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ABSTRACT 

 

 

The industrial revolution is now in great need of more skilful programmers with 

problem-solving skills. However, the learning process for programming is very 

challenging due to its complexity and limited educational application that covers both 

problem-solving and programming environments. This study aims to develop an 

introductory Integrated Development Environment (IDE) application (C-SOLVIS) and 

evaluate its usability. It integrates both environments for problem-solving and program 

development for the C language. The purpose is to guide the users in problem-solving 

and help in writing a C program. This study used a mix-method approach, in which 

qualitative methods were conducted during the requirement planning phase through a 

literature review supported by semi-structured interviews, document reviews, and 

content validation by seven expert programming lecturers. Meanwhile, a quantitative 

method to evaluate the application's usability among the same lecturers was conducted 

using the System Usability Scale (SUS) instrument to obtain its mean score. The 

application's development process has employed Rapid Application Development 

(RAD) Model in which application design has been accomplished by iterative 

prototyping process, followed by application construction. The study has discovered 

suitable techniques and designs for the problem-solving and program development 

environment. In the problem-solving environment, Computational Thinking (CT) 

concepts have been applied and supported by Input-Proses-Output (IPO) Model 

through Scientific Instructions and Inquiries. Meanwhile, the program development 

environment features frame-based programming through Code Patterns. The C-

SOLVIS has achieved a SUS mean score of 86.07 which is interpreted by SUS as an A 

grade, indicating C-SOLVIS as a highly usable application for the teaching and learning 

of an introductory programming course. In conclusion, C-SOLVIS could facilitate the 

teaching and learning of C programming fundamentals effectively. The implication is 

that the development process of C-SOLVIS can be used as a guideline for educational 

software development, especially in the application of programming education. 
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PERSEKITARAN PEMBANGUNAN BERSEPADU BAGI PENYELESAIAN 

MASALAH UNTUK ASAS PENGATURCARAAN C 

 

 

ABSTRAK 

 

 

Revolusi perindustrian kini amat memerlukan lebih ramai pakar pengaturcaraan dengan 

kebolehan menyelesaikan masalah. Walau bagaimanapun, pembelajaran 

pengaturcaraan adalah sangat mencabar kerana tahap kerumitan dan keterbatasan 

aplikasi pendidikan yang merangkumi kedua-dua persekitaran penyelesaian masalah 

dan pengaturcaraan. Kajian ini bertujuan membangunkan sebuah aplikasi persekitaran 

pembangunan bersepadu (IDE) (C-SOLVIS) serta menilai kebolehgunaannya. Ia 

mengintegrasikan kedua-dua persekitaran penyelesaian masalah dan pembangunan 

aturcara dalam bahasa pengaturcaraan C. Tujuannya adalah untuk membimbing 

pengguna dalam menyelesaikan masalah dan menulis aturcara C. Kajian ini 

menggunakan kaedah penyelidikan campuran, yang mana kaedah kualitatif telah 

dilaksanakan semasa fasa perancangan keperluan melalui tinjauan literatur yang 

disokong oleh temubual separa berstruktur, semakan dokumen dan pengesahan 

kandungan oleh pensyarah pakar pengaturcaraan. Sementara itu, kaedah kuantitatif 

untuk menilai kebolehgunaan aplikasi dalam kalangan pensyarah yang sama telah 

dilaksanakan menggunakan soal selidik System Usability Scale (SUS) untuk 

mendapatkan skor purata. Proses pembangunan aplikasi dilaksanakan dengan 

menggunakan Model Rapid Application Development (RAD), yang mana proses 

prototaip berulang telah menyempurnakan reka bentuk aplikasi, kemudian diikuti 

dengan pembangunan aplikasi. Kajian ini telah menemui teknik dan reka bentuk yang 

sesuai untuk persekitaran penyelesaian masalah serta pembangunan aturcara. Dalam 

persekitaran penyelesaian masalah, konsep pemikiran komputasi (CT) yang disokong 

oleh Model IPO melalui Arahan dan Inkuiri Saintifik telah digunakan. Manakala 

persekitaran pembangunan aturcara menampilkan pengaturcaraan berasaskan kerangka 

melalui Pola Kod. C-SOLVIS telah mencapai skor min SUS 86.07 yang diterjemahkan 

oleh SUS sebagai gred A, menunjukkan C-SOLVIS adalah sebuah aplikasi yang 

mempunyai tahap kebolehgunaan yang tinggi untuk digunakan dalam pengajaran dan 

pembelajaran bagi kursus asas pengaturcaraan. Kesimpulannya, C-SOLVIS mampu 

memudahkan pengajaran dan pembelajaran pengaturcaraan asas C dengan berkesan. 

Implikasinya, proses pembangunan C-SOLVIS ini boleh dijadikan garis panduan dalam 

pembangunan perisian pendidikan khususnya aplikasi pendidikan pengaturcaraan. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Introduction 

 

In line with the Industrial Revolution 4.0 (IR4.0), computing and software technology 

is also experiencing rapid development. This revolution has increased the demand for 

expert programmers. Hence, there is an urge to produce computer science and 

engineering graduates with good problem-solving and programming skills. These skills 

are often obtained from programming courses at the higher education level. However, 

due to its high intrinsic cognitive load, programming has been a challenging lesson to 

learn among beginners (Cheah, 2020).  
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Programming needs competency in both problem-solving and program writing 

(Cheah, 2020; Choi, 2019). However, novice programmers often face difficulties in 

problem-solving due to their lack of programming experience (Hashim et al., 2017). 

They are also facing challenges in developing a program syntactically, semantically, 

and pragmatically which are reflected in their disfluency in writing a program (Henry 

& Dumas, 2020). It is believed that the implementation of certain problem-solving 

models and concepts could enhance the problem-solving and programming skills of 

novices.  

 

The use of a programming Integrated Development Environment (IDE), which 

is overwhelmed with complex functions is believed to be intimidating for novices 

(Warner & Guo, 2017). It also does not have facilities to help with problem-solving and 

programming learning. Several applications were found with various approaches to 

tackle these issues. However, they are mostly targeting other programming languages 

where comparatively few are for the C language (Egan & Mcdonald, 2020). Therefore, 

there is a need for a simple C programming application to introduce novices to an IDE, 

at the same time guide the novices in problem-solving and programming.  

 

This study aims to develop an introductory IDE, named C Problem-Solving and 

Visualization (C-SOLVIS), as a tool to enhance the teaching and learning of C 

programming. For that purpose, C-SOLVIS is designed as a simple introductory IDE 

to guide problem-solving and facilitate program development using computational 

thinking (CT) and frame-based programming. The research also evaluates this 

application's usability specifically on its user interface based on a specific standard. 
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1.2 Research Background  

 

Since its launch in 2011, the IR4.0 has brought the paradigm shift towards automation 

and robotics where a majority of the task has been taken over by robots (Kamaruzaman 

et al., 2019). Therefore, it has caused a change in the demand of the industry required 

skills.  To meet the demand of IR4.0, Chaka (2020) emphasized the importance of 

problem-solving skills as a generic soft skill that is needed together with the 

programming skill. Therefore, graduates especially in the engineering and computer 

science field of study should be prepared with these required skills. 

 

In today’s industry, C programming is actively used around the world in solving 

engineering and scientific problems (Egan & Mcdonald, 2020). Various software such 

as operating systems, databases, browsers, compilers, and Internet of Things (IoT) 

applications are developed using the C language. For these reasons, C was once ranked 

as the most popular programming language among the programming experts in January 

2021 (TIOBE Index for January 2021, 2021).  

 

Due to its wide use and popularity, the C language has been an essential and 

elementary programming language to be taught in universities and educational 

institutions (Stephen Cass, 2019). It is usually offered for the students in computer 

science majors and other engineering-related majors during the first year of study. 

However, several researchers found that this course has recorded high withdrawal and 

failure rates of 30 – 50%, with a generally low passing rate (Margulieux et al., 2020).  
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This scenario also occurred in Malaysian higher learning institutions, 

specifically the Malaysian Polytechnic population. Md Derus (2016) reported that more 

than 50% of students in Malaysian Polytechnic have achieved below a satisfactory 

level.  In the semester of December 2019, the average percentage of the learning 

outcome achievement for basic programming knowledge application in one of the 

Malaysian Polytechnics was only 66%, which is below the target of 80% (Mat Isa & 

Md Derus, 2017).   

 

An academic report by a course coordinator stated that the low achievement in 

the programming course was due to students' difficulties in programming which is 

related to their weaknesses in performing problem-solving (Mat Isa & Md Derus, 

2017). This could explain why programming is recognized as one of the great 

challenges in computing education (Egan & Mcdonald, 2020). Nevertheless, through 

studies and research, problem-solving can be enhanced by applying a certain problem-

solving model to produce a problem-solving algorithm. Thus, by having an algorithm, 

a program can be written in a specific programming language. 

 

Yet, the disfluency of writing in the programming language has been identified 

as a significant barrier in programming learning (Edwards et al., 2018). This is 

supported by  Mat Isa & Md Derus (2017), who reported that programming students 

often face difficulties in learning the language syntax and adapting to the language 

patterns. They also face difficulties in understanding basic concepts of programming 

which often lead to misconceptions. As a result, the students often struggle in 

debugging bundles of syntax errors during programming practical activities. 
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Practically, students do programming in a program development environment, 

namely an IDE. However, the IDE is a professional tool that is overwhelmed with tools 

and facilities. Thus, it imposes an unnecessary extraneous cognitive load for the 

novices. Hence, Warner & Guo (2017) raised the concern that it can be daunting for 

novices to understand how to use these tools and facilities while they are already 

struggling to understand programming mechanisms.  

 

According to the Cognitive Load Theory, the high cognitive load on novices 

may affect their motivation in learning programming (Abdul Rahman et al., 2018). 

Therefore, the extraneous cognitive load must be reduced so that the total cognitive 

load imposed on the students will not exceed their cognitive capacity (Hundhausen et 

al., 2017). Instead, the germane cognitive load which is useful in the learning process 

is more needed to help in understanding the course (Sweller et al., 2019).  

 

Although several studies were done to improve programming learning, some 

other aspects need to be explored as programming remains to be challenging (Shi et al., 

2017; Škorić et al., 2016). Therefore, this study focuses on another paradigm which is 

the integration of problem-solving essences and program development elements. This 

research contributes to another software design for educational purposes. It is a 

contribution of the software engineering discipline to improve the teaching 

methodologies and programming learning materials which is significant in supporting 

the novices to prepare them for the demand of IR4.0.  
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1.3 Problem Statement 

 

To score in the programming course, students must be able to solve programming 

problems and build programs. However, there are three kinds of challenges faced by 

students when learning to program: problem-solving deficiencies, language difficulties, 

and ineffective learning tools (Khan et al., 2020), as depicted in Figure 1.1.  

 

 

Figure 1.1. Challenges in Learning Programming  

 

The first concern in learning programming is the problem-solving deficiencies 

among the students. To solve the programming problem, students must be able to 

understand the problem and formulate solutions into steps that they can translate later 

into program coding (Nelson et al., 2017). Unfortunately, they tend to have a weak 

strategic understanding of the problem, thus having difficulties in extracting the needs 

and requirements of the problem (Kwon, 2017). Moreover, due to their lack of 

programming experience and lack of systematic problem-solving guidelines, 

translating the solution into a corresponding computer program could be difficult and 

challenging  (Hashim et al., 2017). Therefore, this research is important to find a 

suitable technique to help novices in problem-solving and formulate coding solutions. 
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The second concern is about the students’ difficulties in using the language. 

Their disfluency in C language syntax and unfamiliarity with the language pattern often 

causes unresolved syntax errors during program writing (Ettles et al., 2018). Moreover, 

the abstract and dynamic computational execution of the program also imposes great 

difficulties to understand the program which leads to misconception. Several 

techniques have been used in programming applications to help in coding and 

understanding programming (Annamalai & Nur, 2017; Milne & Rowe, 2002). 

However, few have been applied for C programming (Heinsen Egan & McDonald, 

2014). Therefore, this research is carried out to find a suitable technique to help novices 

in C programming. 

 

The third concern is regarding the use of the programming IDE among the 

novices, which is an ineffective learning tool. The novices need to get proper training 

in problem-solving and programming skills. However, most IDE focuses only on 

program development rather than problem-solving processes although these two skills 

are needed hand in hand. Moreover, the programming IDE is overwhelmed with 

programming facilities that are beyond the needs of novices, thus could be intimidating 

for the novices who are just about to learn to program (Warner & Guo, 2017). Being 

novices, they should be first introduced to a more suitable IDE with a user-friendly 

interface before using the professional version. Therefore, this study is an important 

effort in designing and developing a more suitable educational IDE that caters to both 

needs of the novices in problem-solving and programming skills.  
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1.4 Research Objectives  

 

This research aims to develop an introductory IDE that can be used in the teaching and 

learning of programming courses to enhance both problem-solving skills and 

programming skills among students and prepare them before using the programming 

IDE. Therefore, to achieve the purpose, the following are the research objectives (RO): 

 

RO 1:  To identify suitable techniques to overcome students’ difficulties in learning 

programming. 

RO 2: To design an introductory IDE that integrates guided problem-solving and 

facilitating program development. 

RO 3: To develop an introductory IDE that integrates guided problem-solving and 

facilitating program development. 

RO 4: To evaluate the usability of the introductory IDE to be used in introductory 

programming courses. 

 

 

1.5 Research Questions 

 

In achieving the research objectives, several research questions need to be addressed 

throughout the study. The research questions (RQ) are corresponding to the research 

objectives, which are listed as the following: 
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RQ 1: What are the suitable techniques to overcome students' difficulties in learning 

programming? 

RQ 2: How will the introductory IDE be designed to guide problem-solving and 

facilitate program development? 

RQ 3:  How will the introductory IDE be developed to integrate guided problem-

solving and facilitate program development? 

RQ 4: To what extent is the introductory IDE usable in introductory programming 

courses? 

Table 1.1 summarizes the relationship between the research objectives and the research 

questions.  

 

Table 1.1 Research Objectives and Research Questions 

Research Objectives and Research Questions 

 Research Objectives Research Question 

1 RO 1:  To identify suitable techniques 

to overcome students’ difficulties in 

learning programming. 

RQ 1: What are the suitable 

techniques to overcome students' 

difficulties in learning programming? 

2 RO 2: To design an introductory IDE 

that integrates guided problem-solving 

and facilitating program development. 

RQ 2: How will the introductory 

IDE be designed to guide problem-

solving and facilitate program 

development? 

3 RO 3: To develop an introductory IDE 

that integrates guided problem-solving 

and facilitating program development. 

 

RQ 3:  How will the introductory 

IDE be developed to integrate guided 

problem-solving and facilitate 

program development? 

4 RO 4: To evaluate the usability of the 

introductory IDE to be used in 

introductory programming courses. 

RQ 4: To what extent is the 

introductory IDE usable in 

introductory programming courses? 
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1.6 Theoretical and Conceptual Framework of the Research 

 

The research is implemented in two major stages. These two stages are the development 

stage and the evaluation stage as shown in the theoretical and conceptual framework in 

Figure 1.2. In the first stage, the development of the application is carried out by using 

the Rapid Application Development (RAD) Model, which is an incremental software 

process development model.  

 

 

 

The RAD model is one of the Software Process Models (SPM) that begins with 

requirements planning. It is followed by the user design phase where iterative prototype 

testing and refining process are done until an agreed prototype is produced. Next, it 

Figure 1.2. Research Theoretical and Conceptual Framework  
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proceeds with construction activities in the construction phase until the application is 

completely tested in the cutover phase. Then, in the second stage, the software is 

evaluated and analyzed by complying with the ISO 9241-11 usability standard. 

 

As the application is intended for the teaching and learning environment, thus 

it considers some related learning theories. These theories are the Constructivism 

Learning Theory and Cognitive Load Theory, which are supporting the research to 

achieve the desired objectives. The Constructivism Learning Theory guides the 

application design to focus on constructing cognitive experience. Meanwhile, the 

Cognitive Load Theory encourages germane cognitive load to boost programming 

learning. 

 

  C-SOLVIS applies the Computational Thinking (CT) concept supported by the 

Input-Proses-Output (IPO) Model to guide the problem-solving formulation (Alshaye 

et al., 2019). This concept and model help to translate problems into data, mathematical 

expressions, logical processes, and computational terms in C language programming 

by identifying the variables in the problem. Meanwhile, the program development is 

utilizing the frame-based programming concept. In addition, the PV is also applied to 

enable users among lecturers and students to show and visualize programming 

execution to understand programming behaviour and structure. 
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1.7 Research Scope and Limitations  

 

The development of the application is targeting the teaching and learning of the 

introductory programming course in the C language in higher education in Malaysia. 

To focus on this scope, this research refers to the Malaysian Polytechnic curriculum 

which covers the Programming Fundamentals syllabus, focusing on Topic 2: 

Fundamentals of C Language from the Programming Fundamentals course.  

 

The research focuses on designing and developing an introductory IDE 

prototype that caters to the problem-solving formulation and programming facilities for 

basic scientific and engineering problems which involves simple calculation and 

formulas. Therefore, the application can only be used to solve programming problems 

that involve basic arithmetic calculations. Although the application design includes the 

PV interface design, the construction of the prototype focuses on the integration of 

problem-solving with the program development function which does not cover the 

construction of PV interfaces. 

 

The application is evaluated on the usability aspect in terms of effectiveness, 

efficiency and satisfaction by using the ISO 9241-11 standard. For the evaluation 

purpose, a lab sheet that covers the practical activity involving Operators is used during 

the application deployment. Although the application is targeting both lecturers and 

students of the programming course, the evaluation is done only among the lecturers 

due to several access limitations of the application prototype functions and server. 
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1.8 Research Significance  

 

This study is significant as it contributes to the body of knowledge in the software 

engineering field. It also contributes to the programming education field as well as other 

research communities. The significance of the research is elaborated based on several 

parties that can benefit from this study as below: 

 

i. Software engineering body of knowledge 

The success of the research can be used as guidance and reference to software 

developers and other researchers in software engineering, especially in the field 

of educational software. This study shows basic procedures and processes in 

software design and development which contribute to a framework for 

developing other student-friendly educational software to support educational 

needs. It contributes as a guide to conducting requirements planning, software 

design, and construction. Moreover, this study has considered a few learning 

theories such as the Constructivism Learning Theory and Cognitive Load 

Theory to help in designing and developing better educational software. 

Besides, it also contributes to the study of software evaluation that involves the 

usability evaluation of a software interface design by using specific software 

evaluation instruments and methods. 

 

ii. Programming Education 

The introductory IDE which was developed in this study contributes to the 

production of graduates with a strong foundation of problem-solving and 
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programming skills as it focuses on accelerating the experience acquisition 

among the novices based on the Constructivism Learning Theory. A strong 

foundation in problem-solving and programming skills is essential to becoming 

an expert programmer. Indirectly, this study contributes to the demand for 

skilled programmers in IR4.0. Moreover, the study also benefits the lecturers as 

the features of this application could facilitate the lecturers in guiding problem-

solving and teaching the C language syntax among novices as it considers the 

Cognitive Load Theory in optimizing students’ cognitive ability. Therefore, this 

application also contributes to being an option in the programming instructional 

tools.  

 

iii. New knowledge for research communities  

Researchers may gain useful information and knowledge from this study, which 

allows them to explore and conduct further studies related to programming 

learning among novices. Since previous studies have focused on the potential 

of visual programming and programming visualization, this study highlights 

how problem-solving can be integrated with frame-based programming and 

programming visualization to enhance the understanding of the subject. The 

rigorous study which focuses on this integration has also yielded the connection 

between other knowledge concepts such as CT and IPO Model. It has expanded 

the ability of CT to be integrated into other models and concepts to produce a 

new educational approach to facilitating the teaching and learning process. 
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1.9 Operational Definition  

 

Some terms are being used in this research that needs to be comprehended according to 

these operational definitions to support the understanding of the research. This section 

defines important terms as the following: 

 

i. Algorithm 

A programming algorithm is the organized, logical sequence of a program, 

which is represented in the step-by-step computational procedure (Riza et al., 

2019). In the research context, an algorithm is the logical flow of the program 

which is often represented before the program is written and can be obtained by 

a problem-solving process. It involves calculations or other problem-solving 

operations done on input variables to get specific outputs. 

 

ii. Cognitive load 

A cognitive load is a load that involves a person’s intellectual activity such as 

thinking, reasoning, or remembering (Spieler et al., 2020). In the research 

context, cognitive load is categorized according to the Cognitive Load Theory 

as intrinsic cognitive load, germane cognitive load and extraneous cognitive 

load.  

 

iii. Compiler 

A compiler is a special tool that compiles the program written in a high-level 

language and converts it into a machine-readable object file (Mulla et al., 2016). 
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In the research context, the compiler is a basic component of the application that 

combines different object files to create a single executable file so that the 

program can be run.  

 

iv. Computational Thinking 

Computational thinking (CT) is a cognitive skill which is most needed by 

industries to solve problems with computational solutions, which is also 

recognized as a 21st-century skill (Lai & Wong, 2022). In this research context, 

CT has been used in developing instructions and inquiries for solving a 

programming problem. 

 

v. Debugger 

A debugger is used to test and debug a program to locate errors if any so that 

the error can be fixed (Heinsen Egan & McDonald, 2014). In the research 

context, the debugger is one of the components needed in the application that 

can show the position of errors in the program and perform programming 

visualization.  

 

vi. Extraneous cognitive load 

Extraneous cognitive load is the cognitive load that results from an improper 

instructional design that interferes with the learning process and may reduce 

instructional effectiveness (Swezller, 1994). In the research context, the 

extraneous cognitive load refers to any extra burden that should be eliminated 

to alleviate the cognitive load imposed during the learning. 



17 

vii. Frame-based Programming 

Frame-based programming is a type of programming that use instruction blocks 

that contain grouped codes based on their patterns (Sim & Lau, 2018). In the 

research context, frame-based programming is a technique used to help novices 

write a C program from the pre-written codes known as Code Patterns with 

modifiable parameters. 

 

viii. Germane Cognitive Load 

Germane cognitive load is a non-intrinsic cognitive load that contributes to 

learning (Caspersen & Bennedsen, 2007). In the research context, the germane 

cognitive load is the relevant and useful cognitive load that is needed to enhance 

the learning process.  

 

ix. Intrinsic Cognitive Load 

Intrinsic cognitive load is the fixed cognitive load of a content area which is 

determined by the relational complexity of the to-be-learned content (Caspersen 

& Bennedsen, 2007; Swezller, 1994). In the research context, intrinsic cognitive 

load resembles the difficulty level being imposed by the nature of the subject.   

 

x. Introductory IDE 

An introductory IDE is an educational software that is designed to support the 

learning process (Fiddi, 2015). In the research context, the introductory IDE is 

similar to a programming IDE but with simpler facilities. It allows the users to 

write and edit their program to be compiled and executed to get the result. At 
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the same time, it is supported with educational features with a novice-friendly 

interface. 

 

xi. Misconceptions 

Misconceptions are the misunderstood ideas held by students in programming, 

which conflict with normally acknowledged programming rules and procedures 

(Qian & Lehman, 2017). In the research context, misconceptions are the results 

of poor understanding based on incorrect mental models of the program 

execution. 

 

xii. Novice programmer 

The novice programmer is a computer programmer who is not experienced in 

programming (Venigalla et al., 2020). In this research context, the novice 

programmer refers to the students who are learning to program in introductory 

programming courses. They are unfamiliar with C language programming and 

inexperienced in performing problem-solving. 

 

xiii. Pragmatic 

Pragmatic is the practical knowledge of the environment and language features 

dictated by practical consequences more than by theory (Deek et al., 1999). In 

this research context, pragmatic refers to the confidence and knowledge in using 

the programming environment, which is the IDE. Pragmatic knowledge reflects 

the higher level of programming skills that are often gained after several periods 

of experience. 
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xiv. Problem-solving  

Problem-solving is the process of finding the solution for a certain issue or 

problem. In the research context, problem-solving refers to solving problems 

using a programming technique. It is the act of defining a problem, translating 

the problem into computer-compatible form, and determining how to write the 

solution into a specific programming language to get the problem solved 

through a computer program. 

 

xv. Program 

In the research context, a program is a set of sequential computational 

instructions that are written in a programming language. It is executed to 

perform a process that can solve scientific and engineering problems with a 

computer. 

 

xvi. Program development 

Program development is a process of translating a problem solution into a 

computer program, testing and delivering the solution (Deek et al 2000). In the 

research context, program development refers to the programming activity to 

create a computer program that can be used to solve a problem. This term is also 

used in the C-SOLVIS as one of the main functions, which acts similar to an 

IDE. 

 

xvii. Program execution 

Program execution is the process of running a computer program (Mulla et al., 

2016). In the research context, program execution runs the code to tell the 
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computer to implement instruction step-by-step as written by the programmer 

which involves variable update according to the instruction. 

 

xviii. Programming 

Programming refers to the activity of writing a computer program that needs 

syntactical, semantical, and pragmatical knowledge of a programming language 

to solve problems (Scherer et al., 2020). In the research context, programming 

is related to the activities of writing, compiling, executing, and debugging a 

program code to solve a specific problem. 

 

xix. Programming Visualization  

Programming visualization is the activity to show the internal structure and 

behaviour of a program that cannot be physically visualized (Shin, 2018). In the 

research context, visualization is the formation of visual images of the program 

execution state that shows the result of program execution on variables through 

a graphical representation. 

 

xx. Prototype 

In this research context, a prototype is a preliminary version of the application, 

from which the application functionalities are developed after the prototype 

design is agreed upon with all stakeholders (Agarwal et al., 2017). The 

prototype is subject to the research scope and limitations. 
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xxi. Semantic 

Semantic is the logic interpretation and functional meaning of the written 

instruction codes in a particular programming language (Deek et al., 1999). In 

this research context, semantic refers to the programming conceptual 

knowledge which concerns the logical meaning of the C-language instruction.   

 

xxii. Syntax 

The syntax is a set of grammatical rules and approved structural patterns of a 

specific programming language (Ahadi et al., 2018). In this research context, 

syntax refers to the set of C-programming grammatical rules and structural 

patterns that govern the use of valid words and symbols for issuing commands 

or instructions to make a valid program. 

 

xxiii. Usability 

Usability refers to the measure of the ease of use for the user in using the 

application (Komiyama et al., 2020). In the research context, usability refers to 

the measure of effectiveness, efficiency and satisfaction of the application’s 

user interface which refers to the ISO 9241-11 standard (Komiyama et al., 

2020). 

 

xxiv. Variable 

From a program perspective, a variable is an element in a program that holds 

data with a descriptive name, which is allocated to a specific memory location 
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(Kohn, 2017). In the research context, a variable represents any data or 

information that will be operated by programming operations and processes.  

 

 

1.10 Summary 

 

The research is about overcoming the challenges in programming teaching and learning 

which intends to help lecturers in teaching programming with better application and 

help the students who are novice programmers in learning programming especially in 

problem-solving and developing C programs. Therefore, the C-SOLVIS is proposed to 

be developed as an introductory IDE for use in the Programming Fundamentals course. 

C-SOLVIS which is developed based on a software development model integrates 

problem-solving essence into a program development environment. Supported with 

established models, concepts and learning theories, it aims to build a strong 

programming foundation to prepare the students for the next challenge in the era of 

IR4.0.  

 

The next chapter reviews the related studies on C programming learning that 

discovers the difficulties of students in learning programming. Besides, several related 

learning theories, models and studies in problem-solving and programming are also 

reviewed that initiates the introductory IDE development ideas. It also discusses the 

introductory IDE development criteria, software process model for software 

development and several standards in the evaluation of software usability.




