



# FABRICATION OF ZINC OXIDE/GRAPHENE OXIDE NANOCOMPOSITE FOR ULTRAVIOLET PHOTOCONDUCTIVE SENSOR AND PHOTOCATALYTIC APPLICATION



C 05-4506832 ALI ABDUL AMEER MOHAMMED



# UNIVERSITI PENDIDIKAN SULTAN IDRIS

2019













#### FABRICATION OF ZINC OXIDE/GRAPHENE OXIDE NANOCOMPOSITE FOR ULTRAVIOLET PHOTOCONDUCTIVE SENSOR AND PHOTOCATALYTIC **APPLICATIONS**

## ALI ABDUL AMEER MOHAMMED



🕓 05-4506832 🛞 pustaka.upsi.edu.my 📑 Perpustakaan Tuanku Bainun 💟 PustakaTBainun 👘 ptbupsi



#### THESIS SUBMITTED IN FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY OF SCIENCE (PHYSICS)

#### FACULTY OF SCIENCE AND MATHEMATICS UNIVERSITI PENDIDIKAN SULTAN IDRIS 2019









Please tick (√) Project Paper Masters by Research Master by Mixed Mode PhD

|   | [] |   |
|---|----|---|
| ĺ |    |   |
|   |    |   |
|   |    | l |

#### **INSTITUTE OF GRADUATE STUDIES**

#### **DECLARATION OF ORIGINAL WORK**

#### i. Student's Declaration:

| 1, All Abdul Ameer mohamined                                                         | (PLEASE     |
|--------------------------------------------------------------------------------------|-------------|
| INDICATE STUDENT'S NAME, MATRIC NO. AND FACULTY) hereby declare that                 | t the work  |
| entitled FABRICATION OF HAC OXIDE/GRAPHENE                                           | OXIDE       |
| NANDOMPOSITE POR ULTRAVIOLET PHOTOCONDUCTIVE                                         | is my       |
| original work. I have not copied from any other students' work or from any other sou | rces except |
| where due reference or acknowledgement is made explicitly in the text, nor has an    | y part been |
| written for me by another person.                                                    |             |

Signature of the student

#### ii. Supervisor's Declaration:

\_ (SUPERVISOR'S NAME) hereby certifies that Ι\_ the work entitled FAGMCATON OXIDE/GRAPHENE OF JAKE OXIDE NANO COMPOSITE ULTRA VIOLET PHOTO CONDUCTIVE SENVOR POR AND PHOTOCATA APPUCATION 5 TIC \_\_\_\_(TITLE) was prepared by the above named student, and was submitted to the Institute of Graduate Studies as a \* partial/full fulfillment for the conferment \_\_\_\_ (PLEASE INDICATE of

THE DEGREE), and the aforementioned work, to the best of my knowledge, is the said student's work.

Signature of the Supervisor ROFESSOR DR. ILLYAS BIN MD ISA Jeputy Dean (Academic and International) Faculty of Science and Mathematics Universiti Pendidikan Sultan Idris

Date



#### INSTITUT PENGAJIAN SISWAZAH / INSTITUTE OF GRADUATE STUDIES

#### BORANG PENGESAHAN PENYERAHAN TESIS/DISERTASI/LAPORAN KERTAS PROJEK DECLARATION OF THESIS/DISSERTATION/PROJECT PAPER FORM

Tajuk / Title:

Man accompaser for warran ph lener

No. Matrik /Matric No.:

Saya / /:

P2016 2002 430

(Nama pelajar / Student's Name)

mengaku membenarkan Tesis/Disertasi/Laporan Kertas Projek (Kedoktoran/Sarjana)\* ini disimpan di Universiti Pendidikan Sultan Idris (Perpustakaan Tuanku Bainun) dengan syarat-syarat kegunaan seperti berikut:-

acknowledged that Universiti Pendidikan Sultan Idris (Tuanku Bainun Library) reserves the right as follows:-

- 1. Tesis/Disertasi/Laporan Kertas Projek ini adalah hak milik UPSI. The thesis is the property of Universiti Pendidikan Sultan Idris
- 2. Perpustakaan Tuanku Bainun dibenarkan membuat salinan untuk tujuan rujukan dan penyelidikan. Tuanku Bainun Library has the right to make copies for the purpose of reference and research.
- 3. Perpustakaan dibenarkan membuat salinan Tesis/Disertasi ini sebagai bahan pertukaran antara Institusi Pengajian Tinggi. *The Library has the right to make copies of the thesis for academic exchange.*
- 4. Sila tandakan ( $\sqrt{}$ ) bagi pilihan kategori di bawah / Please tick ( $\sqrt{}$ ) from the categories below:-



Tarikh:

SULIT/CONFIDENTIAL

TERHAD/RESTRICTED

(Tandatangan Pelajar/ Signature)

Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub dalam Akta Rahsia Rasmi 1972. / Contains confidential information under the Official Secret Act 1972

Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan ini dijalankan. / Contains restricted information as specified by the organization where research was done.

TIDAK TERHAD / OPEN ACCESS

(Tandatangan Penyelia / Signature of Supervisor) & (Nama & Cop Rasmi / Name & Official Stamp)

> FROFESSOR DR. ILLYAS BIN MD ISA Deputy Dean (Academic and International) Faculty of Science and Mathematics Universiti Pendidikan Sultan Idris

Catatan: Jika Tesis/Disertasi ini SULIT @ TERHAD, sila lampirkan surat darlpada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan ini perlu dikelaskan sebagai SULIT dan TERHAD.

Notes: If the thesis is CONFIDENTAL or RESTRICTED, please attach with the letter from the related authority/organization mentioning the period of confidentiality and reasons for the said confidentiality or restriction.



#### ACKNOWLEDGEMENTS

First of all, I would like to express all praise to Allah S.W.T, Who has given me the opportunity, strength and health to complete my study. I would like to express my sincere gratitude to my grateful and helpful main supervisor Professor. Dr. Suriani Abu Bakar, for her guidance, support, patience, motivation and immense knowledge. Her guidance, helped and inspire throughout my PhD journey. I could not have imagined having a better advisor for my Ph.D study. Without her support and encouragement, this thesis could not have been completed.

Many thanks also to my co-supervisors Prof. Dr. Illyas Bin Md Isa and Associate Professor Dr. Akram Raheem Jabur Al-sodani. Many thanks also to Associate Professor Dr. Azmi Bin Mohamed for his kindness helpful during my study in UPSI. My sincere thanks also goes to Associate Professor Dr. Hafiz Mamat and Dr. Mohd Firdaus Malek, who provided me an opportunity to join their team as intern, and who gave access to the laboratory and research facilities in NANO-ElecTronic Centre (UiTM, Shah Alam). Without them precious support it would not be possible to conduct this research. Many thanks also for everyone at Universiti Pendidikan Sultan Idris, UKM university and Crest Nanosolutions (M) Sdn Bhd who help to support this project.

Next, I would like to thanks my lab mates at Nanotechnology Research Center, for their helpful discussion, support and friendly environment in Nanotechnology Lab UPSI.

Last but not least, I dedicate this achievement to my beloved parents, brother and sisters, thanks for your support, sacrificing, devotion and endless love you've shown during my entire study. I've learned an incredible amount here and I appreciate your guidance and advice, which have helped me make the most of my college experience.

**(**) 05-450





#### ABSTRACT

The aim of this study was to fabricate zinc oxide (ZnO) and aluminium (Al) doped ZnO nanorods (NRs) nanowires (NWs) graphene oxide (GO) and reduced GO (rGO) for ultraviolet (UV) photoconductive sensor and photocatalytic applications. The method used to synthesize GO was electrochemical exfoliation assisted by custommade triple-tails sodium 1, 4-bis (neopentyloxy)-3-(neopentyloxycarbonyl)-1, 4dioxobutane-2-silphonate (TC14) and commercially available single-tail sodium dodecyl sulphate (SDS) surfactants. Then, to produce rGO the exfoliated GO was reduced via reduction process by adding hydrazine hydrate. The ZnO and AlZnO NRs and NWs were synthesized via sol-gel immersion method. The hybridized ZnO and AlZnO NRs and NWs samples with SDS-GO, SDS-rGO, TC14-GO and TC14-rGO were done by spray coating method. The ZnO/GO-based samples were characterized using scanning electron microscopy, energy dispersive X-ray, high resolution transmission electron microscopy, X-ray diffraction, micro-Raman, UV-visible (UV-Vis) spectroscopy and four-point probes measurement. The UV photocurrent measurement system and UV-Vis spectroscopy were then used to analyse the UV photoconductive sensor and photocatalytic performances respectively. The finding show that the highest sensitivity and responsivity of UV photoconductive sensor at around 47.3 and 345.7 mA/W were observed in AlZnO NWs/TC14-GO (24 hours) sample. Meanwhile 90 g of sand/ZnO NRs/TC14-GO with reaction time of 48 hours exhibited the highest photocatalytic efficiency of 100% removal of 5ppm of methylene blue (MB). The improvement of both UV photoconductive sensor and photocatalytic performances were believed due to the existence of GO that help to lower the recombination rate of electrons-holes by trapping the electron within the GO sheets. In conclusion, the AlZnO NWs/TC14-GO (24 hours) nanocomposites demonstrate a good material for UV photoconductive sensor application. The sand/ZnO NRs/TC14-GO is a great potential material for photocatalytic application. The implication of this study is a novel, green and economical approach for UV photoconductive sensor and photocatalytic application by using AlZnO NWs/TC14-GO (24 hours) and sand/ZnO NRs/TC14-GO, respectively.







#### FABRIKASI NANOKOMPOSIT ZINK OKSIDA / GRAFIN OKSIDA MELALUI KAEDAH SEMBURAN UNTUK SENSOR FOTOKONDUKTIF ULTRAVIOLET DAN APLIKASI FOTOKATALITIK

#### ABSTRAK

Tujuan kajian ini adalah untuk memfabrikasi zink oksida (ZnO)/bahan berasaskangrafin oksida (GO) untuk sensor fotokonduktif ultraviolet (UV) dan aplikasi fotokatalitik. Kaedah yang digunakan untuk mensintesis GO adalah pengelupasan elektrokimia yang dibantu oleh surfaktan buatan rantaian bercabang tiga sodium 1, 4bis (neopentiloksi) -3- (neopentioksikarbonil) -1, 4-dioksobutana-2-sulfonat (TC14) dan komersial rantaian tunggal sodium dodesil sulfat (SDS). Kemudian, untuk menghasilkan penurunan GO (pGO), GO yang terkelupas diturunkan melalui proses pengurangan dengan menambahkan hidrazin hidrat. ZnO dan aluminium zink oksida (AlZnO) rodnano (NRs) dan wayarnano (NWs) disintesiskan melalui kaedah perendaman sol-gel. Sampel-sampel ZnO dan AlZnO NRs dan NWs dihibridisasi dengan SDS-GO, SDS-rGO, TC14-GO dan TC14-rGO menggunakan kaedah penyemburan. Sampel berasaskan ZnO/GO dicirikan dengan menggunakan mikroskop elektron, penyerakan tenaga sinar-X, mikroskop elektron penghantaran resolusi tinggi, pembelauan sinar-X, mikro-Raman, cahaya nampak UV-Vis dan pengukuran prob empat titik arus-voltan. Pengukuran fotoarus UV dan cahaya nampak UV-Vis kemudiannya digunakan untuk menganalisis tahap prestasi sensor fotokonduktif UV dan fotokatalitik. Hasil kajian mendapati bahawa sensitiviti dan responsif tertinggi untuk sensor fotokonduktif UV pada sekitar 47.3 dan 345.7 mA/W adalah terdapat di dalam sampel AlZnO NWs/TC14-GO (24 jam). Sementara itu 90 g pasir/ZnO NRs/TC14-GO dengan masa tindak balas 48 jam mempamerkan tahap kecekapan fotokatalitik yang paling tinggi dalam menyingkirkan 100% 5 ppm biru metilena. Penambahbaikan prestasi sensor fotokonduktif UV dan fotokatalitik yang ditunjukkan dipercayai adalah kerana adanya GO yang membantu menurunkan kadar rekombinasi elektron-lubang dengan memerangkap elektron di dalam helaian GO. Kesimpulannya, nanokomposit AlZnO NWs/ TC14-GO (24 jam) merupakan bahan yang terbaik untuk diaplikasikan sebagai sensor fotokonduktif UV. Pasir/ZnO NRs/TC14-GO adalah bahan yang sangat berpotensi untuk digunakan di dalam aplikasi fotokatalitik. Implikasi kajian ini adalah pendekatan baharu, hijau dan ekonomik untuk sensor fotokonduktif UV dengan menggunakan AlZnO NWs/TC14-GO (24 jam) dan aplikasi fotokatalitik dengan menggunakan pasir/ZnO NRs/TC14-GO.







### **CONTENTS**

|        |              |                        |                                | Page                         |
|--------|--------------|------------------------|--------------------------------|------------------------------|
|        | DECLARATIO   | ON OF                  | ORIGINAL WORK                  | ii                           |
|        | DECLARATIO   | ON OF                  | THESIS                         | iii                          |
|        | ACKNOWLEI    | OGEMI                  | ENTS                           | iv                           |
|        | ABSTRACT     |                        |                                | V                            |
|        | ABSTRAK      |                        |                                | vi                           |
|        | CONTENT      |                        |                                | vii                          |
| 05-450 | LIST OF TAB  | LES<br>Upsiedu<br>JRES |                                | xiv<br>Republication<br>xvii |
|        | LIST OF ABB  | REVIA                  | TIONS                          | xxi                          |
|        | LIST OF APPI | ENDIC                  | ES                             | xxvi                         |
|        | CHAPTER 1    | INTR                   | RODUCTION                      |                              |
|        |              | 1.1                    | Introduction                   | 1                            |
|        |              | 1.2                    | Research Background            | 2                            |
|        |              | 1.3                    | Problem Statement              | 9                            |
|        |              | 1.4                    | Research Objectives            | 13                           |
|        |              | 1.5                    | Scope and Limitations of Study | 13                           |
|        |              | 1.6                    | Thesis Organization            | 15                           |
|        | CHAPTER 2    | LITE                   | RATURE REVIEW                  |                              |
|        |              | 2.1                    | Introduction                   | 16                           |
|        |              |                        |                                |                              |

PustakaTBainun



|                        | 2.2  | Zinc Oxide Nanostructures                                                                                                 | 17         |
|------------------------|------|---------------------------------------------------------------------------------------------------------------------------|------------|
|                        |      | 2.2.1 Introduction of Zinc Oxide                                                                                          | 17         |
|                        |      | 2.2.2 Properties of Zinc Oxide                                                                                            | 18         |
|                        |      | 2.2.3 Fabrication of Zinc Oxide                                                                                           | 20         |
|                        |      | 2.2.4 Mechanism of Zinc Oxide Growth                                                                                      | 23         |
|                        | 2.3  | Graphene Oxide                                                                                                            | 24         |
|                        |      | 2.3.1 Introduction of Graphene Oxide                                                                                      | 24         |
|                        |      | 2.3.2 Synthesis Method of Graphene Oxide                                                                                  | 25         |
|                        | 2.4  | Reduced Graphene Oxide                                                                                                    | 26         |
|                        |      | 2.4.1 Synthesis Method of Reduced Graphene<br>Oxide                                                                       | 27         |
|                        | 2.5  | Ultraviolet Photoconductive Sensor Application                                                                            | 27         |
| 😉 05-4506832 💽 pustaka | 2.6  | Photocatalytic Application                                                                                                | 36 ptbupsi |
|                        | 2.7  | Characterizations of Zinc Oxide-based Ultraviolet<br>Photoconductive Sensor and Photocatalysis under<br>Ultraviolet Light | 41         |
|                        | 2.8  | Summary                                                                                                                   | 49         |
| CHAPTER 3              | METH | IODOLOGY                                                                                                                  |            |
|                        | 3.1  | Introduction                                                                                                              | 50         |
|                        | 3.2  | Preparation of Substrates                                                                                                 | 51         |
|                        | 3.3  | Synthesis of Graphene Oxide via Electrochemical Exfoliation Method                                                        | 52         |
|                        | 3.4  | Production of Reduced Graphene Oxide via<br>Reduction Process                                                             | 53         |









|            | 3.5               | Fabrication of Zinc Oxide and Aluminum-Zinc Oxide Nanostructures                                                          | 54                  |
|------------|-------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------|
|            |                   | 3.5.1 Fabrication of Magnesium Zinc Oxide as<br>Seed Layer                                                                | 54                  |
|            |                   | 3.5.2 Fabrication of Zinc Oxide Nanostructures via Sol-Gel Immersion Method                                               | 56                  |
|            |                   | 3.5.2.1 Fabrication of Zinc Oxide Nanorods<br>and Nanowires                                                               | 56                  |
|            |                   | 3.5.2.2 Fabrication of Aluminum Oxide-<br>doped Zinc Oxide Nanorods and<br>Nanowires                                      | 59                  |
|            | 3.6               | Fabrication of Graphene Oxide-coated Zinc Oxide<br>and Aluminum Zinc Oxide Nanostructures                                 | 61                  |
| 05-4506832 | pustaka.upu7.edu. | Fabrication of Gold Electrode for Ultraviolet<br>Photoconductive Sensor Application                                       | 63 <sub>ptbup</sub> |
|            | 3.8               | Fabrication of Zinc Oxide on Sand for Photocatalytic Application                                                          | 64                  |
|            |                   | 3.8.1 Preparation of Sands                                                                                                | 64                  |
|            |                   | 3.8.2 Fabrication of Zinc Oxide Nanorods on<br>Sand via Sol-Gel Immersion Methods                                         | 65                  |
|            |                   | 3.8.3 Fabrication Composite of Zinc Oxide<br>Nanorods on Sand Particles with the<br>Graphene Oxide                        | 67                  |
|            |                   | 3.8.4 Preparation of Photocatalytic Process Using<br>Composite of Zinc Oxide on Sand Particles<br>with the Graphene Oxide | 69                  |









|            | 3.9                         | Samp  | les Characterizations                                                      | 70                   |
|------------|-----------------------------|-------|----------------------------------------------------------------------------|----------------------|
|            |                             | 3.9.1 | Field Emission Scanning Electron<br>Microscopy and Energy Dispersive X-Ray | 70                   |
|            |                             | 3.9.2 | High Resolution Transmission Electron<br>Microscopy                        | 71                   |
|            |                             | 3.9.3 | Micro-Raman Spectroscopy                                                   | 71                   |
|            |                             | 3.9.4 | X-Ray Diffraction                                                          | 72                   |
|            |                             | 3.9.5 | Ultraviolet-Visible Spectroscopy                                           | 72                   |
|            |                             | 3.9.6 | Four Point Probe Measurement                                               | 73                   |
|            |                             | 3.9.7 | Ultraviolet Photocurrent Measurement<br>System                             | 73                   |
|            |                             | 3.9.8 | Photodegradation Measurement                                               | 73                   |
| 05-4506832 | pustaka.u3.10 <sup>10</sup> | Sumi  | e Perpustakaan Tuanku Bainun<br>maryampus Sultan Abdul Jalil Shah          | 75 <sup>tbupsi</sup> |

#### CHAPTER 4 RESULTS AND DISCUSSIONS

| 4.1 | Introduction                                                                |    |  |  |  |  |
|-----|-----------------------------------------------------------------------------|----|--|--|--|--|
| 4.2 | The Characterization of Graphene Oxide and Reduced Graphene Oxide Thin Film | 78 |  |  |  |  |
|     | 4.2.1 Morphological properties                                              | 78 |  |  |  |  |
|     | 4.2.2 Structural Properties                                                 | 83 |  |  |  |  |
|     | 4.2.3 Optical Properties                                                    | 89 |  |  |  |  |
|     | 4.2.4 Electrical Properties                                                 | 92 |  |  |  |  |
| 4.3 | The Properties of Pristine ZnO Nanostructure-based Electrode                | 94 |  |  |  |  |
|     | 4.3.1 Morphological Properties                                              | 94 |  |  |  |  |



|            |                  | 4.3.2 Structural Properties                                                                                                 | 100                  |
|------------|------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------|
|            |                  | 4.3.3 Optical Properties                                                                                                    | 107                  |
|            |                  | 4.3.4 Electrical Properties                                                                                                 | 110                  |
|            | 4.4              | The Properties of Hybrid Zinc Oxide-based<br>Electrode Graphene Oxide and Reduce Graphene<br>Oxide                          | 113                  |
|            |                  | 4.4.1 Morphological Properties                                                                                              | 113                  |
|            |                  | 4.4.2 Structural Properties                                                                                                 | 116                  |
|            |                  | 4.4.3 Optical Properties                                                                                                    | 121                  |
|            |                  | 4.4.4 Electrical Properties                                                                                                 | 127                  |
|            | 4.5              | The Properties of Aluminum Doped Zinc Oxide-<br>based Electrode                                                             | 130                  |
| 05-4506832 | pustaka.upsi.edu | <ul> <li>4.5.1 Morphological Properties<br/>Perpustakeen use to be a series</li> <li>4.5.2 Structural Properties</li> </ul> | 131<br>ptbups<br>136 |
|            |                  | 4.5.3 Optical Properties                                                                                                    | 143                  |
|            |                  | 4.5.4 Electrical Properties                                                                                                 | 146                  |
|            | 4.6              | The Properties of Hybrid Aluminium Doped Zinc<br>Oxide-based Electrode with Graphene Oxide                                  | 148                  |
|            |                  | 4.6.1 Morphological Properties                                                                                              | 148                  |
|            |                  | 4.6.2 Structural Properties                                                                                                 | 150                  |
|            |                  | 4.6.3 Optical Properties                                                                                                    | 154                  |
|            |                  | 4.6.4 Electrical Properties                                                                                                 | 158                  |
|            |                  |                                                                                                                             |                      |

4.7 Ultraviolet Photoconductive Sensor Application 161









|            |                  | 4.7.1 Effective of Pristine and Hybrid ZnO<br>Nanorods with the Graphene Oxide and<br>Reduced Graphene Oxide                                            | 161 |
|------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|            |                  | 4.7.2 Effective of Pristine and Hybrid ZnO<br>Nanowires (12 and 24 hours) with the<br>Graphene Oxide                                                    | 165 |
|            |                  | 4.7.3 Effect of Pristine and Hybrid AlZnO-based<br>Nanostructures with the Graphene Oxide                                                               | 170 |
|            | 4.8              | The Mechanisms of Effective Hybrid Aluminum<br>Doped Zinc Oxide Nanowires (24 hours) with<br>Graphene Oxide based Ultraviolet Photoconductive<br>Sensor | 175 |
|            | 4.9              | The Properties of Sand/Zinc Oxide and Sand/Zinc<br>Oxide/Graphene Oxide for Photocatalytic<br>Application                                               | 181 |
|            |                  | 4.9.1 Morphological Properties                                                                                                                          | 181 |
| 05-4506832 | pustaka.upsi.edu | 4.9.2 Structural Properties Shah                                                                                                                        | 184 |
|            | 4.10             | Photocatalytic Performance by Utilizing the<br>Fabricated Pristine and Hybrid Sand ZnO-based<br>Material                                                | 191 |
|            |                  | 4.10.1 Effect of Pristine Sand/Zinc Oxide Nanorods<br>and Hybrid Sand/Zinc Oxide<br>Nanorods/Graphene Oxide                                             | 191 |
|            |                  | 4.10.2 Effect of Different Mass of Sand/Zinc Oxide<br>Nanorods/Graphene Oxide                                                                           | 196 |
|            |                  | 4.10.3 Effect of Different Methylene Blue<br>Concentration                                                                                              | 199 |
|            | 4.11             | The Methylene Blue Degradation Mechanism of<br>Sand/Zinc Oxide Nanorods/Graphene Oxide based<br>Photocatalytic                                          | 201 |
|            |                  |                                                                                                                                                         |     |







#### **CHAPTER 5** CONCLUSIONS AND FUTURE WORKS

| 5.1        | Conclusions | 206 |
|------------|-------------|-----|
| 5.2        | Future Work | 211 |
|            |             |     |
| REFERENCES |             | 212 |
| APPENDICES |             | 244 |





O 5-4506832 S pustaka.upsi.edu.my Perpustakaan Tuanku Bainun Perpustakaan Tuanku Bainun PustakaTBainun of ptbupsi











### LIST OF TABLES

|         | Table       | Table No.                                                                                                   |               |  |  |  |  |  |  |
|---------|-------------|-------------------------------------------------------------------------------------------------------------|---------------|--|--|--|--|--|--|
|         | 2.1         | Physical Properties of ZnO Wurtzite Structure                                                               | 19            |  |  |  |  |  |  |
|         | 2.2         | Summary Performance of ZnO Nanostructures in UV<br>Photoconductive Sensor Application                       | 29            |  |  |  |  |  |  |
|         | 2.3         | Summary Performance of Al-doped ZnO Nanostructures in UV<br>Photoconductive Sensor Application              | 33            |  |  |  |  |  |  |
|         | 2.4         | Summary ZnO Nanostructures Performance in Water Cleaning                                                    | 38            |  |  |  |  |  |  |
|         | 3.1         | The Chemicals Utilized to Fabricate ZnO NRs on the MgZnO Seed Layer                                         | 57            |  |  |  |  |  |  |
| 05-4500 | 3.2<br>5832 | The Chemicals Utilized to Fabricate ZnO NWs on the MgZnO Seed<br>Layer                                      | 57<br>ptbupsi |  |  |  |  |  |  |
|         | 3.3         | The Chemicals Used to Fabricate AlZnO NRs on MgZnO Seed Layer                                               | 60            |  |  |  |  |  |  |
|         | 3.4         | The Chemicals Used to Fabricate AlZnO NWs on MgZnO Seed Layer                                               | 61            |  |  |  |  |  |  |
|         | 4.1         | The Summary of Micro-Raman Analysis of SDS-GO, SDS-rGO.<br>TC14-GO and TC14-rGO                             | 88            |  |  |  |  |  |  |
|         | 4.2         | The Summary of Transmittance and Band Gap Energy Values of SDS-GO, SDS-rGO, TC14-GO and TC14-rGO Thin Films | 91            |  |  |  |  |  |  |
|         | 4.3         | Electrical Properties of SDS-GO, SDS-rGO, TC14-GO and TC14-rGO Thin Films                                   | 93            |  |  |  |  |  |  |
|         | 4.4         | The Average Thickness and Diameter of MgZnO Seed Layer, ZnO NRs (4 Hours) and ZnO NWs (12 and 24 Hours)     | 99            |  |  |  |  |  |  |
|         | 4.5         | Micro-Raman Peak Positions of Pristine ZnO NRs (4 Hours) and Pristine ZnO NWs (12 and 24 Hours)             | 102           |  |  |  |  |  |  |
|         | 4.6         | The Summary of XRD Analysis of Pristine ZnO NRs (4 Hours) and ZnO NWs (12 and 24 Hours) at (002) Plane      | 106           |  |  |  |  |  |  |







- 4.7 The Transmittance Values and Band Gap Energy of Pristine ZnO 109 NRs (4 Hours) and Pristine ZnO NWs (12 and 24 Hours) 4.8 The Summary of Electrical Properties of Pristine ZnO NRs (4 Hours) 111 and ZnO NWs (12 and 24 Hours) 4.9 The Summary of Micro-Raman Analysis of ZnO NRs/SDS-GO (4 120 Hours), ZnO NRs/SDS-rGO (4 Hours), ZnO NRs/TC14-GO (4 Hours) and ZnO NRs/TC14-rGO (4 Hours) 4.10 The Transmittance Values and Band Gap Energy of ZnO NRs/SDS-126 GO (4 Hours), ZnO NRs/SDS-rGO (4 Hours), ZnO NRs/TC14-GO (4 Hours), ZnO NRs/TC14-rGO (4 Hours), ZnO NWs/ SDS-GO (12 Hours), ZnO NWs/TC14-GO (12 Hours), ZnO NWs/SDS-GO (24 Hours) and ZnO NWs/TC14-GO (24 Hours) 4.11 130 The Summary of Electrical Properties of Hybrid ZnO-Based Films 4.12 The Average Thickness and Diameter of AlZnO NRs (4 Hours) and 135 AlZnO NWs (12 and 24 Hours)Films 4.13 Micro-Raman Peak Positions of AlZnO NRs (4 Hours) and AlZnO 138 NWs (12 and 24 Hours) 142 4.14 The Summary of XRD Analysis of AlZnO NRs (4 hours) and AlZnO NWs (12 and 24hours) at (002) Plane 4.15 The Transmittance Value and Band Gap Energy of AlZnO NRs (4 146 Hours) and AlZnO NWs (12 and 24 Hours)
  - 4.16 The Summary of Electrical Properties of AlZnO NRs (4 Hours) and 147 AlZnO NWs (12 and 24 Hours)
  - 4.17 The Summary of Micro-Raman Analysis of AlZnO NRs/SDS-GO (4 143 Hours) and AlZnO NRs/TC14-GO (4 Hours)
  - 4.18 The Transmittance Values and Band Gap Energy of AlZnO 158 NRs/SDS-GO (4 Hours), AlZnO NRs/TC14-GO (4 Hours), AlZnO NWs/SDS-GO (12 Hours), AlZnO NWs/TC14-GO (12 Hours), AlZnO NWs/SDS-GO (24 Hours) and AlZnO NWs/TC14-GO (24 Hours)
  - 4.19 Summary of Electrical Properties of AlZnO NRs/SDS-GO (4 Hours), AlZnO NRs/TC14-GO (4 Hours), AlZnO NWs/SDS-GO (12 Hours), 160 AlZnO NWs/TC14-GO (12 Hours), AlZnO NWs/SDS-GO (24 Hours) and AlZnO NWs/TC14-GO (24 Hours)









- 4.20 The Photoresponse Summary of Pristine ZnO NRs, ZnO NRs/TC14- 165 GO, ZnO NRs/TC14-rGO, ZnO NRs/SDS-GO and ZnO NRs/SDSrGO
- 4.21 The Summary of Photoresponse Performance of Pristine and Hybrid 169 ZnO NWs (12 and 24 Hours) with SDS-GO and TC14-GO
- 4.22 The Summary of Photoresponse of AlZnO NRs, AlZnO NRs/SDS- 171 GO and AlZnO NRs/TC14-GO
- 4.23 Summary of Photoresponse of AlZnO NWs (12 and 24 Hours), 175 AlZnO NWs/TC14-GO (12 and 24 Hours) and AlZnO NWs/SDS-GO (12 and 24 Hours)
- 4.24 The Summary of Micro-Raman Analysis of Sand/ZnO NRs/SDS-GO 188 and Sand/ZnO NRs/TC14-GO
- 4.25 The MB Dye Degradation Percentage of 5ppm of MB by Utilizing 30 195 g of ZnO NRs, ZnO NRs/SDS-GO and ZnO NRs/TC14-GO
- 4.26 The MB Degradation percentage of 5 ppm MB by Utilizing 30 and 199 90 g of sand/ZnO NRs/TC14-GO
- 4.27 The MB Degradation percentage of 15 and 25 ppm MB by Utilizing 201 90 g of sand/ZnO NRs/TC14-GO











## LIST OF FIGURES

#### **No. Figures** Page 3.1 Cleaning Process of Substrates Using Ultra-sonication Bath (Hwashin 51 Technology Power Sonic 410, 50 Hz) at Room Temperature 3.2 Schematic Diagram of Synthesis SDS-GO and TC14-GO Using 52 Electrochemical Exfoliation Method 3.3 Schematic Diagram of Production SDS-rGO and TC14-rGO via 53 Reduction Process by Using SDS-GO and TC14-GO Solution 3.4 Schematic Diagram of MgZnO Seed Layers Fabricated by Spin 55 **Coating Technique** 3.5 Schematic Diagram of ZnO NRs and NWs on the MgZnO Seed 58 Layer by Using Sol-Gel Immersion Method 3.6 62 Schematic Diagram of (a) Spraying Method and (b) Annealing Process of ZnO NRs, AlZnO NRs, ZnO NWs, AlZnO NWs, ZnO NRs/SDS-GO, ZnO NRs/SDS-rGO, ZnO NRs/TC14-GO,ZnO NRs/TC14-rGO, AlZnO NRs/SDS-GO, AlZnO NRs/TC14-GO, ZnO NWs/SDS-GO, ZnO NWs/TC14-GO, AlZnO NWs/SDS-GO and AlZnO NWs/TC14-GO 3.7 Depostion Process of Au Electrode on the Surface of Fabricated 63 Samples by Sputters Coater (EMITECH K550X) 3.8 64 Preparation and Cleaning Process of Sand 3.9 Schematic Diagram of Preparation ZnO NRs by Sol-Gel Method on 66 the Sands Particle 3.10 Immersion ZnO NRs/sands Particles in SDS-GO and TC14-GO 68 **Solutions** 3.11 Calibration Curve of MB Dye Solution for Absorbance Versus 74 Concentration 3.13 Flow Chart of Research Methodology 76 4.1 FESEM Images and EDX Analysis of; (a)-(b) SDS-GO, (c)-(d) SDS-80 rGO, (e)-(f) TC14-GO and (g)-(h) TC14-rGO 4.2 82 HRTEM Images of; (a)-(b) SDS-GO, (c)-(d) SDS-rGO, (e)-(f) TC14-GO and (g)-(h) TC14-rGO

05-450683









|        | 4.3  | Micro-Raman Spectra of SDS-GO, SDS-rGO, TC14-GO, TC14-rGO<br>Thin Film                                                                                                                                                                                                          | 87         |
|--------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|        | 4.4  | Transmittance Spectra of SDS-GO, SDS-rGO, TC14-GO and TC14-rGO                                                                                                                                                                                                                  | 89         |
|        | 4.5  | Band Gap Energy of (a) SDS-GO, (b) SDS-rGO, (c) TC14-GO and (d) TC14-rGO                                                                                                                                                                                                        | 91         |
|        | 4.6  | I-V Curve of SDS-GO, SDS-rGO, TC14-GO and TC14-rGO                                                                                                                                                                                                                              | 93         |
|        | 4.7  | FESEM and EDX of Images of (a) MgZnO Seed Layer, (b)-(f) ZnO NRs (4 Hours)                                                                                                                                                                                                      | 96         |
|        | 4.8  | FESEM and EDX of Images of (a)-(e) ZnO NWs (12 Hours) and (f)-(j) ZnO NWs (24 Hours)                                                                                                                                                                                            | 99         |
|        | 4.9  | Micro-Raman Spectra of Pristine ZnO NRs (4 Hours) and Pristine ZnO NWs (12 and 24 Hours)                                                                                                                                                                                        | 102        |
|        | 4.10 | XRD Pattern of Pristine ZnO NRs (4 Hours) and Pristine ZnO NWs (12 and 24 Hours)                                                                                                                                                                                                | 105        |
|        | 4.11 | Transmittance Spectra of Pristine ZnO NRs (4 Hours) and Pristine ZnO NWs (12 and 24 Hours)                                                                                                                                                                                      | 108        |
|        | 4.12 | Band Gap Energy of (a) Pristine ZnO NRs (4 Hours), (b) Pristine ZnO NWs (12 Hours) and (c) Pristine ZnO NWs (24 Hours)                                                                                                                                                          | 109        |
| 05-450 | 4.13 | I-V Curve of Pristine ZnO NRs (4 Hours) and Pristine ZnO NWs (12 and 24 Hours)                                                                                                                                                                                                  | 111<br>111 |
|        | 4.14 | The Diagram of Depletion Layer and Conduction Layer of Pristine ZnO NWs (12 and 24 Hours)                                                                                                                                                                                       | 112        |
|        | 4.15 | FESEM and EDX Image of Top Morphology of (a), (b) ZnO NRs/SDS-GO (4 Hours), (c), (d) ZnO NRs/SDS-rGO (4 Hours), (e), (f) ZnO NRs/TC14-GO (4 Hours) and (g), (h) ZnO NRs/TC14-rGO (4 Hours)                                                                                      | 115        |
|        | 4.16 | Micro-Raman Spectra of ZnO NRs/SDS-GO (4 Hours), ZnO NRs/SDS-rGO (4 Hours), ZnO NRs/TC14-GO (4 Hours) and ZnO NRs/TC14-rGO (4 Hours)                                                                                                                                            | 119        |
|        | 4.17 | Transmittance Spectra of ZnO NRs/SDS-GO (4 Hours), ZnO NRs/SDS-rGO (4 Hours), ZnO NRs/TC14-GO (4 Hours), ZnO NRs/TC14-rGO (4 Hours), ZnO NWs/ SDS-GO (12 Hours), ZnO NWs/TC14-GO (12 Hours), ZnO NWs/SDS-GO (24 Hours) and ZnO NWs/TC14-GO (24 Hours)                           | 123        |
|        | 4.18 | Band Gap Energy of (a) ZnO NRs/SDS-GO (4 Hours), (b) ZnO NRs/SDS-rGO (4 Hours), (c) ZnO NRs/TC14-GO (4 Hours), (d) ZnO NRs/TC14-rGO (4 Hours), (e) ZnO NWs/ SDS-GO (12 Hours), (f) ZnO NWs/TC14-GO (12 Hours), (g) ZnO NWs/SDS-GO (24 Hours) and (h) ZnO NWs/TC14-GO (24 Hours) | 126        |



) 05-4500

PustakaTBair



4.19 I-V Curve of The Fabricated Hybrid ZnO-Based Films; (a) ZnO 129 NWs/TC14-GO (24 Hours), (b) ZnO NWs/TC14-GO (12 Hours), (c) ZnO NRs/TC14-rGO (4 Hours), (d) ZnO NRs/TC14-GO (4 Hours), (e) ZnO NWs/SDS-GO (24 Hours), (f) ZnO NWs/SDS-GO (12 Hours), (g)ZnO NRs/SDS-rGO (4 Hours), and (h)ZnO NRs/SDS-GO (4 Hours)

| 4.20 | FESEM and EDX of Image of AlZnO NRs (4 Hours) | 132 |
|------|-----------------------------------------------|-----|
|      |                                               |     |

- 4.21 FESEM and EDX of Image of;(a)-(e) AlZnO NWs (12 Hours) and 135 (f)-(j) AlZnO NWs (24 Hours)
- 4.22 Micro-Raman Spectra of AlZnO NRs (4 Hours) and AlZnO NWs (12 138 and 24 Hours)
- 4.23 XRD Pattern of AlZnO NRs (4 Hours) and AlZnO NWs (12 and 24 141 Hours)
- 4.24 Transmittance Spectra of AlZnO NRs (4 Hours) and AlZnO NWs (12 144 and 24 Hours)
- 4.25 Band Gap Energy of (a) AlZnO NRs (4 Hours) and (b) AlZnO NWs 145 (12 Hours) and (c) AlZnO NWs (24 Hours)
- 4.26 I-V Curve of AlZnO NRs (4 Hours) and AlZnO NWs (12 and 24 147 Hours)
- 4.27 FESEM Images and EDX Analysis of (a) AlZnO NRs/SDS-GO (4 149 Hours), (b) AlZnO NRs/TC14-GO (4 Hours), (c) AlZnO NRs (4 hours)/SDS-GO and (d) AlZnO NRs (4 hours)/TC14-GO
  - 4.28 Micro-Raman Spectra of AlZnO NRs/SDS-GO (4 Hours) and AlZnO 152 NRs/TC14-GO (4 Hours)
  - 4.29 Transmittance Spectra of AlZnO NRs/SDS-GO (4 Hours), AlZnO 155 NRs/TC14-GO (4 Hours), AlZnO NWs/SDS-GO (12 Hours), AlZnO NWs/TC14-GO (12 Hours), AlZnO NWs/SDS-GO (24 Hours) and AlZnO NWs/TC14-GO (24 Hours)
  - 4.30 Band Gap Energy of (a) AlZnO NRs/SDS-GO (4 Hours), (b) AlZnO 157 NRs/TC14-GO (4 Hours), (c) AlZnO NWs/SDS-GO (12 Hours), (d) AlZnO NWs/TC14-GO (12 Hours), (e) AlZnO NWs/SDS-GO (24 Hours) and (f) AlZnO NWs/TC14-GO (24 Hours)
  - 4.31 I-V Curve of (a) AlZnO NWs/TC14-GO (24 Hours), (b) AlZnO 159 NWs/TC14-GO (12 Hours), (c) AlZnO NRs/TC14-GO (4 Hours), (d) AlZnO NWs/SDS-GO (24 Hours), (e) AlZnO NWs/SDS-GO (12 Hours) and (f) AlZnO NRs/SDS-GO (4 Hours)
  - 4.32 Photoresponse of UV Photoconductive Sensor of (a) ZnO NRs/TC14 GO, (b) ZnO NRs/TC14-rGO, (c) ZnO NRs/SDS-GO and (d) ZnO NRs/SDS-rGO and (e) ZnO NRs
  - 4.33 Photoresponse of UV Photoconductive Sensor of (a) ZnO 168 NWs/TC14-GO (24 Hours), (b) ZnO NWs/TC14-GO (12 Hours), (c)



PustakaTBair

O ptbup

ZnO NWs/SDS-GO (24 Hours), (d) ZnO NWs/SDS-GO (12 Hours), (e) ZnO NWs (24 Hours) and (f) ZnO NWs (12 Hours)

- 4.34 Photoresponse of UV Photoconductive Sensor of (a) AlZnO
   171 NRs/TC14-GO, (b) AlZnO NRs/SDS-GO and (c) AlZnO NRs
- 4.35 Photoresponse of UV Photoconductive Sensor of (a) AlZnO 174 NWs/TC14-GO (24 Hours), (b) AlZnO NWs/TC14-GO (12 Hours), (c) AlZnO NWs/SDS-GO (24 Hours), (d) AlZnO NWs/SDS-GO (12 Hours), (e) AlZnO NWs (24 Hours) and (f) AlZnO NWs (12 Hours)
- 4.36 The Schematic Diagram of Electron Movement through AlZnO NWs 177 (24 Hours) During the On and Off UV Light
- 4.37 The Schematic Diagram of Excitation and Recombination 178 Mechanism Process of AlZnO NWs (24 Hours)
- 4.38 The Schematic Diagram of the Excitation Mechanism and the 179 Prevention of Recombination Process by the GO
- 4.39 The Schematic Diagram of Electron Movement through Pristine and 180 Hybrid ZnO NWs with SDS-GO and TC14-GO
- 4.40 FESEM Images and EDX Analysis of; (a)-(e) sand/ZnO NRs, (f) and 184 (g) sand/ZnO NRs/SDS-GO and (h) and (i) sand/ZnO NRs/TC14-GO
- 4.41 Micro-Raman Spectra of Sand/ZnO/SDS-GO and Sand/ZnO /TC14-GO ustaka.upsi.edu.my Pustaka.upsi.edu.my Pustaka.upsi.edu.my Pustaka.upsi.edu.my
  - 4.42 XRD Pattern of Sand/ZnO NRs
  - 4.43 Absorption Spectra of 5 ppm MB by Utilizing 30 g of sand/ZnO NRs, 193 sand/ZnO NRs/SDS-GO and sand/ZnO NRs/TC14-GO at 24 Hours MB Degradation Process
  - 4.44 Absorption Spectra of 5 ppm MB by Utilizing 30 g of sand/ZnO NRs, 194 sand/ZnO NRs/SDS-GO and sand/ZnO NRs/TC14-GO at 48 Hours MB Degradation Process
  - 4.45 Absorption Spectra of 5 ppm MB by Utilizing 30 g of sand/ZnO NRs, 195 sand/ZnO NRs/SDS-GO and sand/ZnO NRs/TC14-GO at 72 Hours MB Degradation Process
  - 4.46 Absorption Spectra of 5 ppm MB by Utilizing (a) 30 and (b) 90 g of 198 Sand/ZnO NRs/TC14-GO for MB Degradation Process
  - 4.47 Absorption Spectra of; (a) 15 and (b) 25 ppm MB by Utilizing 90 g 200 of Sand/ZnO NRs/TC14-GO for MB Degradation Process
  - 4.48 The Schematic Diagram of Photocatalytic Mechanism Utilizing 202 sand/ZnO NRs/TC14-GO
  - 4.49 The Schematic Diagram of Oxidation Process in the Photocatalytic 204 Mechanism Utilizing sand/ZnO NRs/TC14-GO
  - 4.50 The Schematic Diagram of Reduction Process in the Photocatalytic 205 Mechanism Utilizing sand/ZnO NRs/TC14-GO



190



5





## LIST OF ABBREVIATIONS

| Al                               | Aluminium                                         |
|----------------------------------|---------------------------------------------------|
| $(Al(NO_3)_3 \cdot 9H_2O)$       | Aluminium Nitrate Nonahydrate                     |
| AlZnO                            | Aluminum Zinc Oxide                               |
| Ag                               | Silver                                            |
| AOT4                             | Double-Tails Sodium Bis (3,5,5-Trimethyl-1-Hexyl) |
| Ar                               | Argon                                             |
| Au                               | Gold                                              |
| Cr                               | Chromium                                          |
| 58°C 😯 pustaka.upsi.ed           | Degree Celsiusus Sultan Abdul Jalil Shah          |
| $CO_3O_4$                        | Cobalt oxide                                      |
| cm                               | Centimeter                                        |
| CNTs                             | Carbon Nanotubes                                  |
| CVD                              | Chemical Vapour Deposition                        |
| C <sub>2</sub> H <sub>7</sub> NO | Mono-Ethanolamine                                 |
| $C_3H_8O_2$                      | 2-Methoxyethanol                                  |
| D                                | Defect and Disorder-Peak                          |
| DI-water                         | De-Ionized Water                                  |
| e                                | Electron                                          |
| EDX                              | Energy Dispersive X-Ray                           |
| e-h                              | Electron-holes                                    |





|         | eV                                | Electron Volt                                    |
|---------|-----------------------------------|--------------------------------------------------|
|         | Fe                                | Iron                                             |
|         | FESEM                             | Field Emission Scanning Electron Microscopy      |
|         | FWHM                              | Full Width at Half Maximum                       |
|         | G                                 | Crystalline Graphite-Peak                        |
|         | GaN                               | Gallium Nitride                                  |
|         | GE                                | Graphene                                         |
|         | GO                                | Graphene Oxide                                   |
|         | HCL                               | Hydrochloric Acid                                |
|         | HRTEM                             | High Resolution Transmission Electron Microscopy |
|         | HMT                               | Hexamethylenetetramine                           |
|         | Hz                                | Hertz                                            |
| 05-4508 | KMnO <sub>4</sub> pustaka.upsi.ed | Potassium Permanganate Bainun Shah               |
|         | Ι                                 | Current                                          |
|         | $I_{ph}$                          | Photocurrent                                     |
|         | I <sub>d</sub>                    | Darkcurrent                                      |
|         | P <sub>op</sub>                   | Optical power                                    |
|         | ITO                               | Indium Tin Oxide                                 |
|         | $I_D/I_G$                         | Intensity of D and G peak                        |
|         | I-V                               | Current-Voltage                                  |
|         | Μ                                 | Molar                                            |
|         | meV                               | Mili Electron Volt                               |
|         | MB                                | Methylene Blue Dye                               |
|         | MOCVD                             | Metal Organic Chemical Vapour Deposition         |
|         |                                   |                                                  |





O5-4506832 Bustaka.upsi.edu.my Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah



|         | MgO                               | Magnesium Oxide                                                           |
|---------|-----------------------------------|---------------------------------------------------------------------------|
|         | Mg(NO <sub>3</sub> ) <sub>2</sub> | Magnesium Nitrate                                                         |
|         | MWCNTs                            | Multi-Walled Carbon Nanotubes                                             |
|         | NaNO <sub>3</sub>                 | Sodium Nitrate                                                            |
|         | NaOH                              | Sodium Hydroxide                                                          |
|         | Nb <sub>2</sub> O <sub>5</sub>    | Niobium Pentaoxide                                                        |
|         | nm                                | Nanometer                                                                 |
|         | NFs                               | Nanoflowers                                                               |
|         | NRs                               | Nanorods                                                                  |
|         | NTs                               | Nanotubes                                                                 |
|         | NWs                               | Nanowires                                                                 |
|         | 0                                 | Oxygen                                                                    |
| 05-4508 | OH 💮 pustaka.upsi.ec              | Iv Hydroxide Perpustakaan Tuanku Bainun<br>Kampus Sultan Abdul Jalil Shah |
|         | O II                              | Orange II dye                                                             |
|         | РН                                | Potential of Hydrogen                                                     |
|         | PLD                               | Pulsed Laser Deposition                                                   |
|         | PSS                               | Single-Tail Poly (Sodium 4-Styrenesulfonate)                              |
|         | PZT                               | Lead Zirconate Titanate                                                   |
|         | rGO                               | Reduced Graphene Oxide                                                    |
|         | RhB                               | Rhodamine B Dye                                                           |
|         | rpm                               | Radians Per Minute                                                        |
|         | S                                 | Sensitivity                                                               |
|         | S                                 | Second                                                                    |
|         | SDBS                              | Sodium Dodecyl Benzena Sulphonate                                         |





|        | SDS                                                          | Sodium Dodecyl Sulphate                                                                   |
|--------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------|
|        | $H_2SO_4$                                                    | Sulphuric Acid                                                                            |
|        | SiC                                                          | Silicon Carbide                                                                           |
|        | SiO <sub>2</sub>                                             | Silicon Dioxide                                                                           |
|        | SnO <sub>2</sub>                                             | Tin Oxide                                                                                 |
|        | SrTiO <sub>3</sub>                                           | Strontium Titanate                                                                        |
|        | Т                                                            | Temperature                                                                               |
|        | TC14                                                         | Sodium 1, 4-Bis (Neopentyloxy)-3-(Neopentyloxycarbonyl)-<br>1, 4-Dioxobutane-2-Silphonate |
|        | 1102                                                         | Titanium Dioxide                                                                          |
|        | UV                                                           | Ultraviolet                                                                               |
|        | UV-Vis                                                       | Ultraviolet Visible                                                                       |
|        | V                                                            | Voltage                                                                                   |
| 05-450 | 6 VS 😵 pustaka.upsi.ec                                       | Vapour-Solid pus Sultan Abdul Jalil Shah                                                  |
|        | W                                                            | Watt                                                                                      |
|        | VLS                                                          | Vapour Liquid Solid                                                                       |
|        | XRD                                                          | X-ray Diffraction                                                                         |
|        | θ                                                            | Angle between Incident and Diffracted Rays                                                |
|        | μΑ                                                           | Microampere                                                                               |
|        | μm                                                           | Micrometer                                                                                |
|        | ρ                                                            | Electrical Resistivity                                                                    |
|        | σ                                                            | Electrical Conductivity                                                                   |
|        | Å                                                            | Angstrom                                                                                  |
|        | ZnO                                                          | Zinc Oxide                                                                                |
|        | Zn (CH <sub>3</sub> COO) <sub>2</sub> .<br>2H <sub>2</sub> O | Zinc Acetate Dehydrate                                                                    |

O5-4506832 Bustaka.upsi.edu.my Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah





| $Zn(NO_3)_2$ | Zinc Nitrate Hexahyrate |
|--------------|-------------------------|
| $Zn_2SnO_4$  | Zinc Stannate           |
| 0-D          | Zero-Dimensional        |
| 1-D          | One-Dimensional         |
| 2-D          | Two-Dimensional         |
| 3-D          | Three-Dimensional       |





O5-4506832 O5-4506832 pustaka.upsi.edu.my

PustakaTBainun ptbupsi















## LIST OF APPENDICES

- A Journal of IOP Publishing (2018)
- Journal of IOP Publishing (2019) В
- International Postgraduate Conference on Science & Mathematics 2017 С
- D International Postgraduate Conference on Science & Mathematics 2018





O 5-4506832 Sutaka.upsi.edu.my Perpustakaan Tuanku Bainun Perpustakaan Tuanku Bainun PustakaTBainun of ptbupsi











### **CHAPTER 1**

#### **INTRODUCTION**



Introduction



This chapter discusses the research background of zinc oxide (ZnO) aluminium oxide (Al) based on ultraviolet (UV) photoconductive sensor application. The graphene oxide (GO) and reduced GO (rGO) assisted by commercially single tail sodium dodecyl sulphate (SDS) and custom made triple tails sodium 1, 4-bis (neopentyloxy)-3-(neopentyloxycarbonyl)-1, 4-dioxobutane-2-silphonate (TC14) surfactants. The ZnO and composite ZnO with SDS- and TC14-GO based were also utilized for photocatalysis applications. Next, the research problems statement, objectives, scope and limitations of the research and the thesis organization are then described at the end of this chapter.

05-4506



#### 1.2 Research Background

UV photoconductive sensor are used in many different applications, including environmental monitoring, pharmaceuticals, optical communications, automobiles, space research, chemical and printing industry as well as robotics, hence it has emerge as a profound field of research (Monroy, Omns & Calle, 2003). A high performance UV photoconductive sensor should satisfy the following requirements in terms of high sensitivity (Iphoto/Idark) and responsivity: the photocurrent through the device per unit power of irradiation per active area (M.H.Mamat, Khusaimi, Musa, M.F.Malek & Rusop, 2011).

Among various semiconducting materials, ZnO has been greatly accounted as favourable materials for UV photoconductive sensor due to the following properties perpendication for the following properties including high electron mobility, wide direct band gap of 3.37 eV, high exciton binding energy of 60 meV, good transparency, ease and low cost of manufacturing (Lajvardi et al. 2018; Karak, 2017; Khamkhom et al. 2017). Various morphology structures of successfully synthesized ZnO nanostructures were produced including nanorods (NRs) (R. Ahmad, Ahn & Hahn, 2017) nanowires (NWs) (Hullavarad, S. S, Hullavarad, N. V, Karulkar, P. C, Luykx, A & Valdivia, 2007), nanotubes (NTs) (Yijun Zhang et al. 2015), nanotetrapods (Gedamu et al. 2014) and nanosheets (X. H. Huang et al. 2011). For great and promising UV photoconductive sensor materials, the one-dimensional (1-D) ZnO NRs and NWs are commonly used and have received the most attention. This is due to its large surface area and good electron transport, offering low charge recombination thus improved UV photoconductive sensor performance (M.F. Malek, Mohd Zainizan Sahdan, et al. 2013; M.F. Malek, 05-4506832 🛛 📢 pustaka.upsi.edu.my



M.H.Mamat, et al. 2013). To obtain high-quality ZnO nanostructures, several methods, such as sol-gel immersion (Bahadur et al. 2008), hydrothermal (Xian et al. 2017), chemical bath deposition (Terasako et al. 2015) and chemical vapour deposition (CVD) (Jih-jen Wu & Liu, 2012), have been developed. Sol-gel immersion method is one of the most promising fabrication techniques for preparing ZnO thin film due to its facile, economic and simple fabrication with low reaction temperature and easy to control the ZnO growth as well as suitable to be applied in mass ZnO production (A.A.Ameer, Suriani, A.R.Jabur, N. Hashim, Fatiatun & K.Zaid, 2019).

However pristine ZnO demonstrated low operating sensitivity with weak photoresponsivity as a practical UV photoconductive sensor. The pristine ZnO thin films has shown low responsivity of only 34 mA/W under incident 365 nm wavelength at 10 V operating bias (D. Liu et al. 2018) which is unfavourable to be utilized in practical UV photoconductive sensor application. Doping small amount of active metals and carbonaceous allotropes to pristine ZnO seem to improve the performance of ZnO UV photoconductive sensing properties. The metallic such as iron (Fe) (Khayatian, Asgari, Ramazani, Akhtarianfar, Kashi, et al. 2017), Chromium (Cr) (S. Safa et al. 2018) and Al (Zi-QiangXu, HongDeng & JuanXie, 2006). Among all the Al doped-ZnO nanostructure was preferable due to its capability to increase the conductivity without weaken the optical transmission and also suggested to be easily incorporation into ZnO lattice (Jin, Hamberg & Granqvist, 1988). The non-metallic additives such as carbon nanotubes (CNTs), graphene, GO and rGO shown to be effective in separating of the photogenerated exciton via electrical field formation of the charge space around hetero-interfaces (M. Z. S. Safa & Mokhtari, 2017). The



composited of non-metallic to ZnO nanostructures also improves the photochemical stability which then assist to elevate ZnO UV photoconductive sensor sensitivity.

Meanwhile, for the use of ZnO for photocatalytic application, it has shown a great removal efficiency of organics and heavy metal pollutions in the water due to it become a serious issue (Y. Chang, 2015). There are many type of dye used in industrial such as methylene blue (MB), Rhodamine B (RhB) (K. Huang et al. 2014), Orange II(O II) (P. K. Chen et al. 2013) and so on. The MB were one of the dye used commonly in medicine (Jinbin Liu et al. 2013), textile industry (K. Singh & Arora, 2011), sensors (Nishiyabu et al. 2014). However, most of the water pollutions escape from traditional treatment due to high stability against light, chemicals and temperature (Gupta & Suhas, 2009). Meanwhile, in 1972 Honda and Fujishima discovered the first photocatalytic activity in titanium dioxide (TiO<sub>2</sub>) electrodes (Fujishima & Honda, 1972). The photocatalysis have been opened new door of elimination and degradation of organic dye pollutions in wastewater (J. Hou et al. 2011). The ZnO one of the promising material for the photocatalytic applications (Di et al. 2016; Becker et al. 2011). Among all the structures ZnO NRs was mostly utilized in water cleaning using photocatalysis process due to its high surface area to volume ratio.

Moreover, the efficiency of photocatalysis still very low due to fast recombination of electron-hole (e-h) rate (B. Li et al. 2012) wich estimated with nanosecond (Liang et al. 2016). The photocatalysis performance were show enhancement by doping and loading with metal (X. Hou et al. 2015), multi wall carbon nanotubes (MWCNTs) (Saleh, Gondal & Drmosh, 2010) GO .(B. Li et al.



ptbupsi 5

2012) and rGO (Y. Zhao et al. 2017). Which the loading and doping material on ZnO nanostructure slow the recombination e-h rate. But, the problems with metallic element are poor in transparency which can dramatically affect the photocatalysis efficiency. The hybrid of GO with ZnO nanostructure show enhancement in the photocatalysis efficiency. This enhancement was believed due to lowering the recombination e-h rate (Opoku et al. 2017). In the meantime the UV absorption of the ZnO nanostructures were found to increase with the existence of CNTs, GO and rGO. Nevertheless, the tubular structure of CNTs limits the active surface area to be accessible for ZnO nanostructures. The presence of GO and rGO also assist to decrease the recombination rate of produced exciton and provide ultra-fast carrier transportation between electrodes via conductive GO and rGO network (Ding et al. 2013; C. Chen, 2018).

pustaka.upsi.edu.my

Graphene, a single layer form of carbon with a two-dimensional (2-D) hexagonal lattice, has shown many outstanding properties, including high mobility of charge carriers (Y. Chen & Ma, 2010; Shahil & Balandin, 2012), unique transport performance (W. Hong et al. 2008), high mechanical strength (Papageorgiou, Kinloch & Young, 2017) thermal conductivity (Colonna et al. 2016), stretchable and almost transparent. Due to this graphene is suitable for many technological applications such as graphene-based nanoelectronics, nanocomposite materials, photocatalytics, energy storage and conversion, molecular gas sensors and transparent conductive film. All of these engineering applications need massive production of excellent quality graphene materials. However, pristine graphene cannot directly be used because of its high production cost and lack of functional groups especially for nanocomposite interfacial bonding.





Therefore, other derivatives of graphene such as GO has been used as a starting precursor because of its (1) functional groups that increase GO hydrophilicity in aqueous solutions, (2) readily scalable materials and (3) versatile handling for chemical functionalization. GO was defined as sp<sup>2</sup>-hybridized planar carbon sheets that are highly oxidized by oxygen functional groups, is widely used in electronics applications. Various methods for GO production have been reported elsewhere. Among them is Hummer's method, which has been widely used for GO production due to its easy scale-up. However, it involves strong acids and hazardous chemicals that would be detrimental to the environment if implemented industrially at a large scale. At present, the electrochemical exfoliation method is greener, simpler and more convincing methods for producing high-quality GO in large quantity. This was due to the lower chemical utilization by this method and its ability to be easily carried out in <sup>05,4506</sup> a water-based medium (Ambrosi & Pumera, 2016; Cooper & Kinloch, 2015).

Nonetheless, the agglomeration GO and interfacial control between ZnO nanaostuctures and GO is the major drawback in the development of homogenous ZnO/GO hybrid nanocomposites films, thus it is necessary to prevent GO substances from agglomeration. Its unique properties can only be achieved when it is only associated with individual sheet, therefore keeping them well separated is highly required. Hence, the used of surfactant compounds for better dispersion of GO is needed. To date, the most effective surfactant for GO dispersion is limited on single and long chain characteristics (SDS, SDBS, PSS, etc.) (Suriani, Fatiatun, et al. 2018; Suriani, Muqoyyanah, et al. 2018; Ali A A Mohammed. Suriani & Akram R Jabur, 2018). In contrast to custom made hyper branched tri-chain surfactant namely sodium 1,4-bis(neopentyloxy)-3-(neopentyloxycarbonyl)-1,4-dioxobutane-2-silphonate



(TC14), it is believed to provide extra chain to interconnect between GO and ZnO nanostructures (NRs and NWs). It then resulted in better dispersion and homogeneity of GO based nanocomposites films that later offer excellent solutions pertinent to ZnO UV photoconductive sensor performance. The TC14 surfactant have shown better option compared to the single-chain SDS surfactant in dispersing CNTs throughout the latex matrix via latex technology then resulted in better electrical conductivity. Surfactants have been recognized as the third component in the enhancement of the interfacial interaction between GO/rGO and other type of hybrids materials (Suriani, M.D Nurha, et al. 2015; Suriani, Nurhafizah, et al. 2017). Therefore, an appropriate selection of surfactant may facilitate the formation of conductive nanocomposites between GO/rGO and ZnO nanostructure. Careful selection and systematic study of surfactant architecture, particularly the tail group toward GO dispersion into 05-4506 nanocomposites, are important. Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

In the meantime, the reduction of GO to rGO was favourable due to the restoration of conjugation electronic structure from  $sp^3$  to the  $sp^2$  structure. RGO is also known to consist of several layers of graphite which has been reduced from the GO sheets through two processes which includes (i) chemical reduction such as hydrazine hydrate (Chua and Pumera 2014; Bo et al. 2014) and also thermal treatment such as microwave irradiation (S. N. Alam, Sharma & Kumar, 2017). These carbon materials have been chosen as multifunctional nanofillers in the nanocomposite field nowadays. The selection of rGO was particularly due to the presence of reactive sites along the structures which thus can improve the electrical, charge ion mobility, enhance the compatibility and increased the interaction to the ZnO nanostructure. In comparison to the thermal treatment, the used of hydrazine hydrate as a reducing agent





through the chemical reduction approach was more favourable as this approach were more controllable, ease and rapid method to produce a bulk quantity of rGO in a short time (Suriani, Mohamed, et al. 2018; Compton & Nguyen, 2010).

Meanwhile, among various methods for GO/rGO films fabrication, spraying method gained much attention due to its portable, easy and flexible on various large area substrates as compared to the sputtering and dip coating methods where these methods requires ultra-high vacuum facility thus give non cost-effective to the UV photoconductive sensor applications (Jiao, Zhang & Chen, 2014; Pham et al. 2010).

In term of interior mechanism namely the optimal amount of GO/rGO on the ZnO surface, the chemical and electronic interaction at the surface of GO/rGO and 25450 ZnO nanostructures, the interfacial hybrid heterostructure control during the fabrication of between GO/rGO-ZnO nanaostuctures and some other detail are yet not clear and need further investigation fundamentally (Y. Yang & Liu, 2011; K. Yang et al. 2011). The understanding of those mention phenomeno lead to improving the UV photoconductive sensing and photocatalytic properties of ZnO nanostructures/GO/rGO nanocomposites in a more consistent manner. A novel and systematic study on the understanding of the role, effect and interaction of heterojunction ZnO nanostructures/GO and rGO hybrid nanocompsoites to enhance UV photoconductive sensing and photocatalytic activity is necessary and important (Z. Li et al. 2013; Xuewen Fu et al. 2012). Herein, in this work ZnO and AlZnO NRs and NWs be fabricated via sol-gel immersion method before composited with both GO and rGO. The GO produced by using electrochemical exfoliation method with the assistance of custom made tri-chain hyper-branched TC14 surfactant. In this work as well, both





customized and commercially available surfactants used in the water-based electrolyte preparation to assist the exfoliation process and investigate their effects on GO production towards improving UV photoconductive sensing and photocatalytic properties of ZnO and AlZnO NRs and NWs. Chemical reduction process carried out to produce rGO due to a water-based solution that requires low temperature during reduction. Among several reducing agents, such as chemicals, plant extracts, microorganisms, proteins and hormones, hydrazine hydrate selected due to its effectiveness in thin and fine rGO production (Ren et al. 2011). The spraying deposition and immersion methods chosen among various transfer methods to transfer GO and rGO solutions. This method used due to its simple process, easy control, potential for large-scale production and suitability for various substrates (Pham et al. 2010).

pustaka.upsi.edu.my

1.3 **Problem Statement** 

Many researcher have been reported the ZnO is a promising candidate for UV photoconductive sensor and photocatalytics application (G. Huang, Zhang, & Bai 2019; Khun et al. 2015; Y. Liu et al. 2015). Among all the structure of ZnO the NRs and NWs have shown the best performance for UV photoconductive sensor and photocatalytic applications due to its large surface area and good electron transport. Among various synthesis method of ZnO nanostrcutures, sol-gel immersion is one of the most promising fabrication due to its facile, economic and simple fabrication with low reaction temperature and easy to control the ZnO growth as well as suitable for high volume ZnO production.

05-4506832







Nevertheless the application of ZnO as UV photoconductive sensor and photocatalytic are limited due to low operating sensitivity, weak photoresponsivity and low removal efficiency. The pristine ZnO thin films has shown low responsivity of only 34 mA/W (D. Liu et al. 2018), and 51% removal percentage for UV photoconductive sensor and photocatalytic (M. Y. Guo et al. 2011), respectively which are unfavorable to be utilized as practical UV photoconductive sensor and photocatalytic application. However, the pristine ZnO have been composite with metallic such as Al and non-metallic such as GO and rGO in order to improve the efficiency of UV photoconductive and photocataltic applications (Zi-QiangXu, Hong Deng, JuanXie, 2006; M. Z. S. Safa & Mokhtari, 2017). Meanwhile, common methods for GO production are Hummers and electrochemical exfoliation method. Hummer's method was unfavourable due to it used strong acids and hazardous chemicals that would be detrimental to the environment. The electrochemical exfoliation method was more convincing to synthesize GO solution due to its greener, simple preparation and economic (Jose, 2011). The chemical reduction process carried out to produce rGO via hydrazine hydrate due to its benefits of low operation temperature and capable to produce high quality rGO in a short time with high efficiency in the nanoelectronic applications due to the presence of reactive sites along the structures and efficient interaction between the oxygen containing functional groups with the electrolyte.

The major problem on the ZnO/GO hybrid films fabrication is the absence of quality heterojunction interfacial of nanocomposites for efficient UV high photoconductive sensing and photocatalytic properties (C. Xie et al. 2018; Suriani, Fatiatun, et al. 2018). The situation is worsen by the agglomeration of GO due to van der Waals force making interfacial control between ZnO nanaostuctures and GO more





complicated and causes the major drawback in the development of homogenous ZnO/GO nanocomposites films. Thus it is necessary to prevent GO substances from agglomeration as its unique properties can only be achieved when it is only associated with individual sheet, therefore keeping them well separated is highly required. Hence, the used of surfactant compounds for better dispersion of GO is needed. To date, the most effective surfactant for GO dispersion is limited to single and long chain characteristics (SDS, SDBS, PSS, etc.). In contrast to custom made hyper branched trichain surfactant namely sodium 1,4-bis(neopentyloxy)-3-(neopentyloxycarbonyl)-1,4dioxobutane-2-silphonate (TC14), it is believed to provide extra chain to interconnect between GO and ZnO nanostructures. It resulted in better dispersion, interfacial connectivity and homogeneity of ZnO/GO hybrid nanocomposites films that then offer excellent solutions pertinent to UV photoconductive sensing properties of ZnO. The TC14 surfactant have shown better option compared to the single-chain SDS surfactant in dispersing CNTs throughout the latex matrix via latex technology then resulted in better electrical conductivity.

Surfactants have been recognized as the third component in the enhancement of the interfacial interaction between GO/rGO and other type of hybrids materials (N. G. Sahoo et al. 2012; K. S. Kim et al. 2009; Jose, 2011). Therefore, an appropriate selection of surfactant may facilitate the formation of conductive nanocomposites between GO/rGO and ZnO nanostructure. Careful selection and systematic study of surfactant architecture, particularly the tail group toward GO/rGO dispersion into nanocomposites, are important. Hence, for the first time we introduce novel, facile, green and economic preparation of ZnO and AlZnO nanostructures/agglomerated free GO and rGO assisted with hyper branched surfactant for efficient UV photoconductive





sensing and photocatalytic properties. The spraying deposition and immersion methods chosen among various transfer methods to transfer SDS- and TC14-GO and rGO solutions. This method used due to its simple process, easy control, potential for large-scale production and suitability for various substrates. Various techniques used for physical characterizations, including FESEM, EDX, HRTEM, micro-Raman spectroscopy, XRD, UV-Vis spectroscopy and I-V measurement. UV photoresponse measurements of the ZnO nanostructures (NRs and NWs with aluminium and without aluminium doped)/GO and rGO fabricated UV photoconductive sensors performed by using the UV photocurrent measurement system (Keithley 2400) operated at 365 nm with a power density of 750 m  $W/cm^2$  and a bias voltage of 5 V.

The photocatalytic performance of sand/ZnO NRs and sand/ZnO NRs/GO 05-4506 samples were evaluated by the photodegradation of MB UV irradiation by UV light 365 nm with a power density of 750 m  $W/cm^2$ . The degradation of MB was obtained by UV-Vis spectroscopy absorbance at 665 nm. The UV photoconductive sensing and photocatalytic mechanism investigation on the role and effect of GO in improving the UV photoconductive sensing and photocatalytic properties of ZnO nanostrcutures/GO nanocomposites are discussed in detail. The novel systematically study on the understanding towards the role, effect and interaction of heterojunction ZnO nanostrcutures/GO hybrid nanocompsoites to enhance UV photoconductive sensing and photocatalytic activity is necessary and important particular at fundamental level.





#### 1.4 **Research Objectives**

05-4506832 (C) pustaka.upsi.edu.my

- To fabricate ZnO and AlZnO NRs/NWs via sol-gel immersion methods and its i. hybridized with SDS and TC14-GO and rGO via spray coating method.
- ii. To fabricate sand/ZnO NRs via sol-gel immersion method and its hybridization with SDS and TC14-GO by immersion method.
- iii. To determine the potential application of ZnO and AlZnO NRs/NWs/SDS- and TC14-GO and rGO hybrid nanocomposites in UV photoconductive sensors and photocatalytic application.
- To investigate the UV photoconductive sensing and photocatalytic mechanisms iv. on the role and effect of GO on the ZnO nanostructure based on UV photoconductive sensor and photocatalytic performance

pustaka.upsi.edu.my **f** Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah **y** PustakaTBainun **to** ptbupsi

#### 1.5 **Scope and Limitation of Studies**

This research focuses on fabricated (SDS-GO and TC14-GO) by electrochemical exfoliations method. Followed by producing (SDS-rGO and TC14-rGO) by using hydrazine hydrate as reducing agent based on reductions process. The synthesized SDS-GO, TC14-GO, SDS-rGO and TC14-rGO samples were characterized by FESEM, EDX, HRTEM, Raman spectroscopy, XRD, UV-Vis spectroscopy and I-V measurement in order to determine the morphological, structural, optical and electrical properties, respectively. Furthermore, the second part of this thesis was on UV photoconductive sensor applications. By fabrication pristine ZnO and AlZnO NRs (4 hours) at 95 °C and pristine ZnO and AlZnO NWs (12 and 24 hours) at 90 °C by using sol-gel immersion methods were grow on the MgZnO seed layers. Followed





by coating by SDS-GO, SDS-rGO, TC14-GO and TC14-rGO based on spray coating methods followed by annealing at 400 °C in argon ambient. The fabricated ZnO and AlZnO NRs and NWs (12 and 24 hours) samples were characterized by FESEM, EDX, HRTEM, Raman spectroscopy, XRD, UV-Vis spectroscopy and I-V measurement in order to determine the morphological, structural, optical and electrical properties, respectively. And analysis by UV photocurrent two probes measurement system (Keithley 2400) operated at 365 nm with a power density of 750 m W/cm<sup>2</sup> and a bias voltage of 5 V to obtain the responsivivity and sensitivity of UV photoconductive sensor.

Meanwhile, the third part of this thesis was based on photocatalytic applications. Which the ZnO NRs (4 hours) were synthesized on sands particles at 95 <sup>os</sup> <sup>o</sup>C by sol-gel immersion methods. Followed by immersion sand/ZnO NRs (4 hours) in SDS- and TC14-GO at 90 °C for 2 hours followed by annealing at 400 °C in argon ambient. The synthesized sand/ZnO NRs and sand/ZnO/SDS- and TC14-GO samples were characterized by FESEM, EDX, XRD and Raman spectroscopy in order to determine the morphological and structural properties. The UV-Vis spectroscopy was used to determine the removal MB percent.



#### 1.6 **Thesis Organization**

This thesis involves of five chapters. Chapter 1 includes introduction, research background, research problem, research objectives, scope and limitation of studies. Chapter 2 presents deeper review that explains the synthesis method, structures and properties and of of ZnO properties, nanostructures, and synthesis method of ZnO nanostructures. Next, the properties of GO and rGO and the synthesis methods of GO and rGO. And focused on the pristine ZnO, doped ZnO and hybrid or composite with GO and rGO based on UV photoconductive sensor and photocatalysis applications. The chapter 3 which covers the synthesized GO and rGO, fabricated ZnO and AlZnO/NRs and NWs and hybrid with GO and rGO, characterizations and analysis technique are explained. The Chapter 4 were discussed the results in details and the mechanism on the role and effect of GO in improving the UV photoconductive sensor and photocatalysis applications of ZnO/GO nanocomposites. Finally, the Chapter 5 conclude the conclusion and suggestions for future work.





