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ABSTRACT 

 

This research aimed to optimising the properties of surfactant-exfoliated graphene 
oxide (sEGO) as adsorbent and photocatalyst for methylene blue (MB) removal in 
aqueous solution. Modification of surfactants were made by increasing chain 
branching and exchanged in counter-ion with aromatic groups namely 1-butyl-3-
methyl-imidazolium (BMIM) and anilinium. The role of these modified surfactants 
were compared to commercial surfactants. The mechanism in the stabilisation of 
sEGO, sEGO incorporated with nanofibrillated kenaf cellulose (NFC) and sEGO 
fabricated with titanium dioxide (TiO2) were systematically compared. Modified 
surfactants have been studied via proton nuclear magnetic resonance (1H NMR) 
spectroscopy, air – water (a/w) surface tension measurement, zeta potential 
measurement and dynamic light scattering. The morphology of the synthesised 
adsorbents and photocatalytic materials were observed by field emission scanning 
electron microscopy (FESEM), Raman spectroscopy and high-resolution transmission 
electron microscopy (HRTEM). The performance of adsorbents (sEGO and 
sEGO/NFC) and photocatalysts (sEGO/TiO2) were also monitored through 
ultraviolet-visible (UV-vis) spectroscopy. The aggregation behaviour of modified 
surfactants in aqueous phase and in sEGO presence were analysed using small-angle 
neutron scattering (SANS) analysis. Results showed that increasing surfactant chain 
branching and exchange with counter-ions (BMIM and anilinium) enhance the 
graphite surface affinity and sheet exfoliation. Thus, contribute increment of 
adsorption sites of sEGO for MB removal (up to 99%) in aqueous solution. SANS 
analysis revealed that addition of chain branching and exchanged in counter-ion 
influenced micelle structure formation of modified surfactant similar with lamellar 
layered of graphene. In conclusion, the chain branching and counter-ions exchange 
modification in surfactant chemical structure optimise sEGO properties as efficient 
MB removal in aqueous solution. As implications, modification of surfactant  in 
sEGO as adsorbents and photocatalysts opens up new alternative approach for  
wastewater treatment. 
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PENGUBAHSUAIAN STRUKTUR KIMIA SURFAKTAN UNTUK 
MENGOPTIMUMKAN SINTESIS GRAFENA OKSIDA 
SEBAGAI PENYINGKIR EFEKTIF METILINA BIRU 

 

ABSTRAK 

 

Kajian ini bertujuan untuk mengoptimumkan sifat surfaktan-pengelupasan grafena 
oksida (sEGO) sebagai bahan penjerap dan pemangkin-foto untuk penyingkiran 
metilina biru (MB) dalam larutan akueus. Pengubahsuaian surfaktan dilakukan 
dengan menambah cabang rantai dan menukar ion-balas dengan kumpulan aromatik 
iaitu 1-butil-3-metil-imidazolium (BMIM) dan anilinium. Peranan surfaktan 
terubahsuai dibandingkan dengan surfaktan komersial. Mekanisma dalam penstabilan 
sEGO, sEGO digabungkankan dengan nanofibril kenaf selulosa (NFC) dan sEGO 
digabung jalin dengan titanium dioksida (TiO2) dibandingkan secara sistematik. 
Surfaktan terubahsuai telah dikaji menggunakan spektroskopi resonan magnetik 
nuklear (1H NMR), pengukuran tegangan permukaan udara – air (a/w), pengukuran 
potensi zeta dan serakan dinamik cahaya. Morfologi bahan penjerap dan bahan 
fotokatalisis yang telah disintesis diperhatikan melalui mikroskopi pengimbas 
pancaran medan elektron (FESEM), spektroskopi Raman dan mikroskopi 
penghantaran elektron resolusi tinggi (HRTEM). Prestasi bahan penjerap (sEGO dan 
sEGO/NFC) dan pemangkin-foto (sEGO/TiO2) juga telah dipantau melalui 
spektroskopi ultralembayung-nampak (UV-vis). Kelakuan pengagregatan surfaktan 
terubahsuai dalam fasa akueus dan dengan kehadiran sEGO dianalisa menggunakan 
analisis serakan neutron sudut kecil (SANS). Dapatan kajian menunjukkan 
penambahan cabang rantai surfaktan dan penggantian ion-balas (BMIM dan 
anilinium) meningkatkan keafinan permukaan dan pengelupasan lembaran grafit. Ini 
menyumbang kepada peningkatan tapak jerapan sEGO bagi penyingkiran MB 
(sehingga 99%) dalam larutan akues. Penganalisaan SANS membuktikan 
penambahan cabang rantai dan ion balas mempengaruhi pembentukan struktur misel 
surfaktan terubahsuai menyerupai struktur lapisan lamelar grafena. Kesimpulannya, 
pengubahsuaian cabang rantai dan penggantian ion-balas dalam struktur kimia 
surfaktan mengoptimumkan sifat sEGO sebagai penyingkir MB yang berkesan dalam 
larutan akueus. Implikasinya, pengubahsuaian surfaktan dalam sEGO sebagai bahan 
penjerap dan pemangkin-foto membuka pendekatan alternatif baharu dalam rawatan 
air buangan. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Rationale 

 

The discovery of graphene in 2004 has gathered attention in the broader community 

since it was announced as the topic of the 2010 Nobel Prize in Physics. The potential 

market of graphene encouraged Malaysia to become a large scale graphene producer 

which realized through the National Graphene Action Plan 2020 (NGAP 2020). 

NGAP 2020 is a graphene commercialization program which was launched in July 

2014 aimed to enhance relevant graphene application to the country. As has been 

outlined in the NGAP, Malaysia has the opportunity to become one of the early 

leaders in adopting graphene-based materials and at the same time maximizing the 

application of graphene. According to written report by Ministry of Science and 
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Technology (MOSTI), NGAP collaborating companies have stated their willingness 

to collaborate and take cooperative efforts in sharing positive ideas, initiatives, and 

implementations of collaborative projects aimed at boosting downstream use of 

graphene relevant to Malaysia by signing Memorandum of Understanding (MoUs) 

today (https://www.mosti.gov.my/en/berita/3-march-2016-ngap-2020-to-contribute-

rm-20-billion-gni-impact-create-9000-jobs-for-malaysia/). As a result, a local 

graphene eco-system will be able to drive downstream adoption. These collaborations 

were expected to contribute RM 10 billion to Malaysia‟s  Gross Domestic Product 

(GDP) and generate RM 20 billion in Gross National Income (GNI) effect. The 

collaborations are focused on developing downstream graphene-based applications for 

specialist and consumer items such as tyres, automotive components, water pipes, 

ultracapacitors including material for wastewater treatment. 

 

 MOSTI through NanoMalaysia Berhad have conducted to realised NGAP 

2020 missions and till now, RM 28.3 million was utilised and successfully activate 61 

projects with the concept of „Triple Helix‟ which include commitment from from 

local agencies and industries including Small and Medium-Sized Enterprise (SMEs), 

40 intellectual property were registered and 37 products of graphene industries were 

produced compared to 17 products among Europe Union (EU) countries 

(https://www.parlimen.gov.my/files/jindex/pdf/JDRBL16122021.pdf). Another 

graphene derivative which is graphene oxide (GO) has been a material chosen for 

water treatment. Among the challenges for GO application especially in wastewater 

treatment is to find the most cost effective method of production. There were many 

types of GO production available however not applicable for wastewater treatment. 

Therefore, finding cost-effective and direct application are both important. Here, 
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NanoMalaysia provide supports in terms of scaling up and commercialisation 

including Research and Development (R&D) monitoring which are important for 

graphene properties utilisation in local industries. NanoMalaysia aim is to capitalise 

on revenue streams linked with nanotechnology products and applications. This is 

accomplished by directing financial and human resources toward commercial 

endeavours and projects that are practical (such as water treatment) and provide 

realistic and high-value returns over the medium to long term. Apart from that, 

emphasise the necessity of national objectives for job growth and a more 

environmentally sustainable future are important here as well 

(https://nanomalaysia.com.my/wp-content/uploads/2021/10/NanoMalaysia-Strategic-

Report-2020-03082021_compressed.pdf). Thus, in order to complete the mission, 

projects included here in this thesis are very much important. 

 

 

1.2 Water Treatment: Treatment  Methods & Materials using Carbon 
Material 

 

Water as a basic necessity is an influential factor in our everyday lives but water 

pollution, urbanization, and huge population growth has led humankind to the brink of 

water resource scarcity. Among the main sources of toxic pollution are textile 

(Gonzalez et al., 2015), dye and printing manufacturing including cosmetics (Yagub 

et al., 2014), food (Shabandokht et al., 2016; Al-Ghouti et al., 2016), polymer 

(Fleischmann & Lievenbruck, 2015), and chemical precipitation process (Cui et al., 

2015). One of the main concern is in industrial area whereby water-soluble organic 

dye effluent contaminate our waterways. According to United Nation World Water 

Development Report (2017), over 80 % of the world‟s wastewater and over 95 % in 
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some least developed countries is released to the environment without treatment. The 

report also highlight the importance of wastewater management to generate social, 

environmental and economic benefits which are essential for sustainable 

development. Latest update on wastewater treatment by United Nation is to enhance 

water quality by minimizing pollution, abolishing dumping and reducing release of 

perilous chemicals and matter, subsiding untreated pollutant and significantly 

practicing recycling and reusing globally by 2030 (Alabaster et al., 2021). Thus, in 

order to contribute in achieving the global target, the work done here is important. 

 

In Malaysia, the legislation that is related to the prevention, abatement, control 

of pollution and enhancement of the environment is the Environmental Quality Act, 

1974. The Act restricts the discharge of wastes into the environment in contravention 

of the acceptable conditions. Therefore, it is important for us researchers to find a way 

in implementing the act. According to Nair P. K. (2017) in Malay Mail article, the 

concern of freshwater supply and safely-treated wastewater return must be 

emphasized in Malaysia, especially in urban areas. As the honorary secretary of the 

Bangsar Baru Residents’ Association, Nair P. K. (2017) also wrote that, despite being 

blessed with abundance of rainfall, water must be managed efficiently to ensure its 

sustainability and also to provide clean water for the generations to come. In 

conjunction with Green Technology Master Plan Malaysia 2017-2030, one of the six 

initial key sectors stated is wastewater treatment technology. Hence, Malaysian 

government aim on providing solutions through research, development and 

commercialization of wastewater treatment.  
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One material that has received substantial interest from both the scientific 

community and industry in this regard is graphene. Since the discovery of graphene in 

2004, Malaysia has aspired to become a large scale graphene producer outlined 

through the vision of National Graphene Action Plan 2020 (NGAP 2020). Graphene 

presents a unique option for Malaysia to develop its capabilities as an innovation 

economy mentioned in the New Economic Model (2010) and the Economic 

Transformation Programme, ETP (2010).  

 

With this, the government aim to create 9000 jobs in which among 3000 will 

be high-rise jobs.  It is expected to contribute around 9 billion Malaysian Ringgit 

($2.8 billion USD) to the country‟s GDP and $5.6 billion USD to the country‟s GNI. 

GNI measures our nation‟s economic activities through National Key Economic Area 

(NKEA). NKEA creates job opportunities through twelve core of ETP whereby 

NKEA 12 is Greater Kuala Lumpur/ Klang Valley. The primary goals of the 

wastewater management as one of the Entry Point Project under NKEA 12 are to 

clean up and beautify the river. 

 

Up to now, several adsorbents that have been used for waste removal in 

aqueous environment namely are activated carbon (Nayak et al., 2017), biochar 

(Mohan et al., 2014), mesoporous silica (Pongkitdachoti & Unob, 2018), zeolite 

(Visa, 2016), chitosan (Riegger et al., 2018) and carbon nanotubes (CNT) (Ihsanullah 

et al., 2016). However, these available adsorbents are not efficient and effective in 

removing the pollutants as a large sum of these adsorbents needed for water 

purification. Therefore, finding a potential adsorbent for effectively purifying 

wastewater is crucial. To think that graphene materials possess high surface area, it is 
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important to explore the application of this material for producing effective and 

efficient dye adsorbent. The main aspect of an adsorbent is undoubtedly its adsorption 

capacity. The choice of the graphene materials (whether in its oxidized form i.e. 

graphene oxide), the combined materials (which materials paired well with graphene 

oxide) and wastewater treatment technique that will give the best dye removal 

therefore must be evaluated.   

 

Currently, there are various methods used for the removal of conventional 

pollutants from polluted water, such as submerged membrane bioreactor (Kaya et al. 

2017), activated sludge treatment (Radjenović et al., 2009), constructed wetland (Li et 

al., 2014), photocatalytic oxidation (Martínez et al., 2013) and catalytic ozonation 

(Dai et al., 2014). Other treatment technologies such as precipitation (Hao et al., 

2018), flocculation (Guo et al., 2018), heteroaggregation-sedimentation (Feng et al., 

2018), acidification-coagulation (Rattanapan et al., 2011), nanofiltration (Chen et al., 

2018a), chemical reactions (Silva et al., 2018), and ion exchange (Zhang et al., 2011) 

has accelerated progress in wastewater treatment research. However, the high waste 

disposal cost of charcoal is a major problem though its use is easier for dye removal. 

On the other hand, the problem in filtration is due to the low molar mass dyes which 

can easily pass through the filter system. The disposal of toxic sludge‟s from 

coagulation technique has serious limitation in its application, similarly, ozone 

treatment, is very expensive (Byrappa et al., 2006).  

 

Of major interest, adsorption process which include the development of 

adsorbent is highlighted in wastewater treatment current research.  Adsorption is a 

surface phenomenon by which a multi-component fluid (gas or liquid) mixture is 

https://www.sciencedirect.com/science/article/pii/S0043135408005642#!
https://www.sciencedirect.com/science/article/pii/S0048969713010462#!
https://www.sciencedirect.com/science/article/pii/S0926337313003792#!
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attracted to the surface of a solid adsorbent and forms attachments via physical 

(dominated by van der Waals interactions) or chemical bonds (ionic or covalent 

bonding between the adsorbate and adsorbent). The two major parts of adsorption are 

adsorbate and adsorbent. The adsorbent deal with substance which attaches the dye 

material on its surface and the material which gets attached to the adsorbent is called 

as adsorbate. It is recognized as the most favoured method for eliminating dye from 

aquatic environments due to simple and economical, offers high removal efficiency, 

generates minimal secondary by-products (e.g., sludge formation), and is able to 

separate a wide range of pollutants (Kumar et al., 2010; Sharma et al., 2016; Patra et 

al., 2016). Zhang et al. (2016) stated that adsorbents based separation process are 

widely used technology for polishing treatment of water and wastewater. Hence, 

researchers continuously exploring and developing new types of adsorbents for 

efficient waste removal methods by applying adsorption process. 

 

Nevertheless, only organic pollutants adsorbs in adsorption process, causing 

secondary contamination thus, restricting its application (Sajna et al., 2022). Another 

alternative method in wastewater decontamination is photocatalytic degradation or 

photocatalysis (Upadhyay et al., 2014). The photocatalytic process primarily involves 

electron transfer and molecules undergoing transformation must associate with the 

surface of the particle. Hence, surface area as well as the chemical nature of the 

surface is important (Yuenyongsuwan et al., 2018). Photocatalysis shows advantages 

in the following aspects: gentle pH value of solution, mild reaction temperature, and 

high efficiency (Khataee & Kasiri, 2010). It is also considered as the most 

advantageous and green technology for eliminating effluents especially dye 

contaminants. Sajna et al. (2022) added that so as to solve the aforementioned 
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problem, integration of adsorption and photocatalysis is required by enriching the 

adsorbed organic pollutants which later degraded and mineralized through 

photocatalytic mechanism. 

 

 

1.2.1 GO as Adsorbent 

 

The nanoscale structures formed by exfoliation of graphite by oxidizing agents are 

referred to as graphene oxide (GO) (Ray, 2015, p. 35; Gao, 2015, p. 61). As the name 

suggests, GO consists of carbon, hydrogen and oxygen atoms where oxygen 

functional groups can be on basal planes or on the edges of the sheets (Ray, 2015, 

p.35). GO has received increased focus (Sharma & Das, 2013, Robati et al., 2016a, 

Konicki et al., 2017; Sham & Notley, 2018). This is because GO possesses a high 

surface area to mass ratio (736.6 m2g-1) (Montes-Navajas et al., 2013) and includes 

polar oxygen functional groups. Therefore, GO is strongly hydrophilic and 

demonstrates good dispersibility in aqueous systems (Wu et al., 2013). Being 

negatively charged, GO is suitable for treating wastewater containing positively 

charged pollutants by promoting hydrogen bonding or electrostatic interactions 

(Kyzas at al., 2014).  

 

The flat structure of GO gives it additional dimension as compared to other 

carbon allotropes and makes it an excellent adsorbent material for dye removal (Liu et 

al., 2012a; Zhu et al., 2010). The hydrophilic nature of GO is another important 

advantages for its choice/selection as dye adsorbent material. The hydroxyl, carboxyl 

and epoxy groups are found after the oxidation of graphite into layered graphene 
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oxide (Ramesha et al., 2011). There are two distinct region in GO, one region is with 

sp2 hybridized carbon domain and another region is decorated by different oxygenated 

groups (Duan et al., 2014).The carboxylic groups are found at the edges of the GO 

where as epoxy and hydroxyl groups are found on its basal plane. The oxygen 

containing functional groups are the major reason for getting a stable dispersion of 

GO in water or polar solvents through easy exfoliation. The carboxylic group 

exchanges ion with metal cations or positively charged organic molecules. The GO 

swells in contact with water (Duan et al., 2014). The ultra large oxygen containing 

group and excellent water dispersibility made GO a promising candidate for dye 

removal (Cheng et al., 2015). They added that water molecules can easily penetrate 

the space between the layers of GO nanosheets, which is one of the driving forces for 

the high adsorbing nature of GO toward dyes and other pollutants from wastewater. 

Besides functioning as dye adsorbent, there are reports on the use of graphene and 

graphene oxide for heavy metal ions removal (Yusuf et al., 2015). 

 

Recent publication by Mao et al. (2020) reported that GO synthesized through 

modified Hummers Method were compared to graphite with removal efficiency at 

99% and 16% respectively. The distinct result was due to the fact that GO contains 

functional groups which interact with cationic dye (MB) through adsorption process. 

They added that graphite possess low surface area with zero functional groups which 

make MB adsorption almost impossible. Studies on GO for dye removal from 

aqueous solution by Robati et al. (2016a) applied commercial single layer graphene 

oxide while basic red 12 (BR12) and methyl orange (MO) dyes as adsorbates. It was 

found that the optimized values of initial concentration of dyes, contact time, pH and 

adsorbent dose were found to be 0.2 mg/L in 100 minutes at pH 3 and 20 mg.  
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Another findings for GO (synthesized according to modified Hummer‟s 

method) application on Acid Orange 8 (AO 8) and Direct Red 23 (DR 23) removal 

was by Konicki et al. (2017). Later, study of GO by Lv et al. (2018) showed 

adsorption process towards neutral red (NR) and amido black 10B (AB) by π-π 

stacking, hydrophobic interaction, van der Waals forces and electrostatic interactions.  

Furthermore, another study by Gao et al. (2018) demonstrated that combined effects 

of GO-heavy metal ion complexes show different bioavailability and toxicity 

compared to GO and metal ions separately. In particular, the complex formed after 

adsorption process presented a significantly reduction in toxicity, an important initial 

result to assess the ecological risk of carbon nanomaterials. Liu et al. (2012b) 

prepared graphene by Hummer‟s method and it was found that the maximum 

adsorption capacity toward methylene blue adsorption was 153.85 mg/g which was a 

high value indicating good adsorbent. Basic Red 46 (BR 46) dye removal by purified 

natural graphene (monolayer graphene film) was studied by Elsagh et al. (2017) with 

adsorption capacity of 30.52 mg/g and equilibrium was reached after 90 minutes of 

contact time. Other findings specifically on MB removal by graphene-based materials 

are presented in Table 1.1. 

 

 From the studies reported, it is noted that the most promising results in terms 

of adsorption capacity were obtained at ambient temperature and neutral pH as 

experimental conditions. The fact could be comprehended as an advantage since it 

would exempt the treatment process from chemical inputs, for a pH adjustment, or 

high energy demand, for temperature control; therefore, lowering operation 

expenditures when GO is applied for water treatment. 
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Table 1.1      

Various Reported Graphene-Based Adsorbents for MB Comparison 
Adsorbent Source & 

Method 
Adsorbent 
Dosage 
(mg) 

Removal 
Percentage 
(%) 

Adsorption 
Capacity 
(mg/g) 

Initial Dye 
Concentration 
(ppm) 

pH Temperature Contact 
Time 
(min.) 

Reference 

SDS-
exfoliated 
graphene 

Ultrasonic 
exfoliation of 
graphite & 
dispersion 
 

1.1 86.5 782.3 10, 50 and 
100 

3 – 9  25°C 2880 Sham & 
Notley, 2018 

Exfoliated 
graphene 
oxide 
(EGO) 
 

Modified 
Hummers & 
dispersion 

11 95 - 
 

40 6 - 160 Ramesha et al., 
2011 

Exfoliated 
graphene 

Graphite 
exfoliation & 
freeze dried 
 

10 105 511.70 500 6 Room 
temperature 

60 Xue et al., 
2016 

Graphene Modified 
Hummers & 
dispersion 

20 - 170  153.85 20 – 120 
 

3 – 10 293 K 0 - 
1500 

Konicki et al., 
2017 
 

Graphene 
oxide 
(GO) 

Modified 
Hummers & 
dispersion 

25 98 243.90 40 - 120 6 
 

- 0 – 
350 

Li et al., 2013a 
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The adsorption for ionic dyes mainly relies on electrostatic interaction and covalent 

bonding. GO presented high adsorption efficiency of cationic dyes, but low affinity 

for anionic dyes due to the strong electrostatic repulsion (Zhang et al. 2016). On the 

other hand, graphene and graphene-based composites are good adsorbents for anionic 

dyes due to their ion exchange and covalent bonding capacity (Liu et al., 2012b).  

 

 

1.2.2 GO Composite as Adsorbent 

 

Both GO and GO-based nanomaterials have limits as adsorbents for pollutant removal 

from aqueous solution (Shen & Chen, 2015). Specifically, the broken sp2-hybridized 

carbon skeleton eliminates the conjugated p region and weakens the affinity for 

aromatic pollutants (Shen & Chen, 2015). The dispersion-stable GO nanosheets are 

difficult to separate from solutions due to its strong hydrophilicity and nano-scaled 

size, resulting in undesirable effects for the efficient removal of pollutants (Chen et 

al., 2012a). Multiple layers of GO are found to aggregate in aqueous suspension 

leading to inefficient separation of pollutants from adjacent aqueous phases (Chen et 

al., 2012a; Wei et al., 2017). Since GO was present as a nanomaterial and presents 

high dispersibility in aqueous solution (Stankovich et al., 2007) practical applications 

are hindered: collection of GO sheets is difficult after adsorption, meanwhile, the 

unprecipitated GO may lead to potential nanotoxicity (Chen et al., 2016) to aquatic 

creatures. These problems restrict large scale practical applications of GO as 

adsorbents. Apart from that, the basic criteria to be met for a good adsorbent to fulfil 

the existing global demands are low price with easy availability, guaranteed superior 

adsorption performance, and flexibility in the structure that allows modification. 
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Thus, preparing composite adsorbent is one of the option in order to solve the 

aforementioned issue. 

 

Natural polymers, such as polysaccharides are known for possessing a wide 

range of functional groups (Zhou et al., 2013; Esquerdo, et al., 2014). The presence of 

functional moieties such as −OH, −CONH2, −SO3, −NH2, and −COOH on the 

polysaccharide backbone gives them flexibility to be tuned or tailored for a varying 

range of applications (Wang & Yu, 2021). As for instance, incorporating or blending 

them with other substances having promising adsorption capacity such as graphene 

oxide (GO) has indeed led to the innovative design of numerous sustainable dye 

adsorbents. Hence, numerous polymeric dye adsorbents with different chemical 

compositions and a wide range of morphology variations with the potential to adsorb 

selectively cationic, anionic, or both types of dyes have been reported (Zhang et al., 

2014; Gao et al., 2013; Shukla et al., 2012).  

 

So far, there have been continuous attempts (Shi et al., 2016; Liu et al., 2017) 

to increase the surface area and enhance the removal of dyes by incorporating GO 

with various natural polysaccharides. GO, when combined with the polymer matrix of 

polysaccharide, demonstrates tremendous improvement in its electrical and 

mechanical properties. Hence, GO is used nowadays as a substrate modified with 

other substances, preferably biopolymers, to assemble 3D-graphene nanomaterials 

(Wang et al., 2017; Shen et al., 2017) that possess increased surface area. The 

resulting composites not only possess the intrinsic excellent properties of the original 

substrates, but also have a 3D porous structure exhibiting much superior adsorption 

capacity. It is also important here to mention that the escalation to the 3D assembled 
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structures makes them easily separable from aqueous solutions by simple filtration. In 

addition, several useful properties such as high efficiency, abundance, and low cost 

(Pooresmaeil & Namazi, 2018; Dehghani et al., 2017; Namazi et al. 2012) of 

polysaccharides classifies them as an ideal source of sustainable materials for the 

purpose of water purification. They exhibit excellent performance as an ideal and 

sustainable eco-friendly material in the field of wastewater remediation through the 

removal of heavy metal ions (Musarurwa & Tavengwa, 2020;  Pooresmaeil & 

Namazi, 2020) and dye contaminants because of their adsorption, oxidation, and 

catalytic properties. 

 

For these reasons, a wide range of GO-based adsorbents have been developed 

over recent years, such as GO-based aerogels (Wei et al., 2017) and composites (Nayl 

et al., 2020). Nanofibrillated kenaf cellulose (NFC) in particular is extensively used as 

an adsorbent in dye wastewater treatment because it contains large proportions of 

intra- and inter-molecular hydrogen bonds and has high porosity (Samir et al., 2005; 

Roy et al., 2009; Moon et al., 2011). This biomaterial has the advantages of non-

toxicity and biocompatibility (Tshikovhi et al., 2020). Cellulose can act as substrate 

(Wei et al., 2017) for GO and help form stable adsorbent structures. In particular, the 

successful introduction of GO into products and water treatment application requires 

simple and cost effective method of producing GO. Thus, a combination of exfoliated 

graphene oxide and nanocellulose to make hybrid material is seen as the most viable 

option to suit these needs. Table 1.2 summarizes previous reports on GO-composite 

for methylene blue (MB) removal. 
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Table 1.2      

Comparison of  Various Reported Adsorbents Based on Graphene Oxide–Composite for MB Removal 
Adsorbenta Source & method Wb 

(mg) 

Removal 
(%) 

qe
c 

(mg/g) 
C0

d 

(ppm) 
pH Te 

(K) 

tf 

(min.) 

Ref. 

CGO Modified Hummers 
Method and wet-spinning 
technique 

20 - 383 160 6 298 50 Chen et. al., 
2016 

GO/CNFs Modified Hummers 
Method, easy blending and 
freeze-drying process 

20 98 44 50 - - 350 Wang et. al., 
2021 

Chitosan/CMC/GO Hummers Method, vacuum 
filtered and hot-air oven 
process 

100 100 122 10 7 303 180 Kaur et al., 
2019 

 RCE/GO Hummers method, solution 
mixing-regeneration and 
freeze-drying process 

50 99 68 20 6 298 30 Ren et al., 2018 

a CGO = cellulose/GO. CNF = cellulose nanfibrils. CMC = carboxymethyl cellulose. RCE = regenerated cellulose.  
bAdsorbent dosage 
cAdsorption capacity 
dInitial dye concentration 
eTemperature 
fContact time 
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1.2.3 GO/TiO2 for Photocatalysis 

 

According to studies in the last decade, photocatalytic products covered almost 1500 

million pounds of the global market (Lacombe & Keller, 2012). Among various 

photocatalytic materials, titanium dioxide (TiO2) is the most favourable photocatalyst 

for the degradation of organic pollutants from water. This is due to its distinctive 

properties such as high activity, economic, low toxicity and stability of chemical and 

physical properties (Andreozzi et al., 2018). The earliest display of water 

electrochemical photolysis by TiO2 was executed by Fujishima & Honda (1972) lead 

to an enormous amount of research into the photocatalytic activity of diverse metal 

oxides. In addition to photolysis of water, metal oxides have been employed as a 

photocatalyst for the degradation of a variety of water contaminants, with encouraging  

results (Chatterjee & Dasgupta, 2005; Herrmann, 1999).  

 

Despite the fact that it has a number of interesting features, TiO2 did not able 

to compete with other water treatment materials (Upadhyay et al., 2014). The main 

reason for this is having a defect of the large band gap (band-gap energy 3.2 EV) 

(Mehta et al., 2019) which require light irradiation with a wavelength shorter than 387 

nm (UVA) (Nada et al., 2018). Plus, the rapid recombination of photo generated 

carriers in TiO2 limits its photocatalytic application (Upadhyay et al., 2014) On 

another note, adsorption capacity of contaminants plays a critical role in 

photocatalytic process (Shandilya et al., 2018).  

 

Graphene oxide (GO) also act as the best supportive component in 

photocatalyst for the zero-bandgap property. Doping (Yang et al., 2010; Choi et al., 
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1994), initiation of defects (Martyanov et al., 2004; Etacheri et al., 2011) and 

combination with band gap reduction was accomplished using electron acceptor 

materials (Li et al., 2013b; Jiang et al., 2013; Woan et al., 2009; Zhang et al, 2009). 

Among the aforementioned approach,  one of the most common combinations is with 

electron acceptor materials. The use of graphene as an electron acceptor molecule in 

TiO2 composites has been investigated, and some of the TiO2/graphene composites 

reported in various research are included in Table 1.3. The combination of TiO2 and 

graphene has been found to improve the catalyst‟s photocatalytic performance. When 

TiO2 and graphene are combined, the band gap of the metal oxide is reduced due to 

energy-favoured hybridisation of the O 2p and C 2p atomic orbitals, resulting in the 

development of additional valence bands (Li et al., 2013). Thus, TiO2 can be 

incorporated with carbon inorganic filler such as GO to decrease the recombination 

rate of the electrons and holes and tuning the band gap of TiO2. 

 

GO has been added to a titanium source when synthesizing TiO2 by a 

hydrothermal method or a sol-gel method, and studies have shown that GO-TiO2 

catalysts have a broader spectral absorption range and higher photocatalytic 

performance than TiO2 (Adamu et al., 2016). In a recent study, GO nanosheets with 

well embedded nanospherical TiO2 hybrid (TGO) composite exhibits reduced 

recombination of charge carriers with remarkable catalytic activity for the 

photodegradation of organic dyes (Purkayastha et al., 2020). There are a lot of 

oxygen-containing functional groups in GO, which can serve as favourable anchoring 

centres and nucleation sites for active species or precursors (Garcia-Gallastegui et al., 

2012). It can prevent the aggregation of TiO2 and further enhance the photocatalytic 

activity due to the synergistic effects between GO and/or rGO nanosheets and TiO2. 
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For this reason, it has been reported that GO/TiO2 and/or rGO/TiO2 nanocomposites 

can serve as a dye remover in aqueous solutions (Liu et al., 2011; Kim et al., 2012; 

Jiang et al., 2011; Shi et al., 2012). 

 

The interface between TiO2 and graphene, where there is an intensive coupling 

that allows charge separation and prevents recombination, is where the photocatalytic 

activity of hybrid materials is most dependent (Upadhyay et al., 2014). They stated  

that hybrid photocatalysts can be made much more effectively by in-situ growing 

graphene on TiO2 or vice versa. In-situ synthesis  of graphene on TiO2 using a 

technique created by Wang et al. (2010a) exhibits about 2.5 times more MB 

photodegradation than pure Degaussa P25 TiO2. Liang et al. (2010) reported on the 

uniform development of TiO2 nanocrystals on GO substrate via hydrolysis and 

hydrothermal treatment. When compared to P25 TiO2, the photocatalytic activity of 

the GO–TiO2 hybrids demonstrated a three-fold increase in Rhodamine B dye 

degradation. This improvement was attributed to an increase in electronic interaction 

between GO and TiO2 nanocrystals, as well as the hybrid material‟s increased surface 

area. Another aspect which rather important in finding a material for water treatment 

is the cost effectiveness which TiO2/GO can offer since both materials are cheaper 

than other materials available (Wang et al., 2019) 
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Table 1.3 
  
Comparison of the Photocatalytic Performance (Under UV-Light Irradiation) of Various Reported Graphene or GO/TiO2 for MB 
Degradation 
Photocatalytic 
materiala 

Source & method Wb 

(mg) 

Removal 
(%) 

C0
c 

(ppm) 
pH Te 

(K) 

tf 

(min.) 

Rate constant 
(min-1) 

Ref. 

GTNRA Modified Hummers 
method & one-pot 
solvothermal 

- - 5 - - 120 0.006 Wang et al., 
2013 

TiO2/RGO-C Modified Hummers 
method & one-step 
modified hydrothermal 

30 98 12 - - 120 0.020 Ju et al., 2017 

 

TNS-GR Hydrothermal 
pressurized oxidation 
method & 
solvothermal  

50 82 50 - - 120 0.009 Liu et al., 2018 

GO/TiO2 

nanofibers 
Ultrasonication 100 100 100 3 293 105 0.050 Hsu et al., 2020 

GO/TiO2 Improved Hummers & 
ultrasonic dispersion 

50 85 10 5.5 298 450 - Kurniawan, et. 
al., 2020 

aGTNRA = graphene modified titania nanorod arrays. RGO-C = reduced graphene oxide/CTAB. TNS-GR = TiO2 nanosheets-graphene.  
bAdsorbent dosage 
cInitial dye concentration 
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1.3 Producing Surfactant Exfoliated Graphene Oxide (sEGO)  

 

In recent years, the production of graphene from graphite has been popularized by 

sonication assisted liquid-phase exfoliation (LPE) (Ciesielski & Samorì, 2014) in the 

presence of organic solvents (Hernandez et al., 2008; Coleman, 2009; Coleman, 2013; 

Wei & Sun, 2015; Johnson et al., 2015), ionic liquids (Wei & Sun, 2015; Wang et al., 

2010b; Nuvoli et al., 2011; Ravula et al., 2015) and aqueous surfactant solutions 

(Ciesielski & Samorì, 2014; Wei & Sun, 2015; Johnson et al., 2015; Texter, 2014, 

Narayan & Kim, 2015). However, the production costs of GO are much lower 

compared to graphene (Hiew et al., 2018) which might be a reason for the extensive 

use of GO.  

 

In order to keep the concept of environmental friendly and cost-saving 

process, it is important to find a production method which avoid using harsh 

chemicals such as organic solvents and strong acids (Wang & Zhang, 2019). Forming 

sEGO through a simple process along with the presence of surfactants that is 

compatible with graphene such as reported by Sham et al. (2018) is the answer to the 

previous dilemma. Surfactant assisted exfoliation offers advantages over the use of 

volatile organic solvents which are toxic and expensive. The presence of surfactants, 

stabilizer molecules of the dispersion, minimizes the surface energy, preventing the 

aggregation of the graphene sheets (Vera-López et al., 2018).  

 

Thus, the use of surfactants as aqueous media is the perfect choice in 

completing electrochemical exfoliation process. The significance of surfactants 

applied for exfoliation of graphite was to decrease the surface tension of aqueous 
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solution to complement with graphene properties making exfoliation process 

practical. The surfactant plays a critical role in promoting the exfoliation and 

dispersion of graphene in aqueous surfactant solutions. In these systems, the purpose 

of the surfactant is two-fold, which is as graphite exfoliator to form graphene oxide 

and graphene aggregation inhibitor (Notley, 2012). Commercially available surfactant 

such as sodium dodecylsulfate (SDS), bearing single surfactant tail was chosen as 

benchmark since little to none research regarding surfactant-graphene was reported as 

wastewater adsorbent and catalyst.  

 

 

1.4 Graphene-philic Surfactants 

 

Graphene is a material which require “precursor” in order to perform as pollutant 

scavenger. Therefore to fully realize the potential application of graphene-based 

materials as adsorbent, this issue must be addressed. “Precursor” here refers to 

surfactant. The role of surfactant in dispersion is two-fold: (i) to ease graphite 

sonication thus forming sEGO and (ii) to homogenize the colloidal environment 

including maintaining the stability of graphene dispersion in the solution (Notley, 

2012; Du, 2013).  

 

Surfactants‟ capacity to adsorb at interfaces and self-assemble as micelles is 

advantageous for intercalation within graphene layers (Liu et al., 2013; Najafabadi & 

Gyenge, 2014) and it promotes extra sEGO surface area to further enhance 

adsorption. Earlier, the common surfactant sodium n-dodecylsulfate (SDS) has been 

applied in producing graphene with exfoliation was found optimum at surface tension 
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of 41.0 mN ml-1 in aqueous solution with mixture of either methyl alcohol, ethyl 

alcohol or isopropyl alcohol as surface-tension-reducing-agents, STRAs (Yeon et al., 

2015). Later, SDS has also been used for the production of exfoliated graphene in 

aqueous solution alone and subsequently applied in MB removal from aqueous 

solution (Sham & Notley, 2018).  

 

Wang & Zhang (2019) produced graphene from graphite exfoliation technique 

using surfactant solutions as electrolytes such as dodecyl trimethyl ammonium 

bromide (DTAB) and sodium dodecyl benzene sulfonate (SDBS) with SDBS showed 

the best effect for exfoliation (highest graphene yield). However, these references 

were specifically focusing on graphene production using surfactant. The hydrophobic 

feature of graphene leads to agglomeration of graphene sheets into graphitic layered 

structures or better known as agglomerates, therefore spontaneous wetting by water is 

not possible (Mohamed et al., 2016). 

 

Recent publication by Hu et al. (2019) provide information regarding 

implementation of anionic surfactant being better than cationic surfactant in 

producing GO from graphite exfoliation. Intercalation of anionic surfactants into the 

interlayers of graphite by hydrogen bonding and hydrophobic forces leads to weak 

electrostatic forces formation which resulting in exfoliation of graphite (Hu et al., 

2019). Thus, the decision on choosing a series of anionic surfactants were appropriate 

in surfactant-assisted graphene oxide fabrication. 

 

In order to achieve a thermodynamically stable colloidal system, surfactant is 

needed to lower the interfacial energy among two immiscible phases either by 
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strongly bind the target compound or solvated by continuous phase (Goodwin, 2009; 

Mohamed et al., 2010). At the interface of graphene-solution, the surfactant tails 

adsorbed which facilitated by hydrophobic interactions to help separate the graphene 

sheets to avoid agglomeration by steric or electrostatic stabilization (Lotya et al., 

2009). Applying concept of surfactants that display compatibility with graphene 

surface results in “graphene-philic” groups. This term was introduced by a Mohamed 

et al. (2016) where they used surfactants as stabilizing agents for the development of 

graphene nanocomposite for latex technology. 

 

Using ionic surfactants, a prior study found that increasing the number of 

surfactant tails (from one to three) improves the compatibility of graphene surfaces 

with surfactant molecules, allowing better exfoliation (Zhang et al., 2014). Previous 

statement were proven by findings by Sagisaka et al. (2014) & Czajka et al. (2017) 

whom stated that surfactants or amphiphilic molecules featuring highly-methylated 

alkyl-tails would effectively reducing aqueous media surface tension which is 

expected to help in promoting graphite exfoliation. Further modification of surfactants 

by changing traditional sodium counter ion by Sagisaka et al. (2021) provide proof of 

further decrease of critical micelle concentration (cmc). Previously, Mohamed et al. 

(2018) stated that production of graphene decrease at a certain concentration after cmc 

(ideal surfactant concentration). 

 

The micellisation of short-chain ILs such as [C4mim][BF4] leads to its 

aggregation aqueous environments (Bowers et al., 2004; Singh & Kumar, 2007). It 

was shown that imidazolium-based ILs have better surface-active properties 

compared with analogous common ionic surfactants (Dong et al., 2007). Graphene 
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exfoliation by surfactant ionic liquids (SAILs) has also been achieved (Kaur et al., 

2020). Kaur et al. (2020) provide results that by using SAIL at minimum 

concentration leads in effective graphene exfoliation with colloidal stability up to one 

month.  

 

Recent work on graphene-philic surfactants was published by Mohamed et al. 

(2018a) which employed anionic surfactant ionic liquids as exfoliating and stabilizing 

agents that optimized the cellulose conductive paper produced for electrical properties 

enhancement. Surfactants were designed to meet the compatibility with graphene 

surface. Commercial phenyl surfactant, SDBS and SDS were compared to modified 

single chain anionic surfactant ionic liquids (SAILs) in order to achieve 

dissolution/dispersion. The relationship between surfactant molecular structures of 

conventional straight-chain anionic graphene-philic surfactants to SAILs for graphene 

dispersion stability were investigated. Results proved that the presence of 

imidazolium cation in the anionic surfactant appeared to cause exfoliation increment 

including stabilised graphene dispersion.  

 

 

1.5 Problem Statement, Research Aim and Objectives 

 

1.5.1 Problem Statement 

 

Current available (commercial) surfactant in the market such as sodium dodecyl 

sulfate (SDS) and a few others are limited for improving graphene production 

dispersion in colloidal environment. In present time, optimised exfoliated graphene 
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assisted by surfactant are not available especially for wastewater treatment 

applications. Thus, the studies and optimisation of surfactant chemical structures for 

wastewater treatment will be the main focus. 

 

 

1.5.2 Aim 

 

The aims of this thesis were to systematically study the role and the stabilisation 

mechanism of graphene-philic surfactants for the production of graphene oxide and 

their applications for methylene blue removal. 

 

 

1.5.3 Objectives 

 

The objectives of this research were firstly the optimisation of surfactants into highly-

branched, surfactant ionic-liquids (BMIM) and anilinium surfactants. Secondly is the 

production of surfactant-assisted exfoliated graphene oxide (sEGO) from 

electrochemical exfoliation method. Thirdly, preparation and characterisation of 

sEGO nanofibrillated kenaf cellulose (NFC) composites and sEGO/TiO2 

photocatalysts for methylene blue (MB) removal. Next is interfacial behaviour study 

between surfactants, sEGO and sEGO/TiO2 through air-water surface tension 

measurement. Finally the relationship between self-assembly structure of highly-

branched, BMIM and anilinium surfactants with colloidal stability studies of sEGO, 

sEGO/NFC & sEGO/TiO2. 
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1.6 Scope of Study 

 

In order to fulfil the research gap, the main focus of the projects here are modifying 

surfactants structure to optimize graphene oxide production which were then used for 

wastewater treatment through adsorption and photocatalysis. The graphene oxide was 

produced using electrochemical approach with the assistance of surfactant.  The as-

produced graphene oxide was used for methylene blue removal in its suspension 

form, as a composite with nanofibrillated kenaf cellulose, and embedded in TiO2. The 

surfactants structure are based on commercial single chain (sodium dodecylsulfate), 

double chain Aerosol-OT (AOT) and triple chain custom-made surfactant. 

Modification on surfactant hydrophilic counterpart was done by exchanging the 

traditional sodium counter-ion with aromatic groups.  

 

These custom-made surfactants was characterized using proton Nuclear 

Magnetic Resonance (1H NMR) spectroscopy to ascertain the chemical structures. A 

Willhelmy tensiometer was used for air-water (a/w) surface tension measurement of 

surfactant solutions along with zeta (ζ) potential measurement for sEGO surface 

charge determination. Particle size of surfactants and sEGO were determined by 

dynamic light-scattering (DLS). Meanwhile, the shapes and sizes of the self-

assembled materials were studied using small-angle neutron scattering (SANS).    

 

All of the structural and morphology analysis for sEGO, sEGO composites 

and sEGO/metal oxide catalysts were characterized using Raman spectroscopy, Field 

Emission Scanning Electron Microscopy (FESEM) and High Resolution 
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Transmission Electron Microscopy (HRTEM). Batch-adsorption and photocatalytic 

studies were evaluated using UV spectrophotometer. 

 

 

 1.7 Significance of Study 

 

There has been a vast research regarding adsorbents using GO with various methods 

of production and modification. Yet, less attention given on specifically producing 

GO through one-pot electrochemical exfoliation utilizing modified surfactant for 

water treatment. Thus, the main purpose of this work is to study the effect of 

modifying surfactant headgroup and the hydrophobic tails towards micelles formation 

on GO. Next, is to investigate the enhancement of adsorption and photocatalytic 

studies of methylene blue removal in aqueous solution using the produced GO. 

Although several studies have been performed (Ramesha et al., 2011; Lotya et al., 

2009; McCoy et al., 2018), there is currently a lack of knowledge concerning  the role 

of adsorbed surfactant in GO synthesis and dye removal. Furthermore, contemporary 

research has mostly focused on the efficacy and optimisation of exfoliation, with the 

surfactant serving simply as a stabilising factor (Sham & Notley, 2018), rather of 

addressing the principles of the contaminant and dye removal. The ultimate goal is to 

create surfactants that promote both efficient exfoliation and removal of dye at the 

same time. 

 

The roles of sEGO as an efficient adsorbent and catalyst for methylene blue 

removal in aqueous solution were studied. Both adsorption and photocatalytic studies 

were conducted at various initial methylene blue concentration and contact time. UV-
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Visible spectroscopy was used to collect the absorbance value data. The adsorption 

experiment data obtained from batch adsorption and photocatalytic studies were 

analysed and interpreted using different kinetic and isotherm models (adsorption 

studies) and photodegradation performance respectively to assess the removal 

behaviour of MB by sEGO and sEGO/metal oxide. The results presented here show 

new potential for using sEGO as an adsorbent and catalyst in direct (in situ) 

applications  and provide a basis for the development of future surfactants for carbon 

nanomaterials-based water treatment. Apart from that, the relationship of surfactant 

structure-nanocomposite performance for the development of 

stabiliser/GO/nanocellulose dye adsorbents is highlighted. Finally, accomplishment in 

stabiliser/GO/metal oxide catalyst production for decontamination process. 

 

 

1.8 Thesis Outline 

 

Thesis is organized in five chapters. Chapter 1 is a preface on research background 

and aim of the study. This part bring forth general overview regarding graphene oxide 

(GO) function in water treatment including surfactant role for GO production and 

finally applied in water treatment. Chapter 2 is literature review which explains 

fundamental knowledge related to the topics studied in this thesis. This chapter 

includes the theory about surfactants, ionic liquids, graphene oxide, and colloidal 

stability of graphene oxide in surfactant solutions, adsorption and photocatalysis 

studies. Chapter 3 is experimental section which gives thorough details of the 

synthesize method and characterization of surfactant-assisted exfoliated graphene 

oxide (sEGO), sEGO composite and sEGO/metal oxide catalysts used in this study. 
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Discussion on the 1H NMR spectroscopy of the synthesized surfactants also appeared 

in this chapter. Chapter 4 is composed of 3 sections. Varying the surfactant chain 

degree and methylation is reported in section 1 (4.1). The sEGO suspension which 

was obtained from surfactant-assisted graphite exfoliation was directly used as 

methylene blue adsorbent. In the second section (4.2), sodium counter-ion in 

surfactants were substituted with aromatic group counter-ion and sEGO produced 

through similar process as in (4.1) were composited and also used as adsorbent. 

Exchange in counter-ion but with different type of aromatic group can be found in the 

final section (4.3). sEGO produced by identical graphite exfoliation as the previous 

sections were made into catalyst along with metal oxide. This is followed by 

adsorption and photocatalytic studies. Finally, Chapter 5 summarizes the key research 

findings and also includes recommendations of the future work. 

 

 


