixarene thin film on water surface 

at the interface causes it to change in assembly form; is one of the possible applications 

of trapping at interface opening a new area of field of trapping chemistry. A 

crystallization of molecular system such as glycerin in supersaturated solution occurs 

when trapping is performed at liquid-air interface (Sugiyama, Adachi, & Masuhara, 

2007). It is very challenging to trap particle at the interface of two media. The different of 

two or more media will cause the highly focused laser beam to change its refraction 
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angle. This will result the loss of energy. The loss of energy will affect the ability of 

optical tweezers to hold and trap particle at the interface. The existing system needs 

modification in order to maintain trapping condition. Since trapping particle is very 

critical at the interface, high precision control of the laser spot is very significant to avoid 

mechanical vibration due to manual adjustment. Therefore, a mechanical control of 

piezostage which hold the objective lens of optical trapping is very important. The optical 

trap must be located precisely using piezostage at the interface. So the aim is to establish 

a micrometer range control of optical tweezers for trapping near water-air interface by 

using piezostage. Prior research qualitatively describes the behavior of trapped bead at 

interface (Dasgupta, Ahlawat, & Gupta, 2007). To date, no research has been reported to 

quantify the optical force for optical trapping at liquid-air interface. This proposed 

research also attempts to quantify the behavior by determining the optical stiffness near 

water-air interface in term of effective radius of particle displacement distribution at the 

trap spot. 

 

 

1.3 Research Objective 

 

There are two objectives as the core of this study: 

 To develop 3D piezostage control module for optical trapping within micrometer 

range. 

 To determine the effective radius near water-air interface. 
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1.4 Significance of Research 

 

The aim of this study is to develop a 3D control optical tweezers for water-air interface 

applications. This would be useful for researcher that studies light and matter interaction 

of the particle at liquid-air interface. This study provides understanding related 

manipulation of particle at the interface region. Besides, this study also provides the 

precision improvement for the piezostage control compared to manual adjustment. The 

additional vibration that might influence the particle motion can be reduced and 

minimized. This is important because trapped particle hold by pico newton optical force 

might get away from trap spot due to external mechanical vibration.  

 

This research is not limited to study the optical trap near interface of water-air but 

it is useful for study another type of liquid. Each liquid has different viscosity. The 

optical stiffness also depends on the liquid viscosity. For example, the researcher might 

substitute the liquid-air interface with other liquid like oil, alcohol, maybe solutions or 

others. Therefore, this research would contribute to the study of optical trap near and at 

liquid-air interface; specifically water-air interface for this research. 
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1.5 Limitation of Research 

 

This research is limited to study the trapping of particle towards water-air interface. 

Therefore the trapping of micron sized dielectric particle was done near water-air 

interface region. In this study, 3 micrometer polystyrene bead size was used as probe.  

 

The Optical Tweezers was established using Modular Optical Tweezers, OTKB 

(/M) series. Since every optical tweezers is unique and have different sensitivity, we 

would expect the different results if different of optical tweezers is used.  The laser power 

used is relatively low within 1.7 mW until 16.1 mW. The optical stiffness was expected 

weak due to low laser power used. However, low power trapping is preferable to avoid 

heating effect on the trapped particle. 

 

In addition, the oil–immersion objective lens with 1.25 numerical aperture was 

used throughout the study. The laser trap force was directly influenced by the type of 

objective lens used.  The immersion objective lens are powerful than air-type objective 

lens in minimizing laser power loss due to different in media. 

 

The working distance of the objective lens used was 0.23 mm which is very short. 

The range of axial distance was limited by this working distance. No optical trapping is 

possible beyond this limit.  
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1.6 Thesis Outline 

 

This thesis mainly made up of 6 chapters. Chapter 1 highlights on the background of 

study and the direction goal of research. The main part of this chapter is problem 

statement and research objective. 

 

Chapter 2 discusses the history of software platform and optical stiffness at water-

air interface.  Advantage and disadvantage of software is discussed. Also, the previous 

study of optical trapping at water-air interface is reviewed and compared. Optical 

stiffness is also included for discussion and its relation with effective radius. 

 

Chapter 3 consists of three parts: development of control program, effective 

radius determination toward water-air interface and sample preparation procedure . Part 1 

discusses on a control program development on LabVIEW platform. The second part 

discusses on how depth dependent optical trapping and determination of optical stiffness 

towards water – air interface is made. The third part discusses sample preparation 

procedure.   

 

Chapter 4 discusses the developed control program, performance and modeling of 

piezostage voltage. 
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Chapter 5 discusses on results and discussion of effective radius near water air 

interface and also optical stiffness toward water – air interface. 

 

Chapter 6 discusses the conclusion of the research finding on the results of 

research. A few recommendations are made to improve research and extend research for 

further study. 

 

 

1.7 Summary 

 

This chapter introduces background of the study, problem statement, research objectives, 

significant of study and scope and limitation of study. 

 

 

 

 

 

 

 




