



# PHYTOCHEMICALS AND BIOLOGICAL ACTIVITIES **OF** Aquilaria subintegra Ding Hou

# MASTURA BINTI IBRAHIM

05-4506832 Pustaka.upsi.edu.my Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

# SULTAN IDRIS EDUCATION UNIVERSITY 2020













## PHYTOCHEMICALS AND BIOLOGICAL ACTIVITIES OF Aquilaria subintegra **Ding Hou**

### **MASTURA BINTI IBRAHIM**



05-4506832 vustaka.upsi.edu.my

## DISSERTATION SUBMITTED IN FULFILMENT OF THE REQUIREMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY (CHEMISTRY)

## FACULTY OF SCIENCE AND MATHEMATHICS SULTAN IDRIS EDUCATION UNIVERSITY 2020













| UPSI/IPS-3/BO 32   |
|--------------------|
| Pind : 00 m/s: 1/1 |



Please tick ( $\sqrt{}$ ) Project Paper Masters by Research Master by Mixed Mode PhD

| V |  |
|---|--|

### **INSTITUTE OF GRADUATE STUDIES**

#### **DECLARATION OF ORIGINAL WORK**

This declaration is made on the 11 (day) of August (month) 2020

#### i. **Student's Declaration:**

I, MASTURA BINTI IBRAHIM, P20142002472, FACULTY OF SCIENCE AND MATHEMATICS (PLEASE INDICATE STUDENT'S NAME, MATRIC NO. AND FACULTY) hereby declare that the work entitled **PHYTOCHEMICALS AND BIOLOGICAL** ACTIVITIES OF Aquilaria subintegra Ding Hou is my original work. I have not copied from any other students' work or from any other sources except where due reference or acknowledgement is made explicitly in the text, nor has any part been written for me by another person.

Signature of the student

ii. Supervisor's Declaration:

I ASSOCIATE PROF. DR. SARIPAH SALBIAH SYED ABDUL AZZIZ (SUPERVISOR'S NAME) hereby certifies that the work entitled **PHYTOCHEMICALS AND BIOLOGICAL** ACTIVITIES OF Aquilaria subintegra Ding Hou (TITLE) was prepared by the above named student, and was submitted to the Institute of Graduate Studies as a \* partial/full fulfillment for the conferment of **DEGREE OF DOCTOR OF PHILOSOPHY (CHEMISTRY)** (PLEASE INDICATE THE DEGREE), and the aforementioned work, to the best of my knowledge, is the said student's work.

Date

Signature of the Supervisor











UPSI/IPS-3/BO 31 Pind.: 01 m/s:1/1

INSTITUT PENGAJIAN SISWAZAH / INSTITUTE OF GRADUATE STUDIES

#### BORANG PENGESAHAN PENYERAHAN TESIS/DISERTASI/LAPORAN KERTAS PROJEK DECLARATION OF THESIS/DISSERTATION/PROJECT PAPER FORM

#### Tajuk / Title: PHYTOCHEMICALS AND BIOLOGICAL ACTIVITIES OF Aquilaria subintegra Ding Hou

#### No. Matrik /Matric's No.: P20142002472

#### Saya / I: MASTURA BINTI IBRAHIM

(Nama pelajar / Student's Name)

mengaku membenarkan Tesis/Disertasi/Laporan Kertas Projek (Kedoktoran/<del>Sarjana</del>)\* ini disimpan di Universiti Pendidikan Sultan Idris (Perpustakaan Tuanku Bainun) dengan syarat-syarat kegunaan seperti berikut:-

acknowledged that Universiti Pendidikan Sultan Idris (Tuanku Bainun Library) reserves the right as follows:-

- 1. Tesis/Disertasi/Laporan Kertas Projek ini adalah hak milik UPSI. The thesis is the property of Universiti Pendidikan Sultan Idris
- 2. Perpustakaan Tuanku Bainun dibenarkan membuat salinan untuk tujuan rujukan dan penyelidikan. *Tuanku Bainun Library has the right to make copies for the purpose of reference and research.*



- 3. Perpustakaan dibenarkan membuat salinan Tesis/Disertasi ini sebagai bahan pertukaran antara Institusi Pengajian Tinggi. *The Library has the right to make copies of the thesis for academic exchange.*
- 4. Sila tandakan ( $\sqrt{}$ ) bagi pilihan kategori di bawah / Please tick ( $\sqrt{}$ ) for category below:-



SULIT/CONFIDENTIAL

T

TERHAD/RESTRICTED

Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub dalam Akta Rahsia Rasmi 1972. / Contains confidential information under the Official Secret Act 1972

Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan ini dijalankan. / Contains restircted information as specified by the organization where research was done.

 $\mathbf{V}$ 

TIDAK TERHAD / OPEN ACCESS

(Tandatangan Pelajar/ Signature)

(Tandatangan Penyelia / Signature of Supervisor) & (Nama & Cop Rasmi / Name & Official Stamp)

Catatan: Jika Tesis/Disertasi ini SULIT @ TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan ini perlu dikelaskan sebagai SULIT dan TERHAD.

Notes: If the thesis is CONFIDENTAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentiality or restriction.



Tarikh:







### ACKNOWLEDGEMENT

"In The Name of Allah, Most Gracious, Most Merciful"

First and foremost, I show my gratitude to The Almighty God for giving me the strength to complete this thesis. Alhamdulillah with His permission, I managed to settled PhD work eventually. I am deeply grateful to everyone who has helped me in completing this work.

Million thanks go to my supervisors, Assoc. Prof. Dr Saripah Salbiah Syed Abdul Azziz and Assoc. Prof. Dr Wong Chee Fah for their enthusiasm, guidance, and unrelenting support throughout this work. I want to thank the Department of Chemistry, Faculty of Science and Mathematics UPSI for the access of UV, IR, and NMR instruments.

Sincerely thanks to all lab assistants, especially to Mr Ibrahim, Mrs Johana, Mr Muhammad Hazim, and Mr Zurin for their help throughout these four years. Special thanks to my lab mates and friends; Munirah, Nor Izzati, Kan Shieh Ting, Syafawati, and Nur Hidayat for their moral support, advice, and encouragement to make the lab work meaningful.

I am grateful to the MyPhD scholarship by the Ministry of Higher Education for my doctoral fellowship. My thanks go to FRGS Grant from Ministry of Higher Education (MOHE) under vote 2014-0030-101-02 and GPU grant from Universiti Pendidikan Sultan Idris under vote 2018-0140-103-01 for the support throughout the entire research.

Special thanks to my husband, Mohd Zaid, my daughter, Aileen Medina who cheer me up all the time, my mother Nor Hamidah, brothers, and family in law for their love, spirits, and encouragement in every single thing I do. Last but not least, this PhD specially dedicated to my late grandmother, Badariah Mahidin, who always loves me and gives full of support in everything I do. All of you made everything possible for me. Thank you.

05-45







#### ABSTRACT

This study aims to investigate the phytochemicals and biological activities from the bark and leaf of Aquilaria subintegra Ding Hou. The samples were air-dried, ground, and gradient extracted by cold extraction using *n*-hexane, dichloromethane, and methanol successively. The bark and leaf crude extracts were purified via chromatographic techniques to produce pure compounds. The chemical structure of compounds were determined using spectroscopic methods such as nuclear magnetic resonance, ultraviolet, infrared, mass spectrometry and comparison from the literature review. The crude extracts and isolated compounds were tested for their anti-lipase, antioxidant and anticancer activities through colorimetric test, DPPH free radical scavenging and cytotoxicity assay, respectively. This study has successfully afforded 22 compounds, including three new compounds, namely aquilene A, aquilene B, and subintegranol. Other compounds were 5-hydroxy-7,4'-dimethoxyflavone, luteolin-7,3',4'-trimethyl ether, 5,3'-dihydroxy-7,4'-dimethoxyflavone, 7,3'-dimethoxyluteolin, 5,7-dihydroxy-4'-methoxyflavone,  $\beta$ -sitosterol,  $\beta$ -sitostenone, stigmasterol, friedelin, epifriedelanol, phytol, and hentriacontane. Anti-lipase activity of *n*-hexane extracts of leaf and methanol extracts of bark showed the highest inhibition, 46% and 52% compared with the control, respectively. Meanwhile, through computational study of 5-hydroxy-7,4'-dimethoxyflavone exhibited the highest inhibition and predicted as a competitive lipase inhibitor. Besides, the leaf of methanolic extract showed the strongest DPPH radical scavenger with IC<sub>50</sub> value of  $29.56 \pm 6.37 \,\mu$ g/mL. However, the tested isolated compounds showed less ability in antioxidant activity. In cytotoxic activity, the leaf and bark of methanolic extracts exhibited highest anticancer activity with IC<sub>50</sub> values of 24.30  $\pm$  0.07 and 17.46  $\pm$  0.08 µg/mL, respectively. Besides, 5hydroxy-7,4'-dimethoxyflavone showed the highest cytotoxicity activity with  $IC_{50}$ value of  $38.48 \pm 0.06 \,\mu\text{g/mL}$ . In conclusion, this study successfully revealed the presence of various phytochemicals in A. subintegra and their potential as anti-lipase, antioxidant and anticancer agents. In implication, this study enhances knowledge on the diversity of chemical compounds and their potential in modern medicine.





### FITOKIMIA DAN AKTIVITI BIOLOGI DARIPADA Aquilaria subintegra Ding Hou

#### ABSTRAK

Kajian bertujuan untuk mengenal pasti fitokimia dan aktiviti biologi daripada kulit batang dan daun Aquilaria subintegra Ding Hou. Sampel dikering, dikisar dan diekstrak secara pengekstrakan dingin menggunakan pelarut n-heksana, diklorometana dan metanol secara berturutan. Ekstrak mentah kulit batang dan daun dipisahkan melalui teknik kromatografi untuk mendapatkan sebatian tulen. Struktur kimia sebatian tulen dikenalpasti menggunakan kaedah spektroskopi seperti resonans magnet nukleus, ultra lembayung, infra merah dan spektrometri jisim dan perbandingan daripada kajian lepas. Ekstrak mentah dan sebatian tulen diuji terhadap aktiviti anti-lipase, antioksidan dan antikanser masing-masingnya menerusi ujian warna, DPPH radikal bebas dan assai kesitotoksikan. Kajian ini berjaya mengasingkan 22 sebatian termasuk tiga sebatian baharu iaitu aquilen A, aquilen B dan subintegranol. Sebatian lain adalah 5-hidroksi-7,4'-dimetoksiflavon, luteolin-7,3',4'-trimetil eter. 5,3'-dihidroksi-7,4'dimetoksiflavon, 7,3'-dimetoksi luteolin, 5,7-dihidroksi-4'-metoksiflavon,  $\beta$ -sitosterol,  $\beta$ -sitostenon, stigmasterol, fridelin, epifridelanol, phytol dan hentriakontan. Aktiviti anti-lipase ke atas ekstrak n-heksana daun dan ekstrak metanol kulit batang masingmasingnya menunjukkan perencatan tertinggi, 46% dan 52% berbanding kawalan. Manakala, kajian simulasi berkomputer terhadap sebatian 5-hidroksi-7,4'dimetoksiflavon mempamerkan perencatan tertnggi dan diramalkan sebagai perencat lipase yang kompetitif. Selain itu, ekstrak daun mentah metanol menunjukkan aktiviti perencatan radikal DPPH yang kuat dengan nilai IC<sub>50</sub> 29.56  $\pm$  6.37 µg/mL. Namun, sebatian tulen yang diuji mempamerkan kebolehan yang rendah bagi aktiviti antioksidan. Bagi aktiviti sitotoksik, ekstrak metanol daun dan kulit batang masingmasingnya menunjukkan aktiviti antikanser yang kuat dengan nilai IC<sub>50</sub>,  $24.30 \pm 0.07$ dan 17.46  $\pm$  0.08 µg/mL. Selain itu, 5- hidroksi-7,4'-dimetoksiflavon menunjukkan kesan sitotoksik yang kuat dengan nilai IC<sub>50</sub> 38.48  $\pm$  0.06 µg/mL. Kesimpulannya, kajian ini berjaya mendedahkan kepelbagaian fitokimia daripada A. subintegra dan potensinya sebagai agen anti-lipase, antioksidan dan antikanser. Implikasinya, kajian dapat meningkatkan pengetahuan mengenai kepelbagaian sebatian kimia dalam tumbuhan serta potensinya dalam perubatan moden.







### **CONTENTS**

|                                                                                             | Page  |
|---------------------------------------------------------------------------------------------|-------|
| ACKNOWLEDGEMENT                                                                             | iv    |
| ABSTRACT                                                                                    | V     |
| ABSTRAK                                                                                     | vi    |
| CONTENTS                                                                                    | vii   |
| LIST OF TABLES                                                                              | xiii  |
| LIST OF FIGURES                                                                             | xvi   |
| LIST OF SCHEMES                                                                             | xxii  |
| 05-45068 LIST OF ABBREVIATIONS Perpustakaan Tuanku Bainun<br>Kampus Sultan Abdul Jalil Shah | xxiii |
| LIST OF APPENDICES                                                                          | xxvi  |
|                                                                                             |       |
| CHAPTER 1 INTRODUCTION                                                                      | 1     |

| AFIEKI | INTRODUCTION          | 1 |
|--------|-----------------------|---|
| 1.1    | General Introduction  | 1 |
| 1.2    | Problem Statement     | 6 |
| 1.3    | Significance of Study | 7 |
| 1.4    | Objectives of Study   | 7 |
|        |                       |   |

| CHAPTER 2 | LITERATURE REVIEW    | 9  |
|-----------|----------------------|----|
| 2.1       | Thymelaeaceae Family | 9  |
| 2.2       | Genera Aquilaria     | 12 |

C







|            |      | 2.2.1 | Aquilaria subintegra                                                                                      | 17           |
|------------|------|-------|-----------------------------------------------------------------------------------------------------------|--------------|
|            | 2.3  |       | Phytochemical Studies of Aquilaria species                                                                | 19           |
|            |      | 2.3.1 | Phenolic Compounds                                                                                        | 19           |
|            |      |       | 2.3.1.1 Flavonoids                                                                                        | 22           |
|            |      |       | 2.3.1.2 Reported Flavonoids in Aquilaria Species                                                          | 26           |
|            |      | 2.3.2 | Terpenes                                                                                                  | 30           |
|            |      |       | 2.3.2.1 Monoterpene                                                                                       | 33           |
|            |      |       | 2.3.2.2 Sesquiterpenes                                                                                    | 34           |
|            |      |       | 2.3.2.3 Diterpenes                                                                                        | 35           |
|            |      |       | 2.3.2.4 Triterpenes and Steroids                                                                          | 37           |
|            |      |       | 2.3.2.5 Terpenes in Aquilaria Species                                                                     | 42           |
|            |      | 2.3.3 | Miscellaneous Phytochemicals Reported in Aquilaria                                                        | 47           |
| 05-4506832 | 2.4. |       | Perpustakaan Tuanku Bainun<br>Kampus Sultan Abdul Jali Shah<br>Pharmacological Studies of Chronic Disease | ptbups<br>55 |
|            |      | 2.4.1 | Obesity                                                                                                   | 55           |
|            |      | 2.4.2 | Oxidant or Oxidative Stress                                                                               | 57           |
|            |      | 2.4.3 | Cancer                                                                                                    | 59           |
|            | 2.5  |       | Pharmacological Properties of Aquilaria species                                                           | 62           |
|            |      | 2.5.1 | Antioxidant Property                                                                                      | 62           |
|            |      | 2.5.2 | Anti-Obesity Property                                                                                     | 63           |
|            |      | 2.5.3 | Anticancer Property                                                                                       | 64           |
|            |      | 2.5.4 | Other Biological Properties                                                                               | 64           |
|            |      |       |                                                                                                           |              |
|            |      | ,     |                                                                                                           | 69           |

| CHAPTER 3 | METHODOLOGY        | 68 |
|-----------|--------------------|----|
| 3.1       | General Procedures | 68 |



|      | 3.1.1                    | Chemical Reagents                                                                                                                           | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3.2  |                          | Plant Materials                                                                                                                             | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3.3  |                          | Extraction of Aquilaria subintegra                                                                                                          | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3.4  |                          | Isolation and Purification                                                                                                                  | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3.5  |                          | Chemical Constituents from Bark of A. subintegra                                                                                            | 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      | 3.5.1                    | Physical and Spectral Data of Isolated Chemical<br>Constituents from Bark                                                                   | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      |                          | 3.5.1.1 ASBD1: 5-Hydroxy-7,4'-dimethoxyflavone ( <b>36</b> )                                                                                | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      |                          | 3.5.1.2 ASBD2: Luteolin 7,3',4'-trimethylether ( <b>37</b> )                                                                                | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      |                          | 3.5.1.3 ASBD3: 5,3'-Dihydroxy-7,4'-dimethoxy flavone ( <b>41</b> )                                                                          | 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      |                          | 3.5.1.4 ASBD4: 7,3'-Dimethoxy luteolin ( <b>185</b> )                                                                                       | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| pust |                          | <ul> <li>3.5.1.5 ASBD5: β-Sitosterol (101)</li> <li>Burny Perpustakaan Tuanku Bainun</li> <li>3.5.1.6 ASBD6: β-Sitostenone (139)</li> </ul> | 80<br>ptbups<br>81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      |                          | 3.5.1.7 ASBD7: Saturated triglyceride fatty acid ( <b>186</b> )                                                                             | 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      |                          | 3.5.1.8 ASBD8: 2,6-Dimethoxyquinone (187)                                                                                                   | 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3.6  |                          | Chemical Constituents from A. subintegra Leaf                                                                                               | 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      | 3.6.1                    | Physical and Spectral Data of Isolated Chemical<br>Constituents from Leaf                                                                   | 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      |                          | 3.6.1.1 ASLD1: 3,7,11,15-Tetramethyl-2-hexadecen-<br>1-ol (phytol) ( <b>74</b> )                                                            | 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      |                          | 3.6.1.2 ASLD2: Friedelin (188)                                                                                                              | 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      |                          | 3.6.1.3 ASLD3: Epifriedelanol (189)                                                                                                         | 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      |                          | 3.6.1.4 ASLD4: Stigmasterol (102)                                                                                                           | 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      |                          | 3.6.1.5 ASLD5: Hentriacontane (190)                                                                                                         | 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      |                          | 3.6.1.6 ASLD6: 5,7-Dihydroxy-4'-methoxyflavone ( <b>39</b> )                                                                                | 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      | 3.2<br>3.3<br>3.4<br>3.5 | 3.1.1<br>3.2<br>3.3<br>3.4<br>3.5<br>3.5.1<br>3.5.1<br>3.6.1                                                                                | <ul> <li>3.1.1 Chemical Reagents</li> <li>3.2 Plant Materials</li> <li>3.3 Extraction of Aquilaria subintegra</li> <li>3.4 Isolation and Purification</li> <li>3.5 Chemical Constituents from Bark of A. subintegra</li> <li>3.5.1 Physical and Spectral Data of Isolated Chemical Constituents from Bark</li> <li>3.5.1.1 ASBD1: 5-Hydroxy-7,4'-dimethoxyflavone (36)</li> <li>3.5.1.2 ASBD2: Luteolin 7,3',4'-trimethylether (37)</li> <li>3.5.1.3 ASBD3: 5,3'-Dihydroxy-7,4'-dimethoxy flavone (41)</li> <li>3.5.1.4 ASBD4: 7,3'-Dimethoxy luteolin (185)</li> <li>3.5.1.6 ASBD5: β-Sitosterol (101)</li> <li>3.5.1.7 ASBD7: Saturated triglyceride fatty acid (186)</li> <li>3.5.1.8 ASBD8: 2,6-Dimethoxyquinone (187)</li> <li>3.6</li> <li>Chemical Constituents from A. subintegra Leaf</li> <li>3.6.1 Physical and Spectral Data of Isolated Chemical Constituents from Leaf</li> <li>3.6.1.1 ASLD1: 3,7,11,15-Tetramethyl-2-hexadecention (104)</li> <li>3.6.1.2 ASLD2: Friedelin (188)</li> <li>3.6.1.3 ASLD3: Epifriedelanol (189)</li> <li>3.6.1.4 ASLD4: Stigmasterol (102)</li> <li>3.6.1.6 ASLD6: 5,7-Dihydroxy-4'-methoxyflavone (39)</li> </ul> |







|            |      |       | 3.6.1.7 ASLD7: Aquilene A (191)                                      | 88                 |
|------------|------|-------|----------------------------------------------------------------------|--------------------|
|            |      |       | 3.6.1.8 ASLD8: Aquilene B (192)                                      | 89                 |
|            |      |       | 3.6.1.9 ASLD9: Subintegranol (193)                                   | 89                 |
|            |      |       | 3.6.1.10 ASLD10: Saturated triglyceride fatty acid ( <b>186</b> )    | 90                 |
|            |      |       | 3.6.1.11 ASLD11: β-sitosterol ( <b>101</b> )                         | 91                 |
|            |      |       | 3.6.1.12 ASLD12: β-sitostenone ( <b>139</b> )                        | 91                 |
|            |      |       | 3.6.1.13 ASLD13: 5-Hydroxy-7,4'-dimethoxyflavone ( <b>36</b> )       | 91                 |
|            |      |       | 3.6.1.14 ASLD14: 5,3'-Dihydroxy-7,4'-dimethoxy flavone ( <b>41</b> ) | 92                 |
|            | 3.7  |       | Bioactivity Studies                                                  | 92                 |
|            |      | 3.7.1 | Antioxidant Activity                                                 | 92                 |
| 05-4506832 | pust |       | 3.7.1.1 Instruments and Materials                                    | 93<br>ptbups<br>93 |
|            |      |       | 3.7.1.2 Chemicals                                                    | 93                 |
|            |      | 372   | Anti-linase Activity                                                 | 95                 |
|            |      | 5.7.2 | 2.7.2.1 Instruments and Apperatus                                    | 05                 |
|            |      |       | 2.7.2.2 Chemical Descents                                            | 95                 |
|            |      |       | 3.7.2.2 Chemical Reagents                                            | 90                 |
|            |      |       | 3.7.2.3 Standard Curves of Free Fatty Acid                           | 96                 |
|            |      |       | 3.7.2.4 Assay for inhibitory pancreatic lipase activity              | 97                 |
|            |      | 3.7.3 | Anticancer Activity                                                  | 99                 |
|            |      |       | 3.7.3.1 Materials and Apparatus                                      | 99                 |
|            |      |       | 3.7.3.2 Cytotoxic Assay                                              | 99                 |
|            | 3.8  |       | Mechanism of inhibition of pancreatic lipase activity                | 100                |
|            |      | 3.8.1 | Molecular Docking                                                    | 100                |
|            |      |       |                                                                      |                    |







| CH         | IAPTER 4               | <b>RESULTS AND DISCUSSION</b>                                                     | 103          |
|------------|------------------------|-----------------------------------------------------------------------------------|--------------|
|            | 4.1                    | Phytochemical Studies                                                             | 103          |
|            | 4.2                    | Chemical Constituents Isolated from bark of <i>A</i> . <i>subinterga</i>          | 106          |
|            | 4.2.1                  | ASBD1: 5-Hydroxy-7,4'-dimethoxyflavone (36)                                       | 106          |
|            | 4.2.2                  | ASBD2: Luteolin-7,3',4'-trimethyl ether ( <b>37</b> )                             | 112          |
|            | 4.2.3                  | ASDB3: 5,3'-Dihydroxy-7,4'-dimethoxyflavone ( <b>41</b> )                         | 117          |
|            | 4.2.4                  | ASDB4: 7,3'-Dimethoxy luteolin (185)                                              | 123          |
|            | 4.2.5                  | ASDB5: $\beta$ -sitosterol (101)                                                  | 128          |
|            | 4.2.6                  | ASBD6: $\beta$ -sitostenone (139)                                                 | 134          |
|            | 4.2.7                  | ASBD7: Saturated triglyceride fatty acid (186)                                    | 139          |
|            | 4.2.8                  | ASBD8: 2,6-Dimethoxyquinone (187)                                                 | 147          |
| 05-4506832 | 4.3<br>pustaka.upsi.ed | Chemical Constituents Isolated from leaf of A.<br>subinterga                      | 152<br>tbups |
|            | 4.3.1                  | ASLD1: 3,7,11,15 – Tetramethyl – 2 – hexadecen – 1<br>– ol (phytol) ( <b>74</b> ) | 152          |
|            | 4.3.2                  | ASLD2: Friedelin (188)                                                            | 157          |
|            | 4.3.3                  | ASLD3: Epifriedelanol (189)                                                       | 162          |
|            | 4.3.4                  | ASLD4: Stigmasterol (102)                                                         | 167          |
|            | 4.3.5                  | ASLD5: Hentriacontane (190)                                                       | 172          |
|            | 4.3.6                  | ASLD6: 5,7-Dihydroxy-4'-methoxyflavone (39)                                       | 176          |
|            | 4.3.7                  | ASLD7: Aquilene A (191)                                                           | 181          |
|            | 4.3.8                  | ASLD8: Aquilene B (192)                                                           | 194          |
|            | 4.3.9                  | ASLD9: Subintegranol (193)                                                        | 204          |
|            | 4.3.10                 | ASLD10: Saturated triglyceride fatty acid (186)                                   | 217          |
|            | 4.3.11                 | ASLD11: $\beta$ -Sitosterol ( <b>101</b> )                                        | 217          |





|     | 4.3.12 | ASLD12: $\beta$ -Sitostenone (139)                | 218 |
|-----|--------|---------------------------------------------------|-----|
|     | 4.3.13 | ASLD13: 5-Hydroxy-7,4'-dimethoxyflavone (36)      | 218 |
|     | 4.3.14 | ASLD14: 5,3'-Dihydroxy-7,4'-dimethoxyflavone (41) | 218 |
| 4.4 | 1      | Biological Activity                               | 219 |
|     | 4.4.1  | Anti-lipase activity                              | 219 |
|     | 4.4.2  | Molecular Docking Study                           | 226 |
|     |        | 4.4.2.1 Docking Study of Isolated Compound        | 228 |
|     | 4.4.3  | Antioxidant Activity                              | 233 |
|     |        | 4.4.3.1 DPPH Free Radical Scavenging Assay        | 233 |
|     | 4.4.4  | Anticancer Activity                               | 239 |
|     |        |                                                   |     |
|     |        |                                                   |     |

| CH         | HAPTER 5         | CONCLUSION AND RECOMM                                                  | ENDATIONS | 242      |
|------------|------------------|------------------------------------------------------------------------|-----------|----------|
| 05-4506832 | 5.1ustaka.upsi.e | Conclusion Perpustakaan Tuanku Bainun<br>Ampus Sultan Abdul Jalil Shah |           | 242oupsi |
|            | 5.2              | Recommendations for Future Study                                       | 7         | 245      |

REFERENCES

247









### LIST OF TABLES

| Table N | 0.                                                                                                                                                                                               | Page         |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 1.1     | Medicinal plants reported in Malaysia                                                                                                                                                            | 3            |
| 2.1     | The chronology of changes of taxonomy affinities in family Thymelaeaceae and genus <i>Aquilaria</i>                                                                                              | 10           |
| 2.2     | Distribution of Aquilaria species                                                                                                                                                                | 13           |
| 2.3     | Medicinal uses of various Aquilaria species                                                                                                                                                      | 17           |
| 2.4     | Classes of Polyphenolic Compounds                                                                                                                                                                | 21           |
| 2.5     | Chemical structures of flavonoid groups                                                                                                                                                          | 24           |
| 2.6     | The classification of terpenes based on the number of isoprene<br>ounits in their structure amounts Suitan Abdul Jali Shah                                                                       | 33<br>ptbups |
| 2.7     | Examples of diterpenes in various species                                                                                                                                                        | 35           |
| 2.8     | Other phytochemicals isolated from Aquilaria species                                                                                                                                             | 47           |
| 2.9     | Pharmacological activities of several phytochemicals from <i>Aquilaria</i> species                                                                                                               | 66           |
| 3.1     | Percentage yield and physical property of the crude extracts of <i>A. subintegra</i>                                                                                                             | 72           |
| 4.1     | Phytochemicals isolated from bark and leaf of A. subintegra                                                                                                                                      | 105          |
| 4.2     | <sup>1</sup> H NMR (500 MHz, CDCl <sub>3</sub> ) and <sup>13</sup> C (125 MHz, CDCl <sub>3</sub> ) spectral data of <b>ASBD1</b> and 5- hydroxy-7,4'-dimethoxyflavone ( <b>36</b> )              | 111          |
| 4.3     | <sup>1</sup> H NMR (500 MHz, CDCl <sub>3</sub> ) and <sup>13</sup> C (125 MHz, CDCl <sub>3</sub> ) spectral data of compound <b>ASBD2</b> and luteolin-7,3',4'-trimethyl ether ( <b>37</b> )     | 116          |
| 4.4     | <sup>1</sup> H NMR (500 MHz, CDCl <sub>3</sub> ) and <sup>13</sup> C (125 MHz, CDCl <sub>3</sub> ) spectral data of compound <b>ASBD3</b> and 5,3'-dihydroxy-7,4'-dimethoxyflavone ( <b>41</b> ) | 122          |







|         | 4.5  | <sup>1</sup> H NMR (500 MHz, CDCl <sub>3</sub> ) and <sup>13</sup> C (125 MHz, CDCl <sub>3</sub> ) spectral data of compound <b>ASBD4</b> and 7,3'-dimethoxyluteolin ( <b>185</b> )                                  | 127 |
|---------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|         | 4.6  | <sup>1</sup> H NMR (500 MHz, CDCl <sub>3</sub> ) and <sup>13</sup> C (125 MHz, CDCl <sub>3</sub> ) spectral data of compound <b>ASBD5</b> and $\beta$ -sitosterol ( <b>101</b> )                                     | 132 |
|         | 4.7  | <sup>1</sup> H NMR (500 MHz, CDCl <sub>3</sub> ) and <sup>13</sup> C (125 MHz, CDCl <sub>3</sub> ) spectral data of compound <b>ASBD6</b> and $\beta$ -sitostenone ( <b>139</b> )                                    | 137 |
|         | 4.8  | <sup>1</sup> H, <sup>13</sup> C and 2D-NMR spectral data of compound <b>ASBD7</b> and triglycerides (FA) ( <b>186</b> )                                                                                              | 144 |
|         | 4.9  | <sup>1</sup> H-NMR (500 MHz, CDCl <sub>3</sub> ) and <sup>13</sup> C (125 MHz, CDCl <sub>3</sub> ) spectral data of compound <b>ASBD8</b> and 2,6-dimethoxyquinone ( <b>187</b> )                                    | 151 |
|         | 4.10 | <sup>1</sup> H NMR (500 MHz, CDCl <sub>3</sub> ) and <sup>13</sup> C (125 MHz, CDCl <sub>3</sub> ) spectra data of compound <b>ASLD1</b> and 3,7,11,15 – tetramethyl – 2 – hexadecen – 1 – ol (phytol) ( <b>74</b> ) | 155 |
|         | 4.11 | <sup>1</sup> H NMR (500 MHz, CDCl <sub>3</sub> ) and <sup>13</sup> C (125 MHz, CDCl <sub>3</sub> ) spectra data of compound <b>ASLD2</b> and friedelin ( <b>188</b> )                                                | 161 |
|         | 4.12 | <sup>1</sup> H NMR (500 MHz, CDCl <sub>3</sub> ) and <sup>13</sup> C (125 MHz, CDCl <sub>3</sub> ) spectra data of compound <b>ASLD3</b> and epifriedelanol ( <b>189</b> )                                           | 166 |
| 05-4506 | 4.13 | <sup>1</sup> H NMR (500 MHz, CDCl <sub>3</sub> ) and <sup>13</sup> C (125 MHz, CDCl <sub>3</sub> ) spectra data of compound <b>ASLD4</b> and stigmasterol ( <b>102</b> )                                             | 171 |
|         | 4.14 | <sup>1</sup> H NMR (500 MHz, CDCl <sub>3</sub> ) and <sup>13</sup> C (125 MHz, CDCl <sub>3</sub> ) spectra data of compound <b>ASLD5</b> and hentriacontane ( <b>190</b> )                                           | 175 |
|         | 4.15 | <sup>1</sup> H NMR (500 MHz, CDCl <sub>3</sub> +CD <sub>3</sub> OD) spectral data of compound <b>ASLD</b> 6 and 5,7-dihydroxy-4'-methoxyflavone ( <b>39</b> )                                                        | 179 |
|         | 4.16 | <sup>1</sup> H (500 MHz, CDCl3), <sup>13</sup> C (125 MHz, CDCl3), and 2D-NMR spectral data of compound <b>ASLD7</b> ( <b>191</b> )                                                                                  | 192 |
|         | 4.17 | <sup>1</sup> H (500 MHz, CDCl <sub>3</sub> ), <sup>13</sup> C (125 MHz, CDCl <sub>3</sub> ), and 2D-NMR spectral data of compound <b>ASLD8 (192)</b>                                                                 | 202 |
|         | 4.18 | <sup>1</sup> H (500 MHz, CDCl <sub>3</sub> ), <sup>13</sup> C (125 MHz, CDCl <sub>3</sub> ), and 2D-NMR spectral data of compound <b>ASLD9</b> (193)                                                                 | 215 |
|         | 4.19 | Binding energies and residues involved in binding of the isolated compound with PPL                                                                                                                                  | 230 |
|         | 4.20 | Hydrogen bonds between isolated compounds and PPL                                                                                                                                                                    | 230 |









| 4.21 | The DPPH radical scavenging activity of crude extracts of <i>A</i> . <i>subintegra</i> in comparison with the ascorbic acid standard | 236 |
|------|--------------------------------------------------------------------------------------------------------------------------------------|-----|
| 4.22 | The DPPH radical scavenging activity of isolated compounds of <i>A. subintegra</i> in comparison with the ascorbic acid standard     | 237 |
| 4.23 | Cytotoxicity of the crude extract against MCF-7's breast cancer cell with an $IC_{50}$ value                                         | 240 |
| 4.24 | Cytotoxicity of the isolated compound against MCF-7's breast cancer cell with an $IC_{50}$ value                                     | 241 |





O 5-4506832 o pustaka.upsi.edu.my

PustakaTBainun ptbupsi











### LIST OF FIGURES

|          | Figure No       |                                                                                                                                                                | Page        |  |
|----------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|
|          | 2.1             | Distribution of Aquilaria species in Indomalesia region                                                                                                        | 15          |  |
|          | 2.2             | (a) Bark, (b) leaf and (c) herbarium specimen <i>A</i> . <i>subintegra</i>                                                                                     | 18          |  |
|          | 2.3             | Basic skeleton of flavonoid                                                                                                                                    | 23          |  |
|          | 2.4             | Biosynthesis of terpenes and their inhibitors                                                                                                                  | 32          |  |
|          | 2.5             | Examples of monoterpene compounds                                                                                                                              | 33          |  |
|          | 2.6             | Skeleton of sesquiterpenes                                                                                                                                     | 34          |  |
| 05-45068 | 2.7<br>332 🛞 pr | Skeleton of triterpenes: lanostane (78), dammarane (79),<br>tetranortriterpenoid (80), fridelane (81), lupine (82),<br>oleanane (83), ursane (84), hopane (85) | 38<br>ptbup |  |
|          | 2.8             | Backbone skeleton of steroid                                                                                                                                   | 39          |  |
|          | 2.9             | A different skeleton of steroids; pregnane (86), cholestane (87), stigmastane (88), ergostane (89), cholane (90) and androstane (91)                           | 39          |  |
|          | 2.10            | The biosynthesis of sterols and triterpenes                                                                                                                    | 41          |  |
|          | 3.1             | Flow process of the colorimetric assay                                                                                                                         | 98          |  |
|          | 3.2             | The structure of PPL-CLP-TGME (PDB-ID: 1ETH) obtained from PDB                                                                                                 | 101         |  |
|          | 4.1             | LC-MS spectrum of Compound ASBD1                                                                                                                               | 107         |  |
|          | 4.2             | IR spectrum of compound ASBD1                                                                                                                                  | 108         |  |
|          | 4.3             | UV spectrum of compound ASBD1                                                                                                                                  | 108         |  |
|          | 4.4             | <sup>1</sup> H-NMR spectrum of compound <b>ASBD1</b>                                                                                                           | 109         |  |





| 4.                                                       | 5                                                                                                                      | <sup>13</sup> C-NMR spectrum of compound <b>ASBD1</b>                                                                                                                                                                                                                                                                                                                                                                                                        | 110                                                         |
|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| 4.                                                       | 6                                                                                                                      | UV spectrum of compound ASBD2                                                                                                                                                                                                                                                                                                                                                                                                                                | 113                                                         |
| 4.                                                       | 7                                                                                                                      | IR spectrum of compound ASBD2                                                                                                                                                                                                                                                                                                                                                                                                                                | 113                                                         |
| 4.                                                       | 8                                                                                                                      | LC-MS spectrum of compound ASBD2                                                                                                                                                                                                                                                                                                                                                                                                                             | 114                                                         |
| 4.                                                       | 9                                                                                                                      | <sup>1</sup> H-NMR spectrum of compound <b>ASBD2</b>                                                                                                                                                                                                                                                                                                                                                                                                         | 115                                                         |
| 4.                                                       | 10                                                                                                                     | <sup>13</sup> C-NMR spectrum of compound <b>ASBD2</b>                                                                                                                                                                                                                                                                                                                                                                                                        | 116                                                         |
| 4.                                                       | 11                                                                                                                     | UV spectrum of compound ASBD3                                                                                                                                                                                                                                                                                                                                                                                                                                | 118                                                         |
| 4.                                                       | 12                                                                                                                     | IR spectrum of compound ASBD3                                                                                                                                                                                                                                                                                                                                                                                                                                | 119                                                         |
| 4.                                                       | 13                                                                                                                     | LC-MS spectrum of compound ASBD3                                                                                                                                                                                                                                                                                                                                                                                                                             | 119                                                         |
| 4.                                                       | 14                                                                                                                     | <sup>1</sup> H-NMR spectrum of compound <b>ASBD3</b>                                                                                                                                                                                                                                                                                                                                                                                                         | 121                                                         |
| 4.                                                       | 15                                                                                                                     | <sup>13</sup> C-NMR spectrum of compound <b>ASBD3</b>                                                                                                                                                                                                                                                                                                                                                                                                        | 121                                                         |
| 4.                                                       | 16                                                                                                                     | LC-MS spectrum of compound ASBD4                                                                                                                                                                                                                                                                                                                                                                                                                             | 123                                                         |
| 05-4506834.                                              | 17 😯 pu                                                                                                                | IR spectrum of compound ASBD4 del Jali Shah                                                                                                                                                                                                                                                                                                                                                                                                                  | 124 thups                                                   |
| 4.                                                       | 18                                                                                                                     | UV spectrum of compound ASBD4                                                                                                                                                                                                                                                                                                                                                                                                                                | 125                                                         |
|                                                          |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                             |
| 4.                                                       | 19                                                                                                                     | <sup>1</sup> H-NMR spectrum of compound <b>ASBD4</b>                                                                                                                                                                                                                                                                                                                                                                                                         | 126                                                         |
| 4.<br>4.                                                 | 19<br>20                                                                                                               | <sup>1</sup> H-NMR spectrum of compound <b>ASBD4</b><br><sup>13</sup> C-NMR spectrum of compound <b>ASBD4</b>                                                                                                                                                                                                                                                                                                                                                | 126<br>127                                                  |
| 4.<br>4.<br>4.                                           | 19<br>20<br>21                                                                                                         | <sup>1</sup> H-NMR spectrum of compound <b>ASBD4</b><br><sup>13</sup> C-NMR spectrum of compound <b>ASBD4</b><br>LC-MS spectrum of compound <b>ASBD5</b>                                                                                                                                                                                                                                                                                                     | 126<br>127<br>129                                           |
| 4.<br>4.<br>4.<br>4.                                     | 19<br>20<br>21<br>22                                                                                                   | <sup>1</sup> H-NMR spectrum of compound <b>ASBD4</b><br><sup>13</sup> C-NMR spectrum of compound <b>ASBD4</b><br>LC-MS spectrum of compound <b>ASBD5</b><br>IR spectrum of compound <b>ASBD5</b>                                                                                                                                                                                                                                                             | 126<br>127<br>129<br>130                                    |
| 4.<br>4.<br>4.<br>4.<br>4.                               | 19<br>20<br>21<br>22<br>23                                                                                             | <sup>1</sup> H-NMR spectrum of compound <b>ASBD4</b><br><sup>13</sup> C-NMR spectrum of compound <b>ASBD4</b><br>LC-MS spectrum of compound <b>ASBD5</b><br>IR spectrum of compound <b>ASBD5</b><br><sup>1</sup> H NMR spectrum of compound <b>ASBD5</b>                                                                                                                                                                                                     | 126<br>127<br>129<br>130<br>131                             |
| 4.<br>4.<br>4.<br>4.<br>4.<br>4.                         | <ol> <li>19</li> <li>20</li> <li>21</li> <li>22</li> <li>23</li> <li>24</li> </ol>                                     | <sup>1</sup> H-NMR spectrum of compound <b>ASBD4</b><br><sup>13</sup> C-NMR spectrum of compound <b>ASBD4</b><br>LC-MS spectrum of compound <b>ASBD5</b><br>IR spectrum of compound <b>ASBD5</b><br><sup>1</sup> H NMR spectrum of compound <b>ASBD5</b><br><sup>13</sup> C-NMR spectrum of compound <b>ASBD5</b>                                                                                                                                            | 126<br>127<br>129<br>130<br>131<br>132                      |
| 4.<br>4.<br>4.<br>4.<br>4.<br>4.<br>4.                   | 19<br>20<br>21<br>22<br>23<br>24<br>25                                                                                 | <ul> <li><sup>1</sup>H-NMR spectrum of compound ASBD4</li> <li><sup>13</sup>C-NMR spectrum of compound ASBD4</li> <li>LC-MS spectrum of compound ASBD5</li> <li>IR spectrum of compound ASBD5</li> <li><sup>1</sup>H NMR spectrum of compound ASBD5</li> <li><sup>13</sup>C-NMR spectrum of compound ASBD5</li> <li>IR spectrum of compound ASBD5</li> </ul>                                                                                                 | 126<br>127<br>129<br>130<br>131<br>132<br>135               |
| 4.<br>4.<br>4.<br>4.<br>4.<br>4.<br>4.<br>4.             | <ol> <li>19</li> <li>20</li> <li>21</li> <li>22</li> <li>23</li> <li>24</li> <li>25</li> <li>26</li> </ol>             | <ul> <li><sup>1</sup>H-NMR spectrum of compound ASBD4</li> <li><sup>13</sup>C-NMR spectrum of compound ASBD4</li> <li>LC-MS spectrum of compound ASBD5</li> <li><sup>1</sup>H NMR spectrum of compound ASBD5</li> <li><sup>13</sup>C-NMR spectrum of compound ASBD5</li> <li>IR spectrum of compound ASBD5</li> <li>IR spectrum of compound ASBD6</li> <li>LC-MS spectrum of compound ASBD6</li> </ul>                                                       | 126<br>127<br>129<br>130<br>131<br>132<br>135<br>135        |
| 4.<br>4.<br>4.<br>4.<br>4.<br>4.<br>4.<br>4.<br>4.<br>4. | <ol> <li>19</li> <li>20</li> <li>21</li> <li>22</li> <li>23</li> <li>24</li> <li>25</li> <li>26</li> <li>27</li> </ol> | <ul> <li><sup>1</sup>H-NMR spectrum of compound ASBD4</li> <li><sup>13</sup>C-NMR spectrum of compound ASBD4</li> <li>LC-MS spectrum of compound ASBD5</li> <li><sup>1</sup>H NMR spectrum of compound ASBD5</li> <li><sup>13</sup>C-NMR spectrum of compound ASBD5</li> <li>IR spectrum of compound ASBD5</li> <li>IR spectrum of compound ASBD6</li> <li>LC-MS spectrum of compound ASBD6</li> <li><sup>1</sup>H-NMR spectrum of Compound ASBD6</li> </ul> | 126<br>127<br>129<br>130<br>131<br>132<br>135<br>135<br>135 |

O5-4506832 Bustaka.upsi.edu.my Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah



| 4.29                        | LC-MS spectrum of compound ASBD7                      | 140       |
|-----------------------------|-------------------------------------------------------|-----------|
| 4.30                        | IR spectrum of compound ASBD7                         | 140       |
| 4.31                        | <sup>1</sup> H-NMR spectrum of compound <b>ASBD7</b>  | 141       |
| 4.32                        | <sup>13</sup> C-NMR spectrum of compound <b>ASBD7</b> | 142       |
| 4.33                        | COSY spectrum of compound ASBD7                       | 145       |
| 4.34                        | HMQC spectrum of compound ASBD7                       | 145       |
| 4.35                        | HMBC spectrum of compound ASBD7                       | 146       |
| 4.36                        | COSY and HMBC correlations of compound ASBD7          | 146       |
| 4.37                        | IR spectrum of compound ASBD8                         | 148       |
| 4.38                        | UV spectrum of compound ASBD8                         | 148       |
| 4.39                        | LC-MS spectrum of compound ASBD8                      | 149       |
| 4.40                        | <sup>1</sup> H-NMR spectrum of compound <b>ASBD8</b>  | 150       |
| 🕓 05-450683 <b>4.41 🔮</b> p | <sup>13</sup> C-NMR spectrum of compound <b>ASBD8</b> | 150ptbups |
| 4.42                        | IR spectrum of compound ASLD1                         | 153       |
| 4.43                        | LC-MS spectrum of compound ASLD1                      | 153       |
| 4.44                        | <sup>1</sup> H-NMR spectrum of compound <b>ASLD1</b>  | 155       |
| 4.45                        | <sup>13</sup> C-NMR spectrum of compound ASLD1        | 155       |
| 4.46                        | IR spectrum of compound ASLD2                         | 158       |
| 4.47                        | LC-MS spectrum of compound ASLD2                      | 158       |
| 4.48                        | <sup>1</sup> H-NMR spectrum of compound ASLD2         | 159       |
| 4.49                        | <sup>13</sup> C-NMR spectrum of compound ASLD2        | 160       |
| 4.50                        | IR spectrum of compound ASLD3                         | 163       |
| 4.51                        | LC-MS spectrum of compound ASLD3                      | 163       |
| 4.52                        | <sup>1</sup> H-NMR spectrum of compound <b>ASI D3</b> | 164       |





| 4.53                      | <sup>13</sup> C-NMR spectrum of compound ASLD3                                                  | 165         |
|---------------------------|-------------------------------------------------------------------------------------------------|-------------|
| 4.54                      | IR spectrum of compound ASLD4                                                                   | 168         |
| 4.55                      | LC-MS spectrum of compound ASLD4                                                                | 168         |
| 4.56                      | <sup>1</sup> H-NMR spectrum of compound <b>ASLD4</b>                                            | 170         |
| 4.57                      | <sup>13</sup> C-NMR spectrum of compound ASLD4                                                  | 170         |
| 4.58                      | IR spectrum of compound ASLD5                                                                   | 173         |
| 4.59                      | LC-MS spectrum of compound ASLD5                                                                | 173         |
| 4.60                      | <sup>1</sup> H-NMR spectrum of compound ASLD5                                                   | 174         |
| 4.61                      | <sup>13</sup> C-NMR spectrum of compound ASLD5                                                  | 175         |
| 4.62                      | UV spectrum of compound ASLD6                                                                   | 177         |
| 4.63                      | IR spectrum of compound ASLD6                                                                   | 177         |
| 4.64                      | LC-MS spectrum of compound ASLD6                                                                | 178         |
| O 05-450683 <b>4.65</b> P | <sup>1</sup> H-NMR spectrum of compound ASLD6                                                   | 179 ptbupsi |
| 4.66                      | IR spectrum of compound ASLD7                                                                   | 182         |
| 4.67                      | LC-MS spectrum of compound ASLD7                                                                | 182         |
| 4.68                      | <sup>1</sup> H-NMR spectrum of compound <b>ASLD7</b>                                            | 183         |
| 4.69                      | <sup>13</sup> C-NMR spectrum of compound ASLD7                                                  | 184         |
| 4.70                      | DEPT spectrum of compound ASLD7                                                                 | 185         |
| 4.71                      | COSY spectrum of compound ASLD7                                                                 | 187         |
| 4.72                      | TOCSY spectrum of compound ASLD7                                                                | 188         |
| 4.73                      | HMQC spectrum of compound ASLD7                                                                 | 189         |
| 4.74                      | HMBC spectrum of compound ASLD7                                                                 | 190         |
| 4.75                      | Expanded HMBC spectrum of compound ASLD7                                                        | 191         |
| 4.76                      | COSY, <sup>1</sup> H and <sup>13</sup> C correlations observed in HMBC spectrum of <b>ASLD7</b> | 192         |



| 4.77                       | IR spectrum of compound ASLD8                                                                                                                                                                               | 195                   |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| 4.78                       | LC-MS spectrum of compound ASLD8                                                                                                                                                                            | 195                   |
| 4.79                       | <sup>1</sup> H-NMR spectrum of compound ASLD8                                                                                                                                                               | 197                   |
| 4.80                       | <sup>13</sup> C-NMR spectrum of compound ASLD8                                                                                                                                                              | 197                   |
| 4.81                       | COSY spectrum of compound ASLD8                                                                                                                                                                             | 199                   |
| 4.82                       | HMQC spectrum of compound ASLD8                                                                                                                                                                             | 200                   |
| 4.83                       | HMBC spectrum of compound ASLD8                                                                                                                                                                             | 201                   |
| 4.84                       | COSY, <sup>1</sup> H and <sup>13</sup> C correlations observed in HMBC spectrum of <b>ASLD7</b>                                                                                                             | 202                   |
| 4.85                       | IR spectrum of compound ASLD9                                                                                                                                                                               | 205                   |
| 4.86                       | LC-MS spectrum of compound ASLD9                                                                                                                                                                            | 205                   |
| 4.87                       | <sup>1</sup> H-NMR spectrum of compound <b>ASLD9</b>                                                                                                                                                        | 206                   |
| 4.88<br>05-4506832<br>4.89 | <sup>13</sup> C-NMR spectrum of compound ASLD9<br>pustaka.upsi.edu.my<br>DEPT spectrum of compound ASLD9<br>Perpustakaan Tuanku Bainun<br>Kampus Sultan Abdul Jalii Shah<br>DEPT spectrum of compound ASLD9 | 208<br>ptbupsi<br>208 |
| 4.90                       | COSY spectrum of compound ASLD9                                                                                                                                                                             | 211                   |
| 4.91                       | HMQC spectrum of compound ASLD9                                                                                                                                                                             | 212                   |
| 4.92                       | HMBC spectrum of compound ASLD9                                                                                                                                                                             | 213                   |
| 4.93                       | COSY, <sup>1</sup> H and <sup>13</sup> C correlations observed in HMBC spectrum of <b>ASLD9</b>                                                                                                             | 214                   |
| 4.94                       | The percentage of lipase activity (U/mL) of six crude extracts from <i>A. subintegra</i> and PPL (positive control). Results stated as mean $\pm$ SD (n=3), * <i>p</i> <0.05                                | 222                   |
| 4.95                       | Percentage (%) lipase activity of isolated compounds and PPL (positive control). Results stated as mean $\pm$ SD (n=3), $*p<0.05$                                                                           | 224                   |
| 4.96                       | Ligand molecules docked onto the PPL receptor. Ligands<br>are shown in the stick model meanwhile active site of PPL<br>shown in yellow colour.                                                              | 229                   |







| 4.97 | The percentage of inhibition of DPPH radicals by different concentrations of extracts in comparison to ascorbic acid standard. Data expressed as mean $\pm$ SD, n=3.              | 235 |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 4.98 | The percentage of inhibition of DPPH radicals by different concentrations of the isolated compound in comparison to ascorbic acid standard. Data expressed as mean $\pm$ SD, n=3. | 237 |
| 5.1  | Summary phytochemical isolated from bark and leaf of <i>A</i> . <i>subintegra</i>                                                                                                 | 243 |





O 5-4506832 O pustaka.upsi.edu.my

PustakaTBainun ptbupsi













### LIST OF SCHEMES

| Scheme No. |                                                                               |    |
|------------|-------------------------------------------------------------------------------|----|
| 3.1        | Extraction procedure from the bark of <i>Aquilaria</i> subintegra             | 73 |
| 3.2        | Extraction procedure from the leaf of Aquilaria subintegra                    | 74 |
| 3.3        | Flow chart for the purification process of <i>A. subintegra</i> bark extracts | 77 |
| 3.4        | Flow chart for the purification process of <i>A. subintegra</i> leaf extracts | 84 |





O 05-4506832 O pustaka.upsi.edu.my

PustakaTBainun ptbupsi













### LIST OF ABBREVIATIONS

|          | α                          | -           | Alpha                                                       |
|----------|----------------------------|-------------|-------------------------------------------------------------|
|          | AA                         | -           | Ascorbic acid                                               |
|          | Abs                        | -           | Absorbance                                                  |
|          | ASBH                       | -           | <i>n</i> -hexane crude of bark <i>A</i> . <i>subintegra</i> |
|          | ASBD                       | -           | Dichloromethane crude of bark A. subintegra                 |
|          | ASBM                       | -           | Methanol crude of bark A. subintegra                        |
|          | ASLH                       | -           | <i>n</i> -hexane crude of leaf <i>A</i> . <i>subintegra</i> |
|          | ASLD                       | -           | Dichloromethane crude of leaf A. subintegra                 |
|          | ASLM                       | -           | Methanol crude of leaf A. subintegra                        |
|          | β                          | -           | Beta                                                        |
| $\sim$   | br                         | -           | broad                                                       |
| 05-45068 | <sup>332</sup> δ pustaka.ι | upsi.edu.my | Chemical Shift <sup>Abdul</sup> Jalil Shah                  |
|          | CC                         | -           | Column Chromatography                                       |
|          | <sup>13</sup> C-NMR        | -           | Carbon NMR                                                  |
|          | CDCl <sub>3</sub>          | -           | Chloroform-D                                                |
|          | CD <sub>3</sub> OD         | -           | Methanol-D                                                  |
|          | $CH_2Cl_2$                 | -           | Dichloromethane                                             |
|          | COSY                       | -           | Correlation spectroscopy                                    |
|          | 1D                         | -           | 1-dimensional                                               |
|          | 2D                         | -           | 2-dimensional                                               |
|          | d                          | -           | Doublet                                                     |
|          | dd                         | -           | Doublet of doublet                                          |
|          | DEPT                       | -           | Distortionless Enhancement by Polarization Transfer         |
|          | DMSO                       | -           | Dimethyl Sulfoxide                                          |
|          | DL                         | -           | Dried Leaves                                                |
|          | DPPH                       | -           | 2,2-diphenyl-1-picrylhy-drazyl                              |
|          | EIMS                       | -           | Electron Ionization Mass Spectrometry                       |





| ESI-MS             | -            | Electron Spray Ionization Mass Spectrometry                                   |
|--------------------|--------------|-------------------------------------------------------------------------------|
| EtOAc              | -            | Ethyl acetate                                                                 |
| <i>n</i> -Hex      | -            | Hexane                                                                        |
| HCl                | -            | Hydrochloric acid                                                             |
| $H_2SO_4$          | -            | Sulfuric acid                                                                 |
| Hz                 | -            | Hertz                                                                         |
| <sup>1</sup> H-NMR | -            | Proton NMR                                                                    |
| HMBC               | -            | Heteronuclear Multiple Bond Correlation                                       |
| HMQC               | -            | Heteronuclear Multiple Quantum Coherence                                      |
| IR                 | -            | Infrared                                                                      |
| J                  | -            | Coupling constant                                                             |
| Μ                  | -            | Multiplet                                                                     |
| MeOH               | -            | Methanol                                                                      |
| m/z                | -            | Mass to charge ion                                                            |
| MS                 | -            | Mass Spectrometry                                                             |
| mg                 | -            | miligram                                                                      |
| 33mL 🔮 pustaka.    | up-si.edu.my | mililiter pustakaan Tuanku Bainun<br>Verstaka Bainun Pustaka TBainun Optbupsi |
| min                | -            | minute                                                                        |
| NMR                | -            | Nuclear Magnetic Resonance                                                    |
| nm                 | -            | nanometer                                                                     |
| PPL                | -            | Porcine Pancreatic Lipase                                                     |
| S                  | -            | Singlet                                                                       |
| sec                | -            | second                                                                        |
| SD                 | -            | Standard deviation                                                            |
| SiO <sub>2</sub>   | -            | Silica gel                                                                    |
| t                  | -            | triplet                                                                       |
| TLC                | -            | Thin Layer Chromatography                                                     |
| UV                 | -            | Ultra Violet                                                                  |
| μL                 | -            | microliter                                                                    |
| μmole              | -            | micromole                                                                     |
| PHE                | -            | Phenylalanine                                                                 |
| ILE                | -            | Isoleucine                                                                    |





| ASP | - | Aspartate     |
|-----|---|---------------|
| TYR | - | Tyrosine      |
| HIS | - | Histidine     |
| SER | - | Serine        |
| LEU | - | Leucine       |
| ALA | - | Alanine       |
| PRO | - | Proline       |
| ILE | - | Isoleucine    |
| PHE | - | Phenylalanine |
| TRP | - | Tryptophan    |
| ARG | - | Arginine      |
| VAL | - | Valine        |
| GLU | - | Glutamate     |
| THR | - | Threonine     |

O 5-4506832 O pustaka.upsi.edu.my Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

PustakaTBainun ptbupsi











### LIST OF APPENDICES

- Α Standard Curve of Free Fatty Acid
- Anti-lipase activity of crude extracts and isolated compounds of A. subintegra В
- С 2-D illustration of docking study using Ligplot+
- D Standard Curve of Antioxidant Activity
- E Dose-response Plot Based on Non-linear Regression Analysis
- F Publication(s) to be derived from this work
- G **Conference** Attendance



🕥 05-4506832 🛞 pustaka.upsi.edu.my 📔 Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah 💟 PustakaTBainun 👘 ptbupsi













### CHAPTER 1

### **INTRODUCTION**





Natural products (NPs) give a massive impact on science because of the discovery of plentiful medicinal drugs precursor (Crane & Gademann, 2016). NPs universally refer to substances which are isolated from living organism, and it has usually formed in secondary metabolites. NPs have always been a keystone in finding new lead molecules for drug candidates (Orhan, 2016). They are representing a vast family of diverse chemical constituents with their valuable biological activities, particularly in human, veterinary medicine, and agriculture, as well as significant agents in pharmaceuticals, herbicides, and insecticides (Katz & Baltz, 2016). NPs have brought significant effects of economic due to their role in pharmaceuticals, and fragrances (Anulika, Ignatius, Raymond, Osasere, & Abiola, 2016).









Historically, since 60,000 years ago, NPs such as plants, animals, microorganisms and marine organisms have been used as a medicinal treatment. However it faced a massive challenge in the early stage to the humans because of the consumption risks such as vomiting, diarrhoea, coma or other toxic reactions and perhaps led to the death; still, early humans knowledgeable about edible materials and natural medicines (Yuan, Ma, Ye, & Piao, 2016).

The NPs such as bacterial, fungal, and the plant has served as front line therapeutics to treat diseases. For example, antibiotics, chemotherapeutics, immunosuppressants, cholesterol-lowering agents and anaesthetics. These molecules derive from large groups of chemicals including polyketides, nonribosomal peptides, saccharides, alkaloids, terpenoids, and comprise a staggering diversity of chemical scaffolds (Medema & Fischbach, 2015; Tang, Zou, Watanabe, Walsh, & Tang, 2017).

Today, natural medicines have been used principally in medical treatment, especially in developing countries (Greenwell & Rahman, 2015). Herbal plants, either one part (flowers, leaves, branches or roots) or entire parts of it might use in the treatment of acute and chronic diseases. Also, in the development of dietary products due to continuous advantages, showed minimal side effect contrasting to synthetic medicine which contributes a severe impact for the long term uses (Farzaneh & Carvalho, 2015). Therefore, in the 21<sup>st</sup> century, medicinal herbs gained attention as an alternative way to replace the usage of synthetic drugs.





The statistical data from the World Health Organization (WHO), showed about 80% of people in the world depend on traditional herbal medicine for their health care needs. Traditional Chinese Medicine, Indian Ayurvedic Medicine, and Unani Medicine of Arab cultures were globally used as references for herbal medicine (Rehman, Choe, & Yoo, 2016).

Most researchers attract Malaysian herbs due to the massive areas of rainforest and tropical weather. In Malaysia, approximated 15,000 known plant species, in which 2,000 species have medicinal values, and the rest species are not exploited and cultivated (Saad et al., 2015). Some examples of medicinal plants reported in Malaysia shown in Table 1.1 (Madaleno, 2015).

05-4506 Table 1.1 pustaka.upsi.edu.my



### Medicinal plants reported in Malaysia

| Plant Species                 | Part   | Medicinal action                      |  |  |  |
|-------------------------------|--------|---------------------------------------|--|--|--|
| Strobilanthes crispus (L.)    | Leaf   | Anticancer, antioxidant, antidiabetic |  |  |  |
| Bremek (Pecah Kaca)           |        |                                       |  |  |  |
| Cananga odorata (Lam.) Hook.  | Flower | As a relaxing body oil                |  |  |  |
| F. & Thomson (Ylang-ylang)    |        |                                       |  |  |  |
| Cuminum cyminum L. (Cumin)    | Seed   | Herbal supplement for fatigue         |  |  |  |
| Cocos nucifera L. (Chamomile) | Fruit  | As a healing oil                      |  |  |  |
| Plectranthus barbatus Andrews | Whole  | Healing body oils                     |  |  |  |
| (Long Pepper)                 | plant  |                                       |  |  |  |

(continued)





### Table 1.1 (continued)

05-4506832 🛛 📢 pustaka.upsi.edu.my

| Plant Species                 | Part       | Medicinal action                  |
|-------------------------------|------------|-----------------------------------|
| Pinellia nti-in (Thunb.) Ten. | Rhizome    | Chinese remedy for cough and cold |
| Ex Breitenb. (Musli)          |            |                                   |
| Mentha arvensis L. (Jamun)    | Leaf       | Chinese remedy for pimples, skin  |
|                               |            | rashes and bruises                |
| Cinnamomum camphora (L.) J.   | Bark, leaf | As nti-inflammatory cream for     |
| Presl (PolygalaRhubarb)       |            | itching and burns                 |

The US Food and Drug Administration approved 1453 new NPs in the year 2013, and prominently used in medicinal treatment. For example, tetracycline (1) and chloramphenicol (2) as antibacterial, amphotericin B (3) (antifungal and antiparasitic), mitomycin C (4) and daunorubicin (5) as antitumor agents (Katz & Baltz, 2016). Thus, the significance of NPs are undoubtedly enormous and contribute massive benefits. Therefore, the scientist worldwide has a vital responsibility to identify medicinal plants which valuable to commercialize as herbal medicines.















### 1.2 Problem Statement

*Aquilaria* sp. is a fragrant tree which widely distributed in Asia including, Malaysia, Thailand, and Indonesia. This species was valuable due to the production of scented and aromatic wood which known as gaharu or agarwood. Besides that, agarwood tea was produced from *Aquilaria* leaves which mainly manufactured in China, Malaysia, and Indonesia. Yet, there is no official report commenced date of agarwood tea became as a commercial product, however, in 2007, there was first reported (Wu et al., 2007) toward toxicological safety of agarwood tea in the local market Hainan, China (Adam, Lee, & Mohamed, 2017).

However, there is a deficiency information specific population of *A. subintegra*. *A. subintegra* has found in Thailand, Narathiwat province, with an altitude range between 300 -500 m asl ( Lee & Mohamed, 2016).

Furthermore, there is a limited number of phytochemical and pharmacological studies of *A. subintegra*. To the best of our knowledge, there is a tiny reference for isolation of *A. subintegra* in the phytochemical study. Besides, an inadequate study on the pharmacological study of the isolated compound from *A. subintegra* triggered us to reveal the chemical constituents and expected to obtained new bioactive potential compounds from this plant.





#### 1.3 Significance of Study

This study revealed the chemical constituents obtained for the first time and examined their biological activities. Current results would be able to enhance knowledge, especially on species of study, the diversity of its chemical compounds derived from this plant, and its potential as a precursor to modern medicine.

#### 1.4 **Objectives of Study**

The main objectives of the current study are:

- C 05-4506832 i- C To extract, isolate, and purify chemical constituents from the crude extracts of A. subintegra bark and leaf using chromatographic techniques.
  - ii-To identify and elucidate the chemical structures of the isolated compounds using several spectroscopic analyses such as nuclear magnetic resonances (NMR), ultraviolet-visible spectroscopy (UV), Fourier transform infrared spectroscopy (FTIR) and mass spectrometry (MS).
  - iii-To investigate biological properties including antioxidant, anti-lipase, and anticancer toward crude extracts and isolated compounds. Antioxidant activity was determined using DPPH free radical scavenging assay. The anti-lipase activity was measured by colorimetric assay; meanwhile,





anticancer activity was examined using Cell Counting Kit-8 (CCK-8)/ WST-8 toward breast cancer cell, MCF-7.

iv-To determine the interaction of isolated compounds with receptor using computational study.





O5-4506832 V pustaka.upsi.edu.my





