

OPTIMISATION AND CHARACTERISATION OF **BIODIESEL FROM BIODEGRADATION** OF ORGANIC WASTES BY BLACK SOLDIER FLY LARVAE

O 05-4506832 O pustaka.upsi SYUKRIYAH BINTI ISHAK

UNIVERSITI PENDIDIKAN SULTAN IDRIS

2020

OPTIMISATION AND CHARACTERISATION OF BIODIESEL FROM BIODEGRADATION OF ORGANIC WASTES BY BLACK SOLDIER FLY LARVAE

SYUKRIYAH BINTI ISHAK

O 5-4506832 pustaka.upsi.edu.my f Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah PustakaTBainun btupsi

THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

FACULTY OF SCIENCE AND MATHEMATICS UNIVERSITI PENDIDIKAN SULTAN IDRIS

2020

PustakaTBair UPSI/IPS-3/BO 32 bupsi Pind : 00 m/s: 1/1

Please tick (√) Project Paper Masters by Research Master by Mixed Mode PhD

4	_	
1	-	
1	-	-

INSTITUTE OF GRADUATE STUDIES

DECLARATION OF ORIGINAL WORK

i. Student's Declaration:

ritten for me by another person. 5-4506832 pustaka.upsi.edu.my Perpusta Kampus Signature of the student	SATION OF BIODIESEL FROM ACK SOLDIER FLY LARVAE is my
ODEGRADATION OF ORGANIC WASTES BY BLA iginal work. I have not copied from any other stu- here due reference or acknowledgement is m ritten for me by another person. 5-4506832 pustaka.upsi.edu.my Perpusta Kampus Signature of the student	ACK SOLDIER FLY LARVAE is my udents' work or from any other sources except ade explicitly in the text, nor has any part been
iginal work. I have not copied from any other stu here due reference or acknowledgement is m ritten for me by another person. 5-4506832 pustaka.upsi.edu.my Perpusta Kampus Signature of the student	udents' work or from any other sources except ade explicitly in the text, nor has any part been
here due reference or acknowledgement is m ritten for me by another person. 5-4506832 pustaka.upsi.edu.my Perpusta Kampus Signature of the student	ade explicitly in the text, nor has any part been
ritten for me by another person. 5-4506832 pustaka.upsi.edu.my Perpusta Kampus Signature of the student	
5-4506832 pustaka.upsi.edu.my	
	_ (SUPERVISOR'S NAME) hereby certifies that
e work entitled <u>OPTIMISATION AND CHARAC</u>	
ODEGRADATION OF ORGANIC WASTES BY BLA	ICK SOLDIER FLY LARVAE
(TITLE) was prep	ared by the above named student, and was
bmitted to the Institute of Graduate Studies as a	* partial /full fulfillment for the conferment
DOCTOR OF PHILOSOPH	
IE DEGREE), and the aforementioned work, to th	
	Signature of the Supervisor

INSTITUT PENGAJIAN SISWAZAH / INSTITUTE OF GRADUATE STUDIES

BORANG PENGESAHAN PENYERAHAN TESIS/DISERTASI/LAPORAN KERTAS PROJEK DECLARATION OF THESIS/DISSERTATION/PROJECT PAPER FORM

Tajuk / Title:

OPTIMISATION AND CHARACTERISATION OF BIODIESEL FROM

BIODEGRADATION OF ORGANIC WASTES BY BLACK SOLDIER FLY

LARVAE

P20151001108

No. Matrik /Matric's No.:

Saya / /:

SYUKRIYAH BINTI ISHAK (Nama pelajar / Student's Name)

mengaku membenarkan Tesis/Disertasi/Laporan Kertas Projek (Kedoktoran/Sarjana)* ini disimpan di Universiti Pendidikan Sultan Idris (Perpustakaan Tuanku Bainun) dengan syarat-syarat kegunaan seperti berikut:-

acknowledged that Universiti Pendidikan Sultan Idris (Tuanku Bainun Library) reserves the right as follows:-

- 1. Tesis/Disertasi/Laporan Kertas Projek ini adalah hak milik UPSI. The thesis is the property of Universiti Pendidikan Sultan Idris
- 2. Perpustakaan Tuanku Bainun dibenarkan membuat salinan untuk tujuan rujukan dan penyelidikan.

Tuanku Bainun Library has the right to make copies for the purpose of reference and research.

- Perpustakaan dibenarkan membuat salinan Tesis/Disertasi ini sebagai bahan pertukaran antara Institusi Pengajian Tinggi. The Library has the right to make copies of the thesis for academic exchange.
- 4. Sila tandakan ($\sqrt{}$) bagi pilihan kategori di bawah / Please tick ($\sqrt{}$) for category below:-

SULIT/CONFIDENTIAL Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub dalam Akta Rahsia Rasmi 1972. / Contains confidential information under the Official Secret Act 1972 TERHAD/RESTRICTED Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan ini dijalankan, / Contains restircted information as specified by the organization where research was done. PROF. MADYA DR AZLAN KAMARI TIDAK TERHAD / OPEN ACCESS Pensyarah Jabatan Kimia Fakutti Sains & Matematik iversiti Pendidikan Sultan Idris (Tandatangan Penyelia / Signature of Supervisor) (Tandatangan Pelajar/ Signature) & (Nama & Cop Rasmi / Name & Official Stamp) 11 18/2020 Tarikh:

Catatan: Jika Tesis/Disertasi ini SULIT @ TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan ini perlu dikelaskan sebagai SULIT dan TERHAD.

Notes: If the thesis is CONFIDENTAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentiality or restriction.

05-4500

iv

ACKNOWLEDGEMENTS

In the name of Allah, the Most Gracious, the Most Merciful

All praise to Allah S.W.T, for blessing me with strength and health, I was able to finish this Doctor of Philosophy (PhD) research work.

First of all, I would like to express my deepest gratitude to my beloved supervisor, Associate Professor Dr. Azlan Kamari for his dedication, patience, encouragement, perceptive comment and guidance throughout this study. Without his support, it might be tougher for me in to walk in this journey.

I extend my sincere thanks to staffs and laboratory assistants of Department of Chemistry, Faculty of Science and Mathematics, UPSI;- Mr. Ibrahim Saidin, Mr. Ahmad Supian Abdullah, Mrs. Johana Jumiran, Mr. Zurin Mahmud, Mr. Muhammad Hazim Baharudin, Mr. Ahmad Isa Hamizi, Mr. Mohd Farhan, Mrs. Radiah Idris, Mr. Mohd Hashimi Ma'ani and Ms. Siti Noor Farina Mohd Fuad Ooi for their assistance.

My deepest gratitude and thanks to my friends and colleagues;- Ms. Siti Najiah Yusoff, Ms. Tretya Ardyani, Ms. Susana Wong, Ms. Juliana Jumadi, Ms. Nurul Farhana Aljafree, Mrs. Mimi Syakila Samsi and Mr. Sahli Muda for their support and help. I am also grateful to Ministry of Education Malaysia (Higher Education) for granting me a scholarship under programme MyBrain15 (MyPhD).

Besides, I would like to thanks to Mr Mah Iazam Mah Hussein and Mr Zainal Mohd Sharip for technical guidance and assistance during this research work.

Last but not least, my heartfelt gratitude to my parents; Mr. Ishak Wahab and Mrs. Siti Ajar Awang, my husband, Kamal Adam, my daughter Nur Hana Insyirah Kamal, my son, Mohammad Zafran Aqil Kamal and my family for their unconditional moral support through this tough journey.

v

ABSTRACT

This research aimed to optimise and characterise environmental friendly biodiesel produced through biodegradation of organic wastes by black soldier fly (Hermetia illucens) larvae. This research is divided into four main studies, namely characterisation of organic wastes, cultivation of insect larvae, characterisation of insect larval lipid and determination of the properties of insect larval biodiesel. The organic wastes used for cultivation of insect larvae were food kitchen waste (FKW), soya residue (SR) and mixed waste (MW). The main scientific instruments used in this study were Fourier transform infrared (FTIR) spectrometer, nuclear magnetic resonance (NMR) spectrometer and gas chromatography-flame ionisation detector (GC-FID). For organic wastes and insect larvae characterisation, several analyses such as content of moisture, protein, carbohydrate, ash and fat, pH value and crude fiber were carried out. The extraction of larval lipid was conducted using Soxhlet method and underwent a two-step transesterification process to produce biodiesel. The highest yield of biodiesel (95.80%) was from black soldier fly larval lipid as a result of fed by FKW followed by SR (90.26%) and MW (90.25%). FTIR and NMR analyses confirmed the successful transformation of larval lipid to biodiesel by the appearance of the fatty acid methyl ester (FAME) functional groups in the spectra. While, GC-FID analysis showed the FAME composition of biodiesel comprised of both saturated (lauric acid, myristic acid, palmitic acid, capric acid and stearic acid) and unsaturated (oleic acid, palmitoleic acid and linoleic acid) FAME. The produced insect larval biodiesel met the value recommended by American Society for Test and the Materials (ASTM) D6751 and European (EN) 14214 standards. In conclusion, black soldier fly larvae were able to convert organic wastes studied to biodiesel. In implication, the insect larvae can be potentially applied as a low-cost biodiesel feedstock for reducing the operational cost of biodiesel production.

05-450

vi

PENGOPTIMUMAN DAN PENCIRIAN BIODIESEL DARIPADA BIODEGRADASI SISA ORGANIK OLEH LARVA LALAT ASKAR HITAM

ABSTRAK

Kajian ini bertujuan untuk mengoptimumkan dan mencirikan biodiesel mesra alam terhasil melalui biodegradasi sisa organik oleh larva lalat askar hitam (Hermetia illucens). Penyelidikan ini dibahagikan kepada empat kajian utama, iaitu pencirian sisa organik, pemeliharaan larva serangga, pencirian lipid larva serangga dan penentuan sifat-sifat biodiesel larva serangga. Sisa organik yang digunakan untuk pemeliharaan larva serangga adalah sisa makanan dapur (FKW), hampas soya (SR) dan campuran sisa (MW). Peralatan saintifik utama yang digunakan dalam kajian ini ialah spektrometer inframerah transformasi Fourier (FTIR), spektrometer resonans magnet nukleus (NMR) dan kromatografi gas-pengesan nyala pengionan (GC-FID). Bagi pencirian sisa organik dan larva serangga, beberapa analisis seperti kandungan lembapan, protein, karbohidrat, abu dan lemak, nilai pH dan serat kasar telah dijalankan. Pengekstrakan lipid larva telah dilakukan menggunakan kaedah Soxhlet dan telah menjalani suatu proses transpengesteran dua langkah untuk menghasilkan biodiesel. Hasil biodiesel tertinggi (95.80%) adalah dari lipid larva lalat askar hitam hasil suapan FKW diikuti SR (90.26%) dan MW (90.25%). Analisis FTIR dan NMR mengesahkan kejayaan transformasi lipid larva kepada biodiesel dengan kehadiran kumpulan-kumpulan berfungsi asid lemak metil ester (FAME) di dalam spektra. Manakala, analisis GC-FID telah menunjukkan komposisi FAME biodiesel terdiri dari kedua-dua FAME, tepu (asid laurik, asid miristik, asid palmitik, asid kaprik dan asid stearik) dan tak tepu (asid oleik, asid palmitoleik dan asid linoleik). Biodiesel larva serangga yang dihasilkan menepati nilai yang disyorkan oleh piawai American Society for Test and the Materials (ASTM) D6751 dan piawai European (EN) 14214. Kesimpulannya, larva lalat askar hitam mampu menukar sisa organik yang dikaji kepada biodiesel. Implikasinya, larva serangga berpotensi digunakan sebagai suatu stok suapan biodiesel berkos rendah bagi mengurangkan kos operasi penghasilan biodiesel.

vii

TABLE OF CONTENTS

			Page
DECLARATIO	N OF OR	IGINAL WORK	ii
DECLARATIO	N OF THI	ESIS	111
ACKNOWLED	GEMENT	S	iv
ABSTRACT			V
ABSTRAK			vi
TABLE OF CO	NTENTS		vii
4506 LIST OF TABL	ES.edu.my		Xiiiipups
LIST OF FIGU	RES		xviii
LIST OF ABBR	EVIATIO	DNS	xxivi
LIST OF APPE	NDICES		xxiviv
CHAPTER 1	INTRO	DUCTION	
	1.1	Research Background	1

1.2	Roles of Malaysia towards Green Energy Development	5
1.3	Description of Biodiesel	6
1.4	Insect Larvae for Biodiesel Production	7
1.5	Problem Statement	9
1.6	Research Gap	10

viii

1.7	Research Aim	11
1.8	Research Objectives	12
1.9	Research Scope	12
1.10	Research Significance	14
1.11	Hypothesis	14
1.12	Thesis Organisation	14

LITERATURE REVIEW **CHAPTER 2**

2.1 Global Energy: An Overview			
	2.1.1	Challenges and Crises of Energy	19
	2.1.2	Revolution of Renewable Energy	21
	2.1.3	Renewable Energy Scenario in Malaysia	22
		pustakaan Tuanku Bainun npus Sultan Abdul Jalil Shah 🛛 🎔 PustakaTBainun 👘	
	2.1.4	Potential Renewable Energy	25
		Resources in Malaysia	
2.2	Biofuel as	s an Alternative Renewable Energy	29
2.3	Biodiesel	: A Sustainable Biofuel	32
2.4	Productio	n Process of Biodiesel	39
	2.4.1	Transesterification Process for Biodiesel Production	40
2.5	Biodiesel	Feedstocks for Biodiesel Production	45
	2.5.1	Vegetables Oils	47
	2.5.2	Waste Cooking Oils	56
	2.5.3	Animal Fats	63
	2.5.4	Microorganisms	70

viiii

	2.5.5	Insect Larvae	81
2.6	Conflict	of Biodiesel Feedstock	90
2.7	Quality	of Biodiesel	92
CHAPTER 3 ME	THODOLO	DGY	
3.1	Chemica	als and Materials	95
3.2	Selection	n of Biomass	96
3.3	Cultivat	ion of Black soldier fly (BSF) Larvae	97
3.4	Characte Larvae	erisation Study of Biomass and BSF	97
	3.4.1	Moisture Content	98
	3.4.2	Protein	98
	3.4.3	Carbohydrate	99 ptb
	3.4.4	Ash Content	100
	3.4.5	рН	101
	3.4.6	Crude Fiber	101
3.5	Monitor Develop	ing Study of BSF Larval Growth	102
3.6	Extraction	on Study of BSF Larval Lipid	103
3.7	Characte	erisation Study of BSF Larval Lipid	104
	3.7.1	Acid Value or Free Fatty Acid	105
	3.7.2	Saponification Value	105
	3.7.3	Peroxide Value	106
	3.7.4	Iodine Value	107
3.8		ion of BSF Larval Biodiesel by terification	108

.... ivi

				IXI
		3.8.1	Acid-catalysed Esterification	109
		3.8.2	Alkaline-catalysed Transesterification	110
		3.8.3	Optimisation Study of Transesterification Process using Statistical Analysis	111
	3.9	Character Biodiesel	risation Study of BSF Larval Lipid	112
		3.9.1	Fourier Transform Infrared (FTIR) Spectroscopy	112
		3.9.2	Nuclear Magnetic Resonance (NMR) Spectroscopy	113
		3.9.3	Optical Polarisation Microscopy (OPM)	114
		3.9.4	Thermogravimetric Analysis (TGA)	114
05-4506832		3.9.5 Karr	Differential Scanning Calorimeter (DSC)	115
		3.9.6	CHNS-O Elemental Analysis	115
	3.10	Biodiesel	Properties Study	116
		3.10.1	Acid Value	117
		3.10.2	Oxidation Stability	117
		3.10.3	Water Content	118
		3.10.4	Flash Point	118
		3.10.5	Kinematic viscosity at 40 °C	118
		3.10.6	Cetane Number	119
		3.10.7	Density at 15 °C	119
		3.10.8	Cloud Point	119

				xi
		3.10.9	High Heating Value	120
		3.10.10	Fatty Acid Methyl Ester (FAME) Composition by Gas Chromatography- Flame Ionisation Detector (GC-FID)	121
		3.10.11	Determination of Detection of Limit and Quantification Limit	121
CHAPTER 4 R	ESU	LTS AND	DISCUSSION	
	4.1	Character	isation Study Organic Wastes	123
4	4.2		ng Study of BSF Larval Growth	128
		Developm 4.2.1	Degradation of Organic Wastes by BSF Larvae	135
	4.3	Character	isation Study of BSF larvae	138
832 😯 pustaka.upsi.e	4.4 du.my		n Study of BSF Larval Lipid	141
	4.5		risation Study of BSF Larval Lipid	145
	4.6	Productio	on of BSF Larval Biodiesel	149
	4.7		rification of BSF Larval Lipid (Food Waste, FKW)	150
		4.7.1	Acid-catalysed Esterification (BSF Larval Lipid – FKW)	150
		4.7.2	Optimisation of Acid-catalysed Esterification (BSF Larval Lipid – FKW)	154
		4.7.3	Alkaline-catalysed Transesterification (BSF Larval Lipid – FKW)	166
		4.7.4	Optimisation of Alkaline-catalysed Transesterification (BSF Larval Lipid – FKW)	169
	4.8	Transester Residue, S	rification of BSF Larval Lipid (Soya SR)	180

xii

	4.8.1	Acid-catalysed Esterification (BSF Larval Lipid – SR)	180
	4.8.2	Optimisation of Acid-catalysed Esterification (BSF Larval Lipid – SR)	183
	4.8.3	Alkaline-catalysed Transesterification (BSF Larval Lipid – SR)	194
	4.8.4	Optimisation of Alkaline-catalysed Transesterification (BSF Larval Lipid – SR)	197
4.9	Transeste Waste, M	rification of BSF Larval Lipid (Mixed W)	209
	4.9.1	Acid-catalysed Esterification (BSF Larval Lipid – MW)	209
	4.9.2 Perp Karr	Optimisation of Acid-catalysed Esterification (BSF Larval Lipid – MW)	212 Ptbup
	4.9.3	Alkaline-catalysed Transesterification (BSF Larval Lipid – MW)	223
	4.9.4	Optimisation of Alkaline-catalysed Transesterification (BSF Larval Lipid – MW)	226
4.10	Character	isation of BSF Larval Biodiesel	239
	4.10.1	Fourier Transform Infrared (FTIR) Analysis	239
	4.10.2	Proton Nuclear Magnetic Resonance (¹ H NMR) Analysis	244
	4.10.3	Carbon Nuclear Magnetic Resonance (¹³ C NMR) Analysis	249
	4.10.4	Optical Polarisation Microscopy (OPM)	254

xiii

	4.10.5	Thermogravimetric Analysis (TGA)	259
	4.10.6	Differential Scanning Calorimeter (DSC) Analysis	263
	4.10.7	CHNS-O Elemental Analysis	271
4.11	BSF Lar	val Biodiesel Properties	272
4.12	Fatty Ac GC-FID	id Methyl Ester Composition by	281

CHAPTER 5 CONCLUSIONS AND FUTURE RESEARCH

5.1	Conclusions	285
5.2	Future Research	288

REFERENCES

05-45068APPENDICES.upsi.edu.my

290

xiiii

LIST OF TABLES

No. Table	e	Page
1.1	Total Primary Energy Supply	3
1.2	Main Consumption of Energy	4
2.1	Energy Policies in Malaysia	19
2.2	Renewable Energy Policies in Malaysia	24
2.3	Renewable Energy Programme in Malaysia	25
2.4	Renewable Energy Resources in Malaysia	26
2.5	Common Biomass Resources in U.S and the Produced Fuels	30bups
2.6	Biofuel and Its Advantages and Disadvantages for Each Category	31
2.7	List of Selected Review Article and Their Specific Focus Related to Biodiesel Production	35
2.8	Comparison of Biodiesel Yield Using Different Types of Alcohols for Transesterification Process	42
2.9	Biodiesel Production from Several Vegetables Oils as Feedstocks	52
2.10	Biodiesel Production from Several Waste Cooking Oils as Feedstocks	60
2.11	Biodiesel Production from Several Animal Fats as Feedstocks	67
2.12	Biodiesel Production from Several Microorganisms as Feedstocks	76
2.13	Biodiesel Production from Several Insect Larvae as Feedstocks	87
2.14	ASTM D6751 and EN 14214 Standard Limits for Biodiesel	94

PustakaTBainun PustakaTBainun ptbupsi

		xivi	
3.1	List of Chemicals and Materials Used	96	
3.2	The Physical and Chemical Properties of BSF Larval Lipid and Method	104	
3.3	The List of Biodiesel Properties and Standard Method	116	
4.1	Properties of Organic Wastes	128	
4.2	Physical Properties of BSF Larvae Fed by Food Kitchen Waste	132	
4.3	Physical Properties of BSF Larvae Fed by Soya Residue	133	
4.4	Physical Properties of BSF Larvae Fed by Mixed Waste	134	
4.5	Degradation of Food Kitchen Waste by BSF	137	
4.6	Degradation of Soya Residue by BSF	137	
4.7	Degradation of Mixed Waste by BSF	138	
4.8	Properties of BSF Larvae	140	
4.9	Protein Value of BSF Larvae from Various Study	140	
4.10	Types of Solvents Used for Extraction Study of BSF Larval Lipid	145	
4.11	Properties of BSF Larval Lipid	148	
4.12	The Variables and Their Range in the Experimental Design (Acid- catalysed Esterification for BSF Larval Lipid – FKW)	155	
4.13	Design Matrix of Experiments and Experimental Yields (Acid- catalysed Esterification for BSF Larval Lipid – FKW)	156	
4.14	Sequential Model Sum of Squares (Acid-catalysed Esterification for BSF Larval Lipid – FKW)	157	
4.15	Analysis of Variance (Acid-catalysed Esterification for BSF Larval Lipid – FKW)	159	
4.16	Model Validation at the Optimum Conditions (Acid-catalysed Esterification for BSF Larval Lipid – FKW)	162	
4.17	The Variables and Their Range in the Experimental Design (Alkaline-catalysed Transesterification for BSF Larval Lipid – FKW)	170	

		xvi
4.18	Design Matrix of Experiments and Experimental Yields (Alkaline- catalysed Transesterification for BSF Larval Lipid – FKW)	171
4.19	Sequential Model Sum of Squares (Alkaline-catalysed Transesterification for BSF Larval Lipid – FKW)	172
4.20	Analysis of Variance (Alkaline-catalysed Transesterification for BSF Larval Lipid – FKW)	173
4.21	Model Validation at the Optimum Conditions (Alkaline-catalysed Transesterification for BSF Larval Lipid – FKW)	176
4.22	The Variables and Their Range in the Experimental Design (Acid- catalysed Esterification for BSF Larval Lipid – SR)	184
4.23	Design Matrix of Experiments and Experimental Yields (Acid- catalysed Esterification for BSF Larval Lipid – SR)	185
4.24	Sequential Model Sum of Squares (Acid-catalysed Esterification for BSF Larval Lipid – SR)	186
4.25	Analysis of Variance (Acid-catalysed Esterification for BSF Larval Lipid – SR)	187 Ptbu
4.26	Model Validation at the Optimum Conditions (Acid-catalysed Esterification for BSF Larval Lipid – SR)	194
4.27	The Variables and Their Range in the Experimental Design (Alkaline-catalysed Transesterification for BSF Larval Lipid - SR)	198
4.28	Design Matrix of Experiments and Experimental Yields (Alkaline- catalysed Transesterification for BSF Larval Lipid – SR)	200
4.29	Sequential Model Sum of Squares (Alkaline-catalysed Transesterification for BSF Larval Lipid – SR)	201
4.30	Analysis of Variance (Alkaline-catalysed Transesterification for RSE Larvel Lipid SP)	202
4.31	BSF Larval Lipid – SR) Model Validation at the Optimum Conditions (Alkaline-catalysed Transesterification for BSF Larval Lipid – SR)	205
4.32	The Variables and Their Range in the Experimental Design (Acid catalysed Esterification for BSF Larval Lipid – MW)	213

xvii

		XVII
4.33	Design Matrix of Experiments and Experimental Yields (Acid- catalysed Esterification for BSF Larval Lipid – MW)	214
4.34	Sequential Model Sum of Squares (Acid-catalysed Esterification or BSF Larval Lipid – MW)	215
4.35	Analysis of Variance (Acid-catalysed Esterification for BSF Larval Lipid – MW)	216
4.36	Model Validation at the Optimum Conditions (Acid-catalysed Esterification for BSF Larval Lipid – MW)	219
4.37	The Variables and Their Range in the Experimental Design (Alkaline -catalysed Transesterification for BSF Larval Lipid - MW)	226
4.38	Design Matrix of Experiments and Experimental Yields (Alkaline- catalysed Transesterification for BSF Larval Lipid – MW)	228
4.39	Sequential Model Sum of Squares (Alkaline-catalysed Transesterification for BSF Larval Lipid – MW)	229
450684.40	Analysis of Variance (Alkaline-catalysed Transesterification for BSF Larval Lipid – MW)	230
4.41	Model Validation at the Optimum Conditions (Alkaline–catalysed Transesterification for BSF Larval Lipid – MW)	231
4.42	Elemental Composition of BSF Larval Biodiesel	272
4.43	Biodiesel Properties of BSF Larval Biodiesel	279
4.44	Comparison of BSF Larval Biodiesel Properties and Diesel	280
4.45	Fatty Acids Composition of BSF Larval Biodiesel	284

LIST OF FIGURES

No. Fig	gure	Page
2.1	General Transesterification Reaction of Triglyceride using Alcohol (Methanol)	43
2.2	The Global Production of Biodiesel and Its Distribution Worldwide	46
4.1	Flowchart of Experimental Study	124
4.2	The Three Types of Organic Wastes used in This Study (a) Food Kitchen Waste, (b) Soya Residue and (c) Mixed Waste.	
4.3	The Cultivation Process of BSF Larvae; (a) Rearing Cage, (b) BSF, (c) BSF Eggs and (d) Container containing Organic Waste.	125 ptbups
4.4	The Soxhlet Apparatus	141
4.5	Extraction of Larval Lipid from BSF Fed Food Kitchen Waste using Petroleum Ether, Acetone and Ethanol	143
4.6	Extraction of Larval Lipid from BSF Fed Soya Residue using Petroleum Ether, Acetone and Ethanol	144
4.7	Extraction of Larval Lipid from BSF Fed Mixed Waste using Petroleum Ether, Acetone and Ethanol	145
4.8	Effect of Methanol:oil (Molar Ratio) on FFA% and FFA Conversion (%) for Acid-catalysed Esterification (BSF Larval Lipid – FKW)	152
4.9	Effect of Catalyst Amount (%) on FFA% and FFA Conversion (%) for Acid-catalysed Esterification (BSF Larval Lipid – FKW)	152
4.10	Effect of Time (Minutes) on FFA% and FFA Conversion (%) for Acid-catalysed Esterification (BSF Larval Lipid – FKW)	153

xviiii

4.11 Effect of Temperature (°C) on FFA% and FFA Conversion (%) for 153 Acid-catalysed Esterification (BSF Larval Lipid – FKW 4.12 Residual Plots of (a) Normal Probability against Studentised 160 Residual and (b) Experimental Run against Residual t Plot (Acidcatalysed Esterification for BSF Larval Lipid – FKW) 4.13 Residual Plots of Predicted against Actual (Acid-catalysed 161 Esterification for BSF Larval Lipid – FKW) 4.14 3-D Surface Plot Showing the Parameters Effect of (a) 163 Methanol:oil (Molar Ratio) and Catalyst Amount (%) and (b) Methanol:oil (Molar Ratio) and Time (Min) for Acid-Catalysed Esterification (BSF Larval Lipid - FKW) 4.15 3-D Surface Plot Showing the Parameters Effect of (a) 164 Methanol:oil (Molar Ratio) and Temperature (°C) and (b) Catalyst Amount (%) and Time (Min) for Acid-Catalysed Esterification (BSF Larval Lipid – FKW) 4.16 3-D Surface Plot Showing the Parameters Effect of (a) Catalyst 165 Amount (%) and Temperature (°C) and (b) Time (Min) and Temperature (°C) for Acid-Catalysed Esterification (BSF Larval Lipid - FKW) 4.17 Effect of Methanol:Oil (Molar Ratio) on Biodiesel Yield (%) for 167 Alkaline-catalysed Transesterification (BSF Larval Lipid – FKW) 4.18 Effect of Catalyst Amount (%) on Biodiesel Yield (%) for 167 Alkaline-catalysed Transesterification (BSF Larval Lipid - FKW) 4.19 Effect of Time (Minutes) on Biodiesel Yield (%) for Alkaline -168 catalysed Transesterification (BSF Larval Lipid - FKW) 4.20 Effect of Temperature (°C) on Biodiesel Yield (%) for Alkaline 168 -catalysed Transesterification (BSF Larval Lipid - FKW) 4.21 Residual Plots (a) Studentised Residual against Normal Probability 174 and (b) Experimental Run against Residual t Plot (Alkaline -Catalysed Esterification for BSF Larval Lipid - FKW) 4.22 Predicted against Actual Plot (Alkaline-Catalysed Esterification for 175 BSF Larval Lipid - FKW)

- xixi 4.23 3-D Surface Plot Showing the Parameters Effect of (a) 177 Methanol:oil (Molar Ratio) and Catalyst Amount (%) and (b) Methanol:oil (Molar Ratio) and Time (Minutes) for Alkaline Catalysed Esterification (BSF Larval Lipid - FKW) 4.24 3-D Surface Plot Showing the Parameters Effect of (a) 178 Methanol:oil (Molar Ratio) and Temperature (°C) and (b) Catalyst Amount (%) and Time (Minutes) for Alkaline-Catalysed Esterification (BSF Larval Lipid - FKW) 4.25 3-D Surface Plot Showing the Parameters Effect of (a) Catalyst 179 Amount (%) and Temperature (°C) and (b) Time (Minutes) and Temperature (°C) for Alkaline-Catalysed Esterification (BSF Larval Lipid - FKW) 4.26 Effect of Methanol:oil (Molar Ratio) on FFA (%) and FFA 181 Conversion (%) for Acid-catalysed Esterification (BSF Larval Lipid - SR) 4.27 Effect of Catalyst Amount (%) on FFA (%) and FFA Conversion 181 (%) for Acid-catalysed Esterification (BSF Larval Lipid – SR) 05-4506832 4.28 182 Effect of Time (Minutes) on FFA (%) and FFA Conversion (%) for Acid-catalysed Esterification (BSF Larval Lipid - SR) 4.29 Effect of Temperature (°C) on FFA (%) and FFA Conversion (%) 182 for Acid-catalysed Esterification (BSF Larval Lipid-SR) 4.30 Residual Plots (a) Studentised Residual against Normal Probability 188 and (b) Experiment Run against Residual t Plot (Acid-Catalysed Esterification for BSF Larval Lipid - SR) 4.31 Predicted against Actual Plot (Acid-Catalysed Esterification for 189 BSF Larval Lipid - SR) 4.32 191 3-D Surface Plot Showing the Parameters Effect of (a) Methanol:oil (Molar Ratio) and Catalyst Amount (%) and (b) Methanol:oil (Molar Ratio) for Acid-catalysed Esterification (BSF Larval Lipid – SR) 4.33 3-D Surface Plot Showing the Parameters Effect of (a) 192 Methanol:oil (Molar Ratio) and Temperature (°C) and (b) Catalyst Amount (%) and Time (Minutes), for Acid-catalysed Esterification (BSF Larval Lipid - SR)

05-4506

- xxi
- 4.34 3-D Surface Plot Showing the Parameters Effect of (a) Catalyst 193 Amount (%) and Temperature (°C) and (b) Time (Minutes) and Temperature (°C) for Acid-catalysed Esterification (BSF Larval Lipid - SR) 4.35 Effect of Methanol:Oil (Molar Ratio) on Biodiesel Yield (%) for 195 Alkaline-catalysed Transesterification (BSF Larval Lipid – SR) 4.36 Effect of Catalyst Amount (%) on Biodiesel Yield (%) for 196 Alkaline-catalysed Transesterification (BSF Larval Lipid – SR) 4.37 Effect of Time (Minutes) on Biodiesel Yield (%) for Alkaline-196 catalysed Transesterification (BSF Larval Lipid - SR) 4.38 Effect of Temperature (°C) on Biodiesel Yield (%) for Alkaline-197 catalysed Transesterification (BSF Larval Lipid – SR) 4.39 Residual Plots (a) Studentised Residual against Normal Probability 203 and (b) Experimental Run against Residual t Plot for Alkaline catalysed Transesterification (BSF Larval Lipid - SR) 4.40 05-4506832 204 Predicted against Actual Plot for Alkaline-catalysed Transesterification (BSF Larval Lipid - SR) 4.41 3-D Surface Plot Showing the Parameters Effect of (a) 206 Methanol:oil (Molar Ratio) and Catalyst Amount (%) and (b) Methanol:oil (Molar Ratio) and Time (Min) for Alkaline-catalysed Transesterification (BSF) Larval Lipid - SR) 4.42 3-D Surface Plot Showing the Parameters Effect of (a) 207 Methanol:oil (Molar Ratio) and Temperature (°C) and (b) Catalyst and Time (Min) Alkaline-catalysed Amount (%)for Transesterification (BSF Larval Lipid - SR) 4.43 3-D Surface Plot Showing the Parameters Effect of (a) Catalyst 208 Amount (%) and Temperature (°C) and (b) Time (Min) and Temperature (°C) for Alkaline-catalysed Transesterification (BSF Larval Lipid – SR) 4.44 Effect of Methanol:oil (Molar Ratio) on FFA (%) and FFA 210 Conversion (%) for Acid-catalysed Esterification (BSF Larval Lipid - MW)

xxii

		XX11
4.45	Effect of Catalyst Amount (%) on FFA (%) and FFA Conversion (%) for Acid-catalysed Esterification (BSF Larval Lipid – MW)	210
4.46	Effect of time (Minutes) on FFA (%) and FFA Conversion (%) for Acid-catalysed Esterification (BSF Larval Lipid - MW)	211
4.47	Effect of Temperature (°C) on FFA (%) and FFA Conversion (%) for Acid-catalysed Esterification (BSF Larval Lipid - MW)	211
4.48	Residual Plots (a) Studentised Residual against Normal Probability and (b) Experiment Run against Residual t Plot (Acid-Catalysed Esterification for BSF Larval Lipid – MW)	217
4.49	Predicted against Actual Plot (Acid-Catalysed Esterification for BSF Larval Lipid - MW)	218
4.50	3-D Surface Plot Showing the Parameters Effect of (a) Methanol:oil (Molar Ratio) and Catalyst Amount (%) and (b) Methanol:oil (Molar Ratio) and Time (Min) for Acid-catalysed Esterification (BSF Larval Lipid – MW)	220
4.51	3-D Surface Plot Showing the Parameters Effect of (a) Methanol:oil (Molar Ratio) and Temperature (°C) and (b) Catalyst Amount (%) and Time (Min), for Acid-catalysed Esterification (BSF Larval Lipid – MW)	221 ptbup
4.52	3-D Surface Plot Showing the Parameters Effect of (a) Catalyst Amount (%) and Temperature (°C) and (b) Time (Min) and Temperature (°C) for Acid-catalysed Esterification (BSF Larval Lipid – MW)	222
4.53	Effect of Methanol:Oil (Molar Ratio) on Biodiesel Yield (%) for Alkaline -catalysed Transesterification (BSF Larval Lipid – MW)	224
4.54	Effect of Catalyst Amount (%) on Biodiesel Yield (%) for Alkaline - catalysed Transesterification (BSF Larval Lipid – MW)	225
4.55	Effect of Time (Minutes) on Biodiesel Yield (%) for Alkaline - catalysed Transesterification (BSF Larval Lipid – MW)	225
4.56	Effect of Temperature (°C) on Biodiesel Yield (%) for Alkaline -catalysed Transesterification (BSF Larval Lipid – MW)	225

O ptb

- xxiii
- 4.57 Residual Plots (a) Studentised Residual against Normal Probability 232 and (b) Experimental Run against Residual *t* Plot for Alkaline catalysed Transesterification (BSF Larval Lipid MW)
- 4.58 Predicted against Actual Plot for Alkaline-catalysed 233 Transesterification (BSF Larval Lipid – MW)
- 4.59 3-D Surface Plot Showing the Parameters Effect of (a) 234
 Methanol:oil (Molar Ratio) and Catalyst Amount (%) and (b)
 Methanol:oil (Molar Ratio) and Time (Min) for Alkaline-catalysed
 Transesterification (BSF Larval Lipid MW)
- 4.60 3-D Surface Plot Showing the Parameters Effect of (a) 235
 Methanol:oil (Molar Ratio) and Temperature (°C) and (b) Catalyst
 Amount (%) and Time (Min) for Alkaline-catalysed
 Transesterification (BSF Larval Lipid MW)
- 4.61 3-D Surface Plot Showing the Parameters Effect of (a) Catalyst 236
 Amount (%) and Temperature (°C) and (b) Time (Min) and Temperature (°C) for Alkaline-catalysed Transesterification (BSF Larval Lipid MW)
- 4.62 FTIR Spectra for BSF Larval (a) Lipid and (b) Biodiesel Cultivated 240
 - 4.63 FTIR Spectra for BSF Larval (a) Lipid and (b) Biodiesel Cultivated 241 in SR
 - 4.64 FTIR Spectra for BSF Larval (a) Lipid and (b) Biodiesel Cultivated 243 in MW
 - 4.65 ¹H NMR Spectra for BSF Larval (a) Lipid and (b) Biodiesel 246 Cultivated in Food Kitchen Waste
 - 4.66 ¹H NMR Spectra for BSF Larval (a) Lipid and (b) Biodiesel 247 Cultivated in SR
 - 4.67 ¹H NMR Spectra for BSF Larval (a) Lipid and (b) Biodiesel 248 Cultivated in MW
 - 4.68 ¹³C NMR Spectra for BSF Larval (a) Lipid and (b) Biodiesel 251 Cultivated in FKW
 - 4.69 ¹³C NMR Spectra for BSF Larval (a) Lipid and (b) Biodiesel 252

xxiiii

Cultivated in SR

4.70	¹³ C NMR Spectra for BSF Larval (a) Lipid and (b) Biodiesel Cultivated in MW	253
4.71	OPM Images of BSF Larval Biodiesel (food kitchen waste) at (a) 20 °C, (b) 15 °C, (c) 10 °C, (d) 5 °C, (e) 0 °C and (f) -5 °C at 10x Magnification	256
4.72	OPM Images of BSF Larval Biodiesel (Soya Residue) at (a) 20 °C, (b) 15 °C, (c) 10 °C, (d) 5 °C, (e) 0 °C and (f) -5 °C at 10x Magnification	257
4.73	OPM Images of BSF Larval Biodiesel (Mixed Waste) at (a) 20 °C, (b) 15 °C, (c) 10 °C, (d) 5 °C, (e) 0 °C and (f) -5 °C at 10x Magnification	258
4.74	TGA Thermograms of BSF Larval Lipid Cultivated in Food Kitchen Waste (COBFKW), Soya Residue (COBSR) and Mixed Waste (COBMIX)	261
4.75 6832	TGA Thermograms of BSF Larval Biodiesel Cultivated in Food Kitchen Waste (FBFKW), Soya Residue (FBSR) and Mixed Waste (FBMIX)	263 ptbupsi
4.76	DSC Thermogram of BSF Larval Lipid (FKW)	265
4.77	DSC Thermogram of BSF Larval Biodiesel (FKW)	266
4.78	DSC Thermogram of BSF Larval Lipid (SR)	267
4.79	DSC Thermogram of BSF Larval Biodiesel (SR)	268
4.80	DSC Thermogram of BSF Larval Lipid (MW)	269
4.81	DSC Thermogram of BSF Larval Biodiesel (MW)	270
4.82	GC-FID Chromatogram of BSF Larval Biodiesel (FKW)	282
4.83	GC-FID Chromatogram of BSF Larval Biodiesel (SR)	283
4.84	GC-FID Chromatogram of BSF Larval Biodiesel (MW)	283

xxivi

LIST OF ABBREVIATIONS

ANOVA	Analysis of Variance
AOAC	The Association of Official Analytical Chemists
АР	Adequate Precision
ASEAN	Association Southeast Asian Nations
ASTM	American Society for Test and the Materials Standard
ATR	Attenuated Total Reflectance
AV	Acid Value
Star of pustaka.upsi.edu.my	Black Soldier Fly Bainun PustakaTBainun Optbupsi
CCD	Central Composite Design
CDCI ₃	Deuterated Chloroform
CV	Coefficient of Variance
DSC	Differential Scanning Calorimeter
ECD _F	Efficiency of Conversion of Digested Feed
EN	European Standard
FAEE	Fatty Acid Ethyl Ester
FAME	Fatty Acid Methyl Ester
FAO	Food and Agriculture Organization of the United
	Nations
FCR	Feed Conversion Ratio
FFA	Free Fatty Acid

37374	
XXI	VII

FKW	Food Kitchen Waste
FTIR	Fourier Transform Infrared
GC-FID	Gas Chromatography-Flame Ionisation Detector
GCMS	Gas Chromatography Mass Spectrometry
GDP	Gross Domestic Product
GHG	Greenhouse Gaseous
H_2SO_4	Sulfuric Acid
HCl	Hydrochloric Acid
HF	Housefly
HHV	High Heating Value
IEA	International Energy Agency
IPCC	Intergovernmental Danal on Climate Change
nee	Intergovernmental Panel on Climate Change
6 IV 🕜 pustaka.upsi.edu.my	Iodine Value Abdul Jali Shah
6 IV v pustaka.upsi.edu.my	Iodine Value Abdul Jalil Shah
6 IV pustaka.upsi.edu.my KeTTHA	Iodine Value Tuanku Bainun Abdul Jali Shah Pustaka TBainun Ministry of Energy Green Technology and Water
6 IV Opustaka.upsi.edu.my KeTTHA KOH	Iodine Value Tuanko Bainon Image: Construction of the property of
6 IV pustaka.upsi.edu.my KeTTHA KOH LOD	Iodine Value Ministry of Energy Green Technology and Water Potassium Hydroxide Limit of Detection
KeTTHA KOH LOD LOQ	Iodine ValueDescent ControlMinistry of Energy Green Technology and WaterPotassium HydroxideLimit of DetectionLimit of QuantificationMinistry of Energy, Science, Technology, Environment
KeTTHA KoH LOD LOQ MESTECC	Iodine Value Image: Descent Balow Image: Descent Balow Image: Descent Balow Ministry of Energy Green Technology and Water Potassium Hydroxide Limit of Detection Limit of Quantification Ministry of Energy, Science, Technology, Environment and Climate Change
KeTTHA KoH LOD LOQ MESTECC	Iodine Value Image: Descent Technology and Water Anisistry of Energy Green Technology and Water Potassium Hydroxide Limit of Detection Limit of Quantification Ministry of Energy, Science, Technology, Environment and Climate Change Methanol
KeTTHA KoH LOD LOQ MESTECC	Iodine ValueImage: Control of
KeTTHA KoH LOD LOQ MESTECC	Fodine ValueDescent ParticularMinistry of Energy Green Technology and WaterPotassium HydroxideLimit of DetectionLimit of QuantificationMinistry of Energy, Science, Technology, Environment and Climate ChangeMethanolMixed wasteMalaysian Palm Oil Board
KeTTHA KoH LOD LOQ MESTECC MeOH MW MPOB	Fodine ValueExcent BainMinistry of Energy Green Technology and WaterPotassium HydroxideLimit of DetectionLimit of QuantificationMinistry of Energy, Science, Technology, Environment and Climate ChangeMethanolMixed wasteSodium Hydroxide

xxiviii

OECD	Organisation for Economic Cooperation and Development
OLF	Oriental Latrine Fly
OPM	Optical Polarisation Microscope
PV	Peroxide Value
RSM	Response Surface Methodology
SEDA	Sustainable Energy Development Authority
SIRIM	Standard and Industrial Research Institute Malaysia
SR	Soya Residue
SV	Saponification Value
TGA	Thermal Gravimetric Analyser
TLC	Thin Layer Chromatography
USEPA 6832 pustaka.upsi.edu.my	United States Environmental Protection Agency
WHO	World Health Organization
WRI	Waste Reduction Index
YMB	Yellow Mealworm Beetle

xxiviv

LIST OF APPENDICES

- List of Publications А
- List of Conferences В

O 05-4506832 Bustaka.upsi.edu.my Perpustakaan Tuanku Bainun Perpustakaan Tuanku Bainun PustakaTBainun of ptbupsi

CHAPTER 1

INTRODUCTION

1.1 **Research Background**

Energy resources play important roles in the development of every country in the world, which significantly give impact to the political and economic stabilities (Gicquel & Gicquel, 2013; Baños et al., 2011). Several articles have discussed the factors that contribute to the world's energy growth including technologies, economic and population, availability of energy prices and fuel, and environmental regulations and standards (Gozgor, Lau, & Lu, 2018; Saad & Taleb, 2018; Acheampong, 2018; Shahbaz, Zakaria, Shahzad, & Mahalik, 2018; Arminen & Menegaki, 2019). A report entitled 'The World Energy Balance: Overview 2018' issued by International Energy Agency (IEA) has focused on total primary energy supply, worldwide. This report has described the energy supply was mainly consisted of oil (32%), coal (27%), natural

gas (22%), biofuels/waste (10%), nuclear (5%), hydro (2%) and others (2%) as presented in Table 1.1. For the past 50 years, there was a dramatic increment for the total global energy supply. For instance, the energy supply was increased from 5,523 million tonnes of oil equivalent (Mtoe) in 1971 to 13,761 Mtoe (2016), which oil resource remained the dominant energy supply (World Energy Balance, 2018; Zafar, Shahbaz, Hou, & Sinha, 2018; Abas, Kalair, & Khan, 2015). The world energy production and supply was contributed by several regions such as Organisation for Economic Cooperation and Development (OECD, 38%), non-OECD Asia (35%), non-OECD Europe and Eurasia (8%), non-OECD Americas (5%), middle east (5%) and bunkers (3%). Interestingly, non-OECD Asia becomes the second largest energy supply region after OECD, which involves China, India, Indonesia, Malaysia, Vietnam and several other countries.

() 05-4506832

Moreover, IEA has also stated that the world energy consumption is comprised of industry (37%), transport (29%), residential (22%), commerce and public services (8%), agriculture/forestry (2%) and others (2%). The main consumptions of energy for each sector have been summarised by Gicquel & Gicquel (2013), as shown in Table 1.2. In addition, Chen & Wu (2017) has reported that the global energy consumption was increased up to 22% (2014) since 2004 that significantly promotes the energy growth.

Table 1.1

Total Primary Energy Supply

Energy sources	Production (%)
Fossil oil	32
Coal	27
Natural gas	22
Biofuel/waste	10
Nuclear	5
Hydro	2
Others	2

Note. Adapted from The World Energy Balance: Overview (2018).

As mentioned earlier, fossil fuel is the dominant world energy supply. Fossil

fuel has been widely used for production of liquefied gases, gasoline, naphtha, pustaka upsted uny production of liquefied gases, gasoline, naphtha, kerosene, chemical, lubricants and bitumen, and its demand forecasted to increase up to 53% by 2030 (IEA, 2017). Nevertheless, the big issue of fossil fuel consumption is its non-renewable properties. In recent years, debates continue among researchers on depletion of fossil fuel resources since these resources have almost reached the peak production. Moreover, the question has been also raised about the unfavourable outcome of prolong use of fossil fuel to the environment and health (Gielen, 2019; Chen & Wu, 2017; Wang et al., 2019a, Nguyen & Kakinaka, 2019; Sharvini, Noor, Chong, Stringer, & Yusuf, 2018; Gozgor et al., 2018; Abas et al., 2015; Tang, 2019).

Table 1.2

Sector	Consumption	Energy
Agriculture	Mechanical energy	Oil and electricity
	Space heating	Natural gas and oil
	Fertilizer	Natural gas and oil
	Pesticides	Natural gas and oil
Industry	Electrolysis	Electricity
	Steel	Coal
	Chemistry	Oil
	Metallurgy	Natural gas and electricity
	Cement	Coal and oil
Residential/commercial	Perpustakaan Tuar Lighting	dul Jalii Shah
	Cooking	Natural gas, liquefied petroleum gas (LPG) and electricity
	Hot water	Natural gas, LPG and electricity
	Space heating	Natural gas, oil, coal and electricity
Transport	Office	Electricity
	Rail	Electricity
	Road	Oil
	Air/sea	Oil

Main Consumption of Energy

Note. Adapted from Gicquel and Gicquel (2013).

() 05-450

5

1.2 Roles of Malaysia towards Green Energy Development

Malaysia is one of the oil producing countries and has been categorised as non-OECD Asia that contribute to the world energy supply and production. Over the years, Malaysia has made a great effort towards the revolution of the energy industry in order to reduce the dependency on fossil fuel resources. Moreover, several reviews also discussed on the Malaysia's energy and renewable energy policies that present its effort towards clean environment strategy as well as enhancing Malaysia's energy growth (Hannan et al., 2018; Oh, Hasanuzzaman, Selvaraj, Teo, & Chua, 2018). The Renewable Energy Act 2011 and National Energy Policy have been introduced to encourage the growth of the energy situation in Malaysia. Malaysia government has also set up the Ministry of Energy, Science, Technology, Environment and Climate ⁰⁵⁻⁴⁵⁰⁶ Change (MESTECC) (previously known as Ministry of Energy Green Technology and Water (KeTTHA) and Sustainable Energy Development Authority (SEDA) in order to assist the implementation of the new energy policy. MESTECC is responsible for sustainable, renewable and conservation energy programme. Meanwhile, SEDA mainly focuses on promoting the sustainable energy as stated in the Renewable Energy Act 2011 (Abdul Manan, Baharuddin, & Chang, 2015).

Due to the disadvantages of the non-renewable energy resources, the interest on investigating the alternative energy resources known as renewable energy is keep on increasing. Moreover, Soliman, Lopez, & Biona (2018) stated that renewable energy provides energy security compared with non-renewable energy as well in order to promote the global energy growth. The renewable energy including solar, hydro, wind, tidal and biomass provides sustainable and environmental friendly

Y PustakaTBainun

6

characteristics as compared to non-renewable energy. Biodiesel is one of the potential renewable energies that has been widely reported by researchers and received high consideration due to several advantages such as engine combustion efficiency without engine modification, low sulphur content, high cetane number and biodegradable (Omidvarborna, Kumar, & Kim, 2016a; Ghazali, Mamat, Masjuki, & Najafi, 2015; Bhuiya, Rasul, Khan, Ashwath, & Azad, 2016; Knothe & Razon, 2017; Nongbe et al., 2017). Moreover, application of biodiesel was also able to reduce the greenhouse hazardous gas emission mainly from fuel combustion such as carbon dioxide, methane, nitrous oxide, ozone and chlorofluorocarbons (Omidvarborna, Kumar, & Kim, 2016b; USEPA, 2016).

05-4506 **1.3 Description of Biodiesel** Repustakaan Tuanku Bainun

Biodiesel is a mono alkyl ester of long chain fatty acid derived from renewable lipid that can be categorised into vegetable oils, animal fats, waste cooking oil and microorganisms (Knothe & Razon, 2017). The application of biodiesel for diesel engine consumption was firstly introduced by Rudolf Christian Karl Diesel in the late of 19th century (Abas et al., 2015). To date, vegetable oil is the main biodiesel feedstock by about 95% of the total biodiesel production (Bhuiya et al., 2016; Zheng et al., 2012; Wu et al., 2017). However, the application of vegetable oil as a biodiesel feedstock is commonly related to the high total biodiesel production cost (Knothe & Razon, 2017). This situation occurred due to the increment of raw material cost for about 60-75% of the total biodiesel production and also the requirement of large arable plant for extensive biodiesel production (Kirubakaran & Selvan, 2018a; Patel,

Arora, Mehtani, Pruthi, & Pruthi, 2017; Anuar & Abdullah, 2016; Yang, Li, Gao, Zheng, & Liu, 2014). Additionally, the usage of vegetable oils particularly edible oils may cause food crisis in the long term (Patel et al., 2015). Another issue is the seasonal harvest period for almost oilseeds which make vegetable oils are inefficient for biodiesel production process (Yang et al, 2014).

1.4 Insect Larvae for Biodiesel Production

Previously, many studies have reported on application of insect larvae particularly for organic waste treatment (Mertenat, Diener, & Zurbrügg, 2019; Kumar, Negi, Mandpe, Singh, & Hussain, 2018; Lalander, Diener, Zurbrügg, & Vinnerås, 2019; Nguyen et al., 2015). Moreover, Čičková et al. (2015) and Diener et al. (2011) have also discussed on availability of insect larvae such as housefly, black soldier fly, face fly, green bottle fly and flesh fly to feed naturally in organic wastes as well as assisting in reducing the organic waste. While, studies on cultivation of insect larvae using organic wastes and harvested them mainly for livestock feed such as chicken, fish and pet receive high interest among researchers (Wang et al., 2019b; Makkar, Tran, Heuzé, & Ankers, 2014; Čičková, Newton, Lacy, & Kozánek, 2015, Hu et al., 2018; Henry, Gasco, Piccolo, & Fountoulaki, 2015; Barragan-Fonseca, Dicke, & van Loon, 2017; Cutrignelli et al., 2018; Bovera et al., 2015). Moreover, Henry et al. (2015) has stated on the capability of insect to be fish feed due to nutrient content is almost similar to fish meal. They also reported on application of insect as fish meal able to reduce the cost for aquaculture feed. In recent years, studies have also highlighted the feasibility of insect larvae as alternative feedstock for renewable energy production

(Nguyen et al., 2018a; Surendra, Olivier, Tomberlin, Jha, & Khanal, 2016; Niu et al., 2016).

Recently, Black soldier fly (BSF), Hermetia illucens (Diptera: Stratiomyidae) originally from Americas and is now widely spread to over the world has also get special attention for livestock feed and biodiesel production process. The advantage of BSF includes nonvector properties which does not transmit diseases as well as harmless to human and animal (Caliagi et al., 2018; Sheppard, Tomberlin, Joyce, Kiser, & Sumner, 2002). Moreover, BSF has also been reported to act as a biological control over housefly (HF) by avoiding HF oviposition thus leads to decrement of HF numbers (Harnden & Tomberlin, 2016; Myers, Tomberlin, Lambert, & Kattes, 2008; Čičková, Newton, Lacy, & Kozánek, 2015; Leong et al., 2015). Huge amount of 05-4506 organic waste is required for BSF larval growth development, which significantly due to a longer cultivation period (20-24 days) and larger size of BSF larvae (18-20 mm). This scenario promotes a better organic waste management (Mertenat, Diener, & Zurbrügg, 2019; Kumar, Negi, Mandpe, Singh, & Hussain, 2018; Čičková et al., 2015; Manzano-Agugliaro et al., 2012). Several studies have been carried out in order to determine the feasibility of BSF larvae as feedstock for biodiesel production (Nguyen et al, 2018a; Nguyen et al, 2018b; Surendra et al., 2016; Leong, Kutty, Malakahmad, & Tan, 2015; Zheng et al., 2012; Li, Zhen, Hou, Yang, & Yu, 2011b).

Other insect species have also been evaluated and reported for biodiesel production such as house fly (Zi-zhe et al., 2017; S. Wu et al., 2017; Niu et al. 2017; Yang et al., 2014), oriental latrine fly (*Chrysomya megacephala*) (Li et al., 2012; Yang & Liu, 2014) and mealworm beetle (*Tenebrio molitor*) (Zheng et al., 2013). In

recent years, insect larvae have received great attention among scientists for producing a low-cost biodiesel. The application of insect larvae offers low raw material cost which therefore able to reduce the total biodiesel production cost as compared to the cost to produce vegetable-based biodiesel. To date, the studies on the potential of insect larvae for biodiesel production are still remain scarce. Thus, it is imperative to investigate in further details the capability of insect larvae for biodiesel production. Therefore, this research was carried out in order to determine the potential of insect larvae cultivated on several organic wastes as promising biodiesel feedstocks for biodiesel production.

1.5 Problem Statement

Currently, fossil fuel is the most growing energy demand over the world. However, the fossil energy is interfacing the depletion of its resources mainly due to non-renewable energy properties. The tremendous increase in energy demand promotes the application of renewable energy worldwide which provides a better energy security and sustainability. The potential of biodiesel as a promising renewable energy has been emphasised by researchers but its price stability is the main concern. This situation occurred due to the dependence of biodiesel production on oilseed, requirement of larger land area and the impacts of food crisis. Therefore, there is an urgent need to find a new non-food and cheap feedstock for biodiesel production. To date, there are several efforts to produce biodiesel using insect larvae have been reported. However, the quantity and quality of biodiesel production are still low. Thus, this research was devised as a direct response to the aforementioned issue. In

05-4506832

this research, several factors affecting the optimisation of quality and quantity of biodiesel production through biodegradation of organic wastes by insect larvae were evaluated.

1.6 Research Gap

Based on the literature reviews, although a number of studies had successfully developed and assessed the potential of several feedstocks for biodiesel production, several significant research gaps have been found and they are relevant to be investigated.

- 1. Vegetable oils are the most widely used feedstock for biodiesel production. Unfortunately, the application of vegetable oils involves high total operation cost which leads to high biodiesel price. Therefore, it is important to perform a study to evaluate alternative a low-cost biodiesel feedstocks. In this study, insect larvae have been used as potential feedstocks for biodiesel production.
- Researchers normally reared insect larvae using one type of organic waste. It is attractive important to study the growth of insect larvae on different organic wastes. Therefore, this study was carried out using different organic wastes including food kitchen waste, soya residue and mixed waste.
- 3. Researchers normally used conventional method in determination of the optimum parameters for transesterification. It is interesting to conduct the transesterification study using statistical analysis, Response Surface

Methodology (RSM). In this study, RSM was applied for optimisation of biodiesel production study.

- 4. Up to date, the physical and chemical characterisation studies of insect larval biodiesel are rarely reported in the literatures. It is imperative to conduct a characterisation study of insect larval biodiesel. Here, the produced insect larval biodiesel was characterised using several scientific instruments such as Optical Polarisation Microscope (OPM), Fourier Transform Infrared (FTIR) Spectrometer, and Nuclear Magnetic Resonance (NMR) Spectrometer, Thermal Gravimetric Analyser (TGA), Differential Scanning Calorimeter (DSC), CHNS-O elemental analyser and Gas Chromatography-Flame Ionisation Detector (GC-FID).
- 5. In recent years, the number of literatures reported on properties of insect larval pustaka.upsi.edu.my and propustakaan Tuanku Bainun biodiesel are still low. Therefore, the insect larval biodiesel produced from this study was determined and compared with American Society for Test and the Materials (ASTM) D6751 and European (EN) 14214 standards.

1.7 Research Aim

The overall aim of this research is to produce environmental friendly and sustainable biodiesel by biodegradation of organic wastes by black soldier fly. It is hoped that this larva has great potential to be used as alternatives to expensive biodiesel feedstocks.

1.8 Research Objectives

The objectives of this research are:

- To analyse the nutrient content of organic waste from different source (food kitchen waste, soya residue and mixed waste) for BSF cultivation.
- 2. To observe the BSF larval growth development during cultivation process.
- 3. To extract and characterised BSF larval lipid.
- 4. To evaluate the quality of the insect larval biodiesel produced.

1.9 Research Scope

05-4506832

This research consisted of four main studies. The first study was to characterise the organic wastes. Three types of organic wastes, namely food kitchen waste, soya residue and mixed waste were used for rearing insect larvae. These organic wastes were characterised based on several parameters including content of moisture, protein, carbohydrate, ash, pH and crude fiber.

The second study was focused on cultivation of insect larvae. Insect larvae of BSF was inoculated into the aforementioned organic wastes and left for natural biodegradation process. The growth development of BSF larvae was monitored by evaluating the color, individual weight and size. After the cultivation period was completed, the BSF larvae were characterised based on content of moisture, protein, carbohydrate, fat, ash and crude fiber. Meanwhile, degradation of selected organic

wastes during the growth of BSF larvae was evaluated based on growth rate of BSF larvae, overall degradation (OD), waste reduction index (WRI) and efficiency of conversion of digested feed (ECD_F).

The third study was on characterisation of insect larval lipid. Initially, the insect larvae of BSF were oven-dried prior to extraction study. In the extraction study, the efficiency of three solvents namely petroleum ether, acetone and ethanol was evaluated based on insect larval lipid yield within certain extraction time. The produced insect larval lipid was characterised accordingly based on acid value (AV), free fatty acid (FFA), saponification value (SV), peroxide value (PV) and iodine value (IV).

The final study was focused on evaluation of the properties of produced larval based biodiesel. Due to high percentage of FFA for BSF larval lipid, the biodiesel production was conducted using a two-step transesterification process which involved acid-catalysed esterification and alkaline-catalysed transesterification. In order to determine the optimum conditions for each parameters, namely: (1) methanol:oil (molar ratio), (2) catalyst % (w/w), (3) reaction time (min) and (4) reaction temperature (°C) for transesterification process, a statistical analysis Response Surface Methodology (RSM) was applied. Furthermore, the properties of insect larval biodiesel were examined based on oxidation stability, water content, flash point, kinematic viscosity, cetane number, density, cloud point, acid number and high heating value. The properties of insect larval biodiesel were also compared with the American Society for Test and Materials (ASTM D6751) and European Standard (EN 14214) standards. Moreover, several instruments were used to clarify the successful

05-45068

transformation of insect larval lipid to biodiesel including FTIR spectrometer and NMR spectrometer. Meanwhile, the thermal properties of insect larval biodiesel were investigated using TGA, DSC and OPM. Additionally, GC-FID was applied to determine the fatty acid methyl ester (FAME) composition of insect larval biodiesel.

1.10 **Research Significance**

This research emphasises the significance of the development of insect larval biodiesel to replace or decrease the dependence of fossil fuel-based diesel in engine consumption. Moreover, this research highlights the efficacy of biodegaradtion of organic wastes by insect larvae for biodiesel production.

pustaka.upsi.edu.my f Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah PustakaTBainun betupsi 05-4506832

Hypothesis 1.11

The larval lipid of BSF larvae can be used as alternative feedstock to oilseeds in biodiesel production.

Thesis Organisation 1.12

This thesis contains five chapters. Chapter 1 is dedicated to the introduction which covers the research background, problem statement, research gap, research aim, research objectives, research significance and hypothesis. Chapter 2 explains the

development of energy covering topics related to energy situation, energy mix, challenges and crisis of energy, renewable energy and potential renewable energy source worldwide including Malaysia. This chapter also covers the description of biofuel and biodiesel which includes biodiesel production process, biodiesel feedstocks and the crisis and challenges of biodiesel production process. Chapter 3 describes a detailed methodology involved in the biodiesel production from insect larvae and the characterisation techniques used to determine the chemical and physical properties of organic wastes, insect larvae, insect larval lipid and insect larval biodiesel. This chapter also presents the biodiesel production using the transesterification process. Chapter 4 explains and discusses the findings of this research. The results include the chemical and physical characterisations of organic wastes, insect larvae, insect larval lipid and insect larval biodiesel. The findings obtained from optimisation of transesterification process of insect larval lipid for biodiesel production were also further explained in this chapter. The quality of insect larval biodiesel was also discussed and compared with the ASTM D6751 and EN 14214 standards. Conclusions drawn from this research and suggestions for future research are stated in Chapter 5.

