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ABSTRACT 

 

This research aimed to optically trap and manipulate a single calix[4]arene 
microcluster in water. The optically trapped microclusters were evaluated in terms of 
their optical stiffness and rotatability with respect to the variation of microclusters' 
effective radius and laser power density. The calixarene microclusters contained 
solution was prepared by sonicating a vial containing a mixture of 1.7 mg of 
calix[4]arene powder in 1 ml of deionised water for three minutes. Calix[4]arene 
microclusters in the effective radius range between 0.5 and 3.5 µm were optically 
trapped using a 976 nm laser at laser power densities between 0.67 and 2.30 MW/cm2 
with laser sport size 1.1 µm. A quadrant photodiode (QPD) collected the scattered 
light from a single trapped microcluster. The QPD signal was analysed using a 
custom-made program named OSCal to determine the corner frequency of the optical 
trap. A quarter waveplate was introduced to the laser path to change the laser 
polarisation state and induce microcluster rotation. The rotatability of the trapped 
microcluster was determined by analysing the QPD signal and particle tracking 
method. Results showed that as the laser power density increases, the corner 
frequency of the trapped microcluster also increases. Furthermore, the trapped 
microcluster rotated faster as the laser power density increased regardless of the 
microcluster's effective radius. To conclude, calix[4]arene in the form of a 
microcluster can be optically trapped and respond to the circularly polarised light. The 
strength of the optical stiffness and the magnitude of the rotatability of a trapped 
calix[4]arene microcluster depend on the laser power density. This research implies 
the broadening potential of light-manipulated calix[4]arene as a microprobe or 
microactuator in a liquid. 



vi 
 

 

 

PEMERANGKAPAN DAN PEMANIPULASIAN OPTIK SATU 

MIKROGUGUSAN CALIX[4]ARENE TUNGGAL DI DALAM AIR 

 

ABSTRAK 

 

Kajian ini bertujuan untuk memerangkap dan memanipulasi secara optik satu 
mikrogugusan calix[4]arene tunggal di dalam air. Mikrogugusan yang terperangkap 
secara optik dinilai dari segi kekakuan optik dan kebolehputarannya berkenaan 
dengan variasi saiz berkesan mikrocluster dan ketumpatan kuasa laser. Larutan 
mikrogugusan di dalam vial telah disediakan dengan mensonikasikan campuran yang 
mengandungi 1.7 mg serbuk calix[4]arena dan 1 ml air ternyahion selama tiga minit. 
Mikrogugusan calix[4]arene dalam julat saiz berkesan antara 0.5 dan 3.5 µm 
diperangkap secara optik menggunakan laser 976 nm pada ketumpatan kuasa laser 
dari 0.67 hingga 2.30 MW/cm2 dengan saiz titik laser 1.1 µm. Fotodiod Kuadran 
(QPD) mengumpul cahaya terserak daripada satu mikrogugusan tunggal yang 
terperangkap. Isyarat QPD dianalisis menggunakan perisian buatan khas bernama 
OSCal untuk menentukan frekuensi pepenjuru perangkap optik. Plat gelombang 
sukuan dimasukkan dalam laluan laser untuk menukar keadaan pengutuban laser dan 
mendorong putaran mikrogugusan. Kebolehputaran mikrogugusan yang terperangkap 
ditentukan dengan menganalisis isyarat QPD dan kaedah penjejakan zarah. Hasil 
analisis menunjukkan bahawa apabila ketumpatan kuasa laser meningkat, frekuensi 
penjuru mikrogugusan terperangkap juga meningkat. Tambahan pula, mikrokluster 
yang terperangkap berputar lebih cepat apabila ketumpatan kuasa laser meningkat 
tanpa mengira saiz berkesan mikrokluster. Sebagai kesimpulan, calix[4]arene dalam 
bentuk mikrogugusan boleh diperangkap secara optik dan bertindak balas kepada 
cahaya terkutub membulat. Kekuatan kekakuan optik dan magnitud kebolehputaran 
mikrocluster calix[4]arena yang terperangkap bergantung pada ketumpatan kuasa 
laser. Kajian ini memberi implikasi terhadap perkembangan potensi penggunaan 
calix[4]arene yang dimanipulasi cahaya sebagai mikroprob atau mikropenggerak di 
dalam bendalir. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Introduction 

 

This chapter gives a brief introduction to the research carried out. The chapter begins 

with the background of the research. Then followed up by a discussion of the problem 

statement. Several objectives have been identified to guide this research to address the 

challenge highlighted in the problem statement. Next, the research’s significance and 

scope will also be discussed in this chapter. Finally, this chapter concludes with a 

summary of the dissertation.  
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1.2 Research Background 

 

Arthur Ashkin was the first to establish optical tweezers (OT) in 1970, for which he 

received a Nobel Prize in 2018 (Ashkin, 1970). Optical tweezers were the preferred 

instrument for manipulating delicate nano and microparticle samples. There was no 

mechanical contact with the sample but only a tightly focused laser beam (X. Li & Sun, 

2019; Ma et al., 2019, reducing the damage due to mechanical forces. Manipulating the 

particles with a tightly focused laser is called optical trapping. Two main forces are 

essential in optical trapping: gradient and scattering force. 

 

The gradient force, 𝐹𝑔 is a conservative force resulting from the difference in 

refractive index between particles and their surrounding medium that pulls the particle 

towards the area of maximum light intensity (Spesyvtseva & Dholakia, 2016). 𝐹𝑔 

creates an optical trapping potential for the particles while the scattering force, 𝐹𝑠 tends 

to push the particles out of the trapping spot. 𝐹𝑔 is proportional to the intensity gradient 

of the laser, while the 𝐹𝑠 is proportional to the intensity of the laser. Therefore, 𝐹𝑔 must 

be equal to or greater than 𝐹𝑠 to establish a stable trap (Bormuth et al., 2008; Wu et al., 

2017). These two illustrated forces are shown in Figure 1.1. The gradient force radially 

acts toward the laser beam, and the particle feels the resultant force toward the focal 

point of the laser.  
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Figure 1.1. Gradient and scattering forces in an optical trap (Grier, 2003). 
 

Optical tweezers have found their applications in many different research fields, 

such as physics (Suarez et al., 2021), chemistry (Lv et al., 2020), molecular biology (He 

et al., 2019), medicine (Konyshev et al., 2020), agricultural agriculture (Hawes et al., 

2010) and many others. For example, optical tweezers have been used in the biological 

context to select and isolate a single cell (Keloth et al., 2018) and monitor bacteria’s 

movement (Conteduca et al., 2019). Furthermore, the optical tweezers can also 

manipulate the lipid bilayer for membrane tension measurements (Dols-Perez et al., 

2019). Optical tweezers can also study the interaction between red blood cells and 

viruses (Crick et al., 2014). Research on optical manipulation of a single particle or 

clusters of a regular shape (sphere, cylinder, oval, etc.) has been widely reported (Chang 

et al., 2006; Liu et al., 2016; Ranha Neves & Cesar, 2019). However, optical 

manipulation of a single irregular-shaped particle is still scarce and remains 
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experimentally and theoretically challenging. On the other hand, optical manipulation 

by trapping a particle cluster with an irregular shape is quite interesting because of the 

possibility of broadening the trapping applications (Nieminen & Heckenberg, 2000; 

Yusof et al., 2020). 

 

Calixarene was first introduced in 1870 but was ignored until Gutsche drew 

attention to the potential use of calixarene as a molecular receptor in 1970 (Mokhtari & 

Pourabdollah, 2013). During the last three decades, calixarene has been widely studied 

as a potential sensing element for sensor development, especially in heavy-ion detection 

in water (Gumpu et al., 2015; Mokhtari & Pourabdollah, 2013). Calixarene structures 

can be customed and differentiated by the number of phenolic units in their macrocyclic 

backbone (Gutsche & Bauer, 1985), as illustrated in Figure 1.2. Calixarene generally 

adopts a basket-shaped formation with the upper rim (hydrophobic) and lower rim 

(hydrophilic), as shown in Figure 1.3, and serves as host-guest molecules (H. Li et al., 

2007; Morales et al., 2011). A hydroxyl group (-OH) in calixarene allows physical 

interaction with various functional groups. Therefore, the functional group can be used 

to detect the presence of ions. The promising applications of calixarene in heavy metal 

detection can be helpful in environmental sustainability. Toxic heavy metals can be 

found in air, soil, and water. It is harmful to humanity (Gumpu et al., 2015). 
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Figure 1.2. Calixarene was differentiated by the number of phenolic units in its 
macrocyclic backbone. (a) Calix[4]arene have four phenolic units, (b) calix[6]arene 
have six phenolic units, and (c) calix[8]arenes have eight phenolic units. (Español & 
Villamil, 2019) 
 

 

Figure 1.3. Calixarene generally adopts a basket-shaped formation with the upper rim  
(hydrophobic) and lower rim (hydrophilic) (Naseer et al., 2017). 

 

This basket-shaped formation allows them to act as receptors for small ions and 

molecules by providing a rigid concave surface at their lower or upper rim, leading to 

their broader applications as a detector of metal ions (Satheeshkumar et al., 2004; 
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Toutianoush et al., 2005). Because of that, calixarene is more stood up among other 

supramolecular used to form sensors (Supian et al., 2017; Supian, Richardson, Deasy, 

Kelleher, et al., 2010). In addition, previous research has proven that calixarenes in 

thin-film and ion-selective electrodes are suitable for capturing metal ions in water 

using multiple parameters (Jin Mei & Ainliah Alang Ahmad, 2021; Supian, Richardson, 

Deasy, Kelleher, et al., 2010; Supian, Richardson, Deasy, Kelleher, et al., 2010). 

 

Calixarene is made as a sensor element in the form of a thin film and electrodes 

in heavy-ion detection. This requires further steps in the sensor fabrication and post-

detection analysis. This research explores another potential of using calixarene as an 

ion sensing element as a practical, functional heavy-ion detector by optically trapping 

and manipulating calix[4]arene microcluster in the water. Calix[4]arene was the most 

studied compared to other calixarenes because they are easy to synthesise and modify 

(Español & Villamil, 2019; Wenzel, 2012). Calix[4]arene also has shown the most 

selective recognition and complexation with heavy ions (Qureshi et al., 2009). In this 

research, calix[4]arene was tested as the starting basis for the possibility of extending 

its applicability using the optical trapping technique. 

 

 

1.3 Problem Statement 

 

In the last three decades, calixarenes have long been studied as ion detector sensors. 

The reason is that the calixarene’s upper and lower rims can be modified to bond with 

specific ions or derivatives suited to the researcher’s studies (Jin Mei & Ainliah Alang 

Ahmad, 2021; Mokhtari & Pourabdollah, 2013). However, most studies on calixarene 
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as a sensor were on the water surface as a thin film and ion-selective electrodes. Because 

of the hydrophobic upper rims and hydrophilic lower rims, the researcher needs to add 

derivatives to make it a water-soluble structure (Español & Villamil, 2019). Typically, 

calixarenes form a thin film on the water surface for ion detection. A few types of 

research have been conducted on using calixarene as an ion detector in the water. 

However, some derivatives were added to make calixarene soluble in water. A review 

article by Jin Mei and Ainliah Alang Ahmad listed a few drawbacks of using 

derivatives. Therefore, this research proposed to trap optically and manipulate a single 

calix[4]arene microcluster in water without adding any derivatives. 

 

However, trapping calix[4]arene microcluster in the water proved quite 

challenging as there were few studies on trapping irregular shapes using optical 

tweezers (Herranen et al., 2019). At the same time, extensive studies have been reported 

on trapping regular particles such as colloids and cells. Unfortunately, there is not much 

theory about irregular-shaped particles that could be used as references. The most 

crucial part of optical trapping is to have stable trapping. Optical stiffness is an indicator 

of whether the trapping is strong or weak. Optical stiffness can be determined by the 

corner frequency of the trapped microcluster. It can also show the strength of the optical 

tweezers’ hold’ on the trapped microcluster. 

 

The microcluster can be extended if it can be free manipulated in 3-dimensional 

space. An optically trapped particle can be translated in 𝑥-, 𝑦-, and 𝑧- direction by 

moving the laser spot. However, the possibility of rotational control needs more 

consideration, such as the particle’s polarizability and the laser’s polarisation state. 

Therefore, this research will explore if the calix[4]arene microcluster can exhibit such 
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a possibility in terms of its rotatability by changing the polarisation state of the applied 

laser. 

 

 

1.4 Research Objectives 

 

The objectives of this research were to optically trap and manipulate a single 

calix[4]arene microcluster. This research also aimed to evaluate the optical stiffness of 

the optical trap of calix[4]arene microclusters based on corner frequency, laser power 

density, and microcluster effective radius. Lastly, this research tried to determine the 

rotatability of the microcluster based on laser power density and microcluster effective 

radius. This research was done to broaden the potential of calix[4]arene as an ion 

detector application by proving that calix[4]arene can be used in water without adding 

any derivates. 

 

Specifically, these research objectives are. 

• To optically trap and manipulate a single calix[4]arene microcluster of 

calix[4]arene in water. 

• To evaluate the optical stiffness of the optical trap of a single calix[4]arene 

microcluster based on the corner frequency, laser power density, and 

microcluster effective radius. 

• To determine the rotatability of a single trapped calix[4]arene microcluster 

based on laser power density and microcluster effective radius. 
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1.5 Research Significant 

 

For three decades, Calixarene has been studied and used as a specific metal ion 

detector. Although much research on calixarene as an ion detector was done on the 

water surface, no reported research about calixarene as an ion detector has been found 

in water because of calixarene’s amphiphilic properties. This research aimed to 

confirm that a single calix[4]arene microclusters can be optically trapped and 

manipulated and possibly used as an ion detector in the water. This confirmation can 

broaden the potential of calixarene as an ion sensor detector. In addition, the stability 

of the optical as well as using it as microactuator trapping of the calix[4]arene 

microclusters was investigated in this research. This research could help other 

researchers study calixarene as an ion detector in the water. 

 

 

1.6 Scope of Research 

 

The optical tweezers used in this research were Modular Optical Tweezers, OTKB (/M) 

model. The wavelength of the laser used was 976 nm. The laser power densities were 

limited to five values: 0.67, 1.08, 1.48, 1.89, and 2.30 MW/cm2. The calixarene used in 

this research was calix[4]arene. The trapping and manipulating process were performed 

only on the microclusters within an effective radius of 0.5 to 3.50 µm as the smaller 

microclusters were difficult to visualise by the camera using the current setup and larger 

microdroplets were challenging to be trapped. Besides calix[4]arene powder and 

deionised water, no additional surfactant or derivatives were added. 
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1.7 Dissertation Summary 

 

This dissertation consists of five chapters. The first chapter explained the background 

of the research, problem statement, objectives, significance, and scope of the research. 

The second chapter briefly explained the principle behind the optical tweezers system, 

optical trapping and its applications, the PSD analysis method, 𝑘𝑇 and 𝑓𝑐 of a trapped 

particle, calixarene, and molecular sensor in the optical tweezers fields. Chapter 3 

described the methodology for optical tweezers assembly and optical alignment, the 

preparation for calix[4]arene microcluster solution, the effective radius, optical 

stiffness, corner frequency, and angular velocity analysis of the trapped calix[4]arene 

microcluster. The next chapter, Chapter 4, presents the results obtained from this 

research. The calix[4]arene microcluster was produced and was optically trapped and 

manipulated using optical tweezers. The 𝑟∗, 𝑘𝑇, 𝑓𝑐 and 𝜔 of the trapped microclusters 

were determined using the steps mentioned in the previous chapter. The final chapter 

concludes the research and provides recommendations for further studies that could 

be improved based on this research. 




