
AN INTEGRATED DEVELOPMENT ENVIRONMENT

ON PROBLEM-SOLVING FOR C PROGRAMMING

FUNDAMENTALS

NOR FARAHWAHIDA BINTI MOHD NOOR

SULTAN IDRIS EDUCATION UNIVERSITY

2022

AN INTEGRATED DEVELOPMENT ENVIRONMENT ON PROBLEM-

SOLVING FOR C PROGRAMMING FUNDAMENTALS

NOR FARAHWAHIDA BINTI MOHD NOOR

DISSERTATION PRESENTED TO QUALIFY FOR A MASTER’S IN SCIENCE

 (RESEARCH MODE)

FACULTY OF ART, COMPUTING AND CREATIVE INDUSTRY

SULTAN IDRIS EDUCATION UNIVERSITY

2022

ii

DECLARATION OF ORIGINAL WORK

INSTITUT PENGAJIAN SISWAZAH
PERAKUAN KEASLIAN PENULISAN

Perakuan ini telah dibuat pada 15 (hari bulan) 12 (bulan) 2022.

i. Perakuan pelajar:

Saya, NOR FARAHWAHIDA BINTI MOHD NOOR, M20201000081, FAKULTI
SENI, KOMPUTERAN & INDUSTRI KREATIF dengan ini mengaku bahawa
disertasi/tesis yang bertajuk AN INTEGRATED DEVELOPMENT ENVIRONMENT
ON PROBLEM-SOLVING FOR C PROGRAMMING FUNDAMENTALS adalah hasil
kerja saya sendiri. Saya tidak memplagiat dan apa-apa penggunaan mana-mana
hasil kerja yang mengandungi hak cipta telah dilakukan secara urusan yang wajar
dan bagi maksud yang dibenarkan dan apa-apa petikan, ekstrak, rujukan atau
pengeluaran semula daripada atau kepada mana-mana hasil kerja yang
mengandungi hak cipta telah dinyatakan dengan sejelasnya dan secukupnya

Tandatangan pelajar

ii. Perakuan Penyelia:

Saya, PROFESOR MADYA DR. ASLINA BINTI SAAD dengan ini mengesahkan
bahawa hasil kerja pelajar yang bertajuk AN INTEGRATED DEVELOPMENT
ENVIRONMENT ON PROBLEM-SOLVING FOR C PROGRAMMING
FUNDAMENTALS dihasilkan oleh pelajar seperti nama di atas, dan telah
diserahkan kepada Institut Pengajian Siswazah bagi memenuhi sepenuhnya
syarat untuk memperoleh Ijazah MASTER’S IN SCIENCE (SOFTWARE
ENGINEERING).

 _________________ ___________________

Tarikh Tandatangan Penyelia

Sila Tanda (√)

Kertas Projek

Sarjana Penyelidikan √

Sarjana Penyelidikan Dan Kerja Kursus

Doktor Falsafah

15/12/2022

UPSI/IPS-3/BO 32
Pind : 00 m/s: 1/1

iii

DECLARATION OF THESIS/DISSERTATION FORM

15/12/2022

iv

ACKNOWLEDGEMENT

Firstly, my deepest thank to my supervisor, Associate Professor Dr Aslina Binti Saad,

my co-supervisor Associate Professor Ts. Dr Abu Bakar bin Ibrahim, and all lecturers

in UPSI for their continuous effort, guidance, and motivation for me in accomplishing

this study. I would like to express my gratitude to the Education Sponsorship Division,

the Ministry of Education (MOE), and The Government of Malaysia for the financial

support through scholarships and assistance toward this study. I would also like to thank

numerous people involved in this study; the expert lecturers in Programming

Fundamentals teaching and learning, and software development. My appreciation is

also to UPSI Post Graduate Institute, and my friends in UPSI Postgraduate Association

for their motivation, criticism, and various support. Last but not least, I would like to

thank my family, especially my husband, parents, children, colleagues, and friends for

their unconditional support and contribution to this study.

v

ABSTRACT

The industrial revolution is now in great need of more skilful programmers with

problem-solving skills. However, the learning process for programming is very

challenging due to its complexity and limited educational application that covers both

problem-solving and programming environments. This study aims to develop an

introductory Integrated Development Environment (IDE) application (C-SOLVIS) and

evaluate its usability. It integrates both environments for problem-solving and program

development for the C language. The purpose is to guide the users in problem-solving

and help in writing a C program. This study used a mix-method approach, in which

qualitative methods were conducted during the requirement planning phase through a

literature review supported by semi-structured interviews, document reviews, and

content validation by seven expert programming lecturers. Meanwhile, a quantitative

method to evaluate the application's usability among the same lecturers was conducted

using the System Usability Scale (SUS) instrument to obtain its mean score. The

application's development process has employed Rapid Application Development

(RAD) Model in which application design has been accomplished by iterative

prototyping process, followed by application construction. The study has discovered

suitable techniques and designs for the problem-solving and program development

environment. In the problem-solving environment, Computational Thinking (CT)

concepts have been applied and supported by Input-Proses-Output (IPO) Model

through Scientific Instructions and Inquiries. Meanwhile, the program development

environment features frame-based programming through Code Patterns. The C-

SOLVIS has achieved a SUS mean score of 86.07 which is interpreted by SUS as an A

grade, indicating C-SOLVIS as a highly usable application for the teaching and learning

of an introductory programming course. In conclusion, C-SOLVIS could facilitate the

teaching and learning of C programming fundamentals effectively. The implication is

that the development process of C-SOLVIS can be used as a guideline for educational

software development, especially in the application of programming education.

vi

PERSEKITARAN PEMBANGUNAN BERSEPADU BAGI PENYELESAIAN

MASALAH UNTUK ASAS PENGATURCARAAN C

ABSTRAK

Revolusi perindustrian kini amat memerlukan lebih ramai pakar pengaturcaraan dengan

kebolehan menyelesaikan masalah. Walau bagaimanapun, pembelajaran

pengaturcaraan adalah sangat mencabar kerana tahap kerumitan dan keterbatasan

aplikasi pendidikan yang merangkumi kedua-dua persekitaran penyelesaian masalah

dan pengaturcaraan. Kajian ini bertujuan membangunkan sebuah aplikasi persekitaran

pembangunan bersepadu (IDE) (C-SOLVIS) serta menilai kebolehgunaannya. Ia

mengintegrasikan kedua-dua persekitaran penyelesaian masalah dan pembangunan

aturcara dalam bahasa pengaturcaraan C. Tujuannya adalah untuk membimbing

pengguna dalam menyelesaikan masalah dan menulis aturcara C. Kajian ini

menggunakan kaedah penyelidikan campuran, yang mana kaedah kualitatif telah

dilaksanakan semasa fasa perancangan keperluan melalui tinjauan literatur yang

disokong oleh temubual separa berstruktur, semakan dokumen dan pengesahan

kandungan oleh pensyarah pakar pengaturcaraan. Sementara itu, kaedah kuantitatif

untuk menilai kebolehgunaan aplikasi dalam kalangan pensyarah yang sama telah

dilaksanakan menggunakan soal selidik System Usability Scale (SUS) untuk

mendapatkan skor purata. Proses pembangunan aplikasi dilaksanakan dengan

menggunakan Model Rapid Application Development (RAD), yang mana proses

prototaip berulang telah menyempurnakan reka bentuk aplikasi, kemudian diikuti

dengan pembangunan aplikasi. Kajian ini telah menemui teknik dan reka bentuk yang

sesuai untuk persekitaran penyelesaian masalah serta pembangunan aturcara. Dalam

persekitaran penyelesaian masalah, konsep pemikiran komputasi (CT) yang disokong

oleh Model IPO melalui Arahan dan Inkuiri Saintifik telah digunakan. Manakala

persekitaran pembangunan aturcara menampilkan pengaturcaraan berasaskan kerangka

melalui Pola Kod. C-SOLVIS telah mencapai skor min SUS 86.07 yang diterjemahkan

oleh SUS sebagai gred A, menunjukkan C-SOLVIS adalah sebuah aplikasi yang

mempunyai tahap kebolehgunaan yang tinggi untuk digunakan dalam pengajaran dan

pembelajaran bagi kursus asas pengaturcaraan. Kesimpulannya, C-SOLVIS mampu

memudahkan pengajaran dan pembelajaran pengaturcaraan asas C dengan berkesan.

Implikasinya, proses pembangunan C-SOLVIS ini boleh dijadikan garis panduan dalam

pembangunan perisian pendidikan khususnya aplikasi pendidikan pengaturcaraan.

vii

TABLE OF CONTENTS

Pages

DECLARATION OF ORIGINAL WORK ii

DECLARATION OF DISSERTATION FORM iii

ACKNOWLEDGEMENT iv

ABSTRACT v

ABSTRAK vi

TABLE OF CONTENTS vii

LIST OF TABLES xii

LIST OF FIGURES xv

LIST OF ABBREVIATIONS xviii

APPENDIX LIST xxi

CHAPTER 1 INTRODUCTION

1.1 Introduction 1

1.2 Research Background 3

1.3 Problem Statement 6

1.4 Research Objectives 8

1.5 Research Questions 8

1.6 Theoretical and Conceptual Framework of the Research 10

viii

1.7 Research Scope and Limitations 12

1.8 Research Significance 13

1.9 Operational Definition 15

1.10 Summary 22

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction 23

2.2 The C Programming Fundamentals 24

2.2.1 Malaysian Polytechnic Programming 26

 Fundamentals Curriculum

2.2.2 Curriculum Challenges 29

2.3 Students’ Difficulties in Programming 30

2.3.1 Problem-Solving Deficiency 31

2.3.2 Language Difficulties 33

2.3.3 Intimidating Integrated Development 39

 Enviroment

2.4 The Supporting Learning Theories 42

2.4.1 The Constructivism Learning Theory 42

2.4.2 The Cognitive Load Theory 45

2.4.3 The Implication from the Learning Theories 48

2.5 Integrating Problem-Solving and Program Development 50

2.5.1 Problem-Solving Model 51

2.5.2 Computational Thinking in Problem Solving 57

 and Programming

2.5.3 Problem-Solving and IPO Model 60

2.5.4 Programming Techniques 62

ix

2.5.5 Programming Visualization 65

2.5.6 The Implications for the Application 68

 Development

2.6 Related Studies and Existing Programming Application 70

2.6.1 Problem-Solving Tool 70

2.6.2 Visual Programming Application 71

2.6.3 Programming Visualization Applications 72

2.6.4 Implications from the Reviews of the Existing 83

 Application

2.7 Developing Introductory IDE 86

2.7.1 Introductory IDE Criteria 87

2.7.2 Web Application vs Standalone Application 90

2.7.3 The Implications for the Introductory IDE 93

 Development

2.8 Software Process Model 95

2.9 Software Usability 102

2.10 Summary 105

CHAPTER 3 RESEARCH METHODOLOGY

3.1 Introduction 106

3.2 Research Design 107

3.3 Stage 1: Software Development 111

3.3.1 Phase 1: Requirements Planning 111

3.3.2 Phase 2: User Design 125

3.3.3 Phase 3: Construction 129

3.3.4 Phase 4: Cutover 131

x

3.4 Stage 2: Software Evaluation 134

3.4.1 Evaluation Participants 135

3.4.2 Evaluation Instruments 136

3.4.3 Data Collection Procedure 139

3.4.4 Data Analysis Method 140

3.4.5 Pilot Test 143

3.5 Summary 144

CHAPTER 4 FINDINGS

4.1 Introduction 146

4.2 The Techniques to Overcome Students’ 147

Difficulties in Programming

4.2.1 Elements in Problem-Solving Task 150

4.2.2 Features in Program Development Task 158

4.2.3 C-SOLVIS Software Requirements Specification 165

4.3 Application Design 175

4.3.1 Architectural Design 175

4.3.2 Component Design 178

4.3.3 Data Design 193

4.3.4 User Interface Design 202

4.4 Application Development 220

4.4.1 Frontend Development 221

4.4.2 Backend Development 223

4.4.3 Testing 226

4.5 Application Evaluation 241

xi

4.5.1 Pilot test 241

4.5.2 C-SOLVIS Usability Evaluation 244

4.6 Summary 249

CHAPTER 5 DISCUSSION, CONCLUSIONS AND RECOMMENDATIONS

5.1 Introduction 251

5.2 Research Findings and Discussion 252

5.2.1 Problem-Solving and Programming Techniques 252

5.2.2 C-SOLVIS Design 255

5.2.3 C-SOLVIS Development 257

5.2.4 C-SOLVIS Evaluation 258

5.3 Research Strength, Contribution and Implication 259

5.4 Recommendation for Future Research 262

5.5 Conclusion 263

REFERENCE 266

APPENDICES 285

xii

LIST OF TABLES

1.1 Research Objectives and Research Questions 9

2.1 Solving Techniques Supported by the Learning Theories 49

2.2 Problem Solving Steps 52

2.3 The Dual Common Model of Problem Solving 54

2.4 Analysis of Problem-Solving Models 56

2.5 Comparison of Existing Programming Tools 85

2.6 Comparison of Software Process Models 96

2.7 The RAD Model Activity 98

2.8 Usability Factors 104

3.1 Research Methodologies 109

3.2 Sources of Problem-Solving Questions 117

3.3 List of Interview Respondents 120

3.4 Semantic User Interface Guideline (SUIG) 126

3.5 Items in the System Usability Scale (SUS) Questionnaire 137

3.6 SUS Ranges, Grade and Ratings (Derisma, 2020) 142

4.1 Programming Major Tasks and Techniques 147

4.2 Students’ Normal Practice in Programming 148

4.3 Respondents’ Opinions on IDE in Learning Programming 149

4.4 Respondents’ Consents on Problem-Solving Task Elements 151

No. of Table Pages

xiii

4.5 Scientific Instructions and Inquiries for Problem-Solving 153

4.6 Content Validation for Scientific Instructions and Inquiries 154

4.7 CVR for Each Item of the Instructions and Inquiries (N = 7) 155

4.8 Suggestions and Comments for the Problem-Solving Function 156

4.9 Refined Scientific Instructions and Inquiries 157

4.10 Program Development Task Features 158

4.11 Respondents’ Consent on Suggested Features 160

4.12 Code Patterns for the Program Development Function 162

4.13 Content Validity Ratio for Each Item in Code Patterns (N = 7) 164

4.14 C-SOLVIS Functional Requirement 166

4.15 C-SOLVIS Non-functional Requirement 173

4.16 Expected Answers and IPO Chart Column Designation 193

4.17 IPO Data Entries 194

4.18 IPO Database 195

4.19 Entities/ Attributes Retrieval in the IPO Chart 198

4.20 The Attributes Linked to the Code Patterns 199

4.21 Entities-Attributes Retrieval in Code Pattern 200

4.22 IPO Database Retrieval in IPO Chart and Code Patterns 201

4.23 General Description for Problem-Solving UI 204

4.24 Dropdown Button Option 205

4.25 Code Patterns Labels 214

4.26 Problem-Solving Unit Testing Result 227

4.27 Problem-Solving Unit Testing Result Screenshots 228

4.28 Program Development Unit Testing Result 231

4.29 Program Development Unit Testing Result Screenshots 232

xiv

4.30 Problem-Solving Integration Testing Result 233

4.31 Program Development Integration Testing Result 235

4.32 C-SOLVIS System Testing 237

4.33 Response Time by Pilot Test Participants 242

4.34 SUS Reliability Statistics for Pilot Test 242

4.35 SUS Items Total Statistics for Pilot Test 243

4.36 SUS Scale Statistics for Pilot Test 243

4.37 Participants Demographic Data 244

4.38 Original Data From SUS Scores 245

4.39 Calculated SUS Score 245

4.40 Reliability Statistics 246

4.41 SUS Data Analysis 247

4.42 SUS Grade Frequency 248

xv

LIST OF FIGURES

No. of Figure Pages

1.1 Challenges in Learning Programming 6

1.2 Research Theoretical and Conceptual Framework 10

2.1 Top Levels of the Educational Ontology of C Programming 24

2.2 Difficulties of Students in Learning Programming 31

2.3 Three Types of Cognitive Knowledge in Programming 34

2.4 Major Tasks in Programming 51

2.5 ICO Pattern Adapted from Winslow (1996) 53

2.6 IRT Pattern Adapted from Winslow (1996) 53

2.7 Integrating Problem-Solving and Program Development 69

2.8 PT Visualization of C Program 75

2.9 SeeC Execution Tracing Viewer 77

2.10 Snapshot of PVC 79

2.11 VIP Screenshots 81

2.12 User Interface in Flash™ 82

2.13 Best Web-IDE Criteria 88

2.14 Research Territory Map 93

2.15 Rapid Application Development (RAD) Model 97

2.16 Testing Methodologies 101

3.1 Two Stages of the Research 107

file:///D:/3%20MASTER%20STUFFS/1%20Thesis%20correction/Corrected_Master%20Thesis%20NOR%20FARAHWAHIDA%20BINTI%20MOHD%20NOOR.docx%23_Toc114993479
file:///D:/3%20MASTER%20STUFFS/1%20Thesis%20correction/Corrected_Master%20Thesis%20NOR%20FARAHWAHIDA%20BINTI%20MOHD%20NOOR.docx%23_Toc114993484
file:///D:/3%20MASTER%20STUFFS/1%20Thesis%20correction/Corrected_Master%20Thesis%20NOR%20FARAHWAHIDA%20BINTI%20MOHD%20NOOR.docx%23_Toc114993485
file:///D:/3%20MASTER%20STUFFS/1%20Thesis%20correction/Corrected_Master%20Thesis%20NOR%20FARAHWAHIDA%20BINTI%20MOHD%20NOOR.docx%23_Toc114993486
file:///D:/3%20MASTER%20STUFFS/1%20Thesis%20correction/Corrected_Master%20Thesis%20NOR%20FARAHWAHIDA%20BINTI%20MOHD%20NOOR.docx%23_Toc114993493
file:///D:/3%20MASTER%20STUFFS/1%20Thesis%20correction/Corrected_Master%20Thesis%20NOR%20FARAHWAHIDA%20BINTI%20MOHD%20NOOR.docx%23_Toc114993496

xvi

3.2 Activities in User Design Phase 127

3.3 C-SOLVIS Usability Evaluation Process 139

4.1 C-SOLVIS Use-Case Diagram 169

4.2 C-SOLVIS Activity Diagram 171

4.3 C-SOLVIS Architectural Diagram 176

4.4 C-SOLVIS Component Design 179

4.5 Sequence Diagram of the Problem-Solving Function 181

4.6 Sequence Diagram of the Reset IPO Chart. 181

4.7 Sequence Diagram of Answering the Instructions and Inquiries 182

4.8 Sequence Diagram of the Program Development Function 184

4.9 Sequence Diagram of Edit/Write Program 185

4.10 Sequence Diagram of Open File Task 186

4.11 Sequence Diagram of Save File Task 186

4.12 Sequence Diagram of Compile Program Task 187

4.13 Sequence Diagram of Execute Program Task 188

 4.14 Sequence Diagram of Visualize Program task 189

4.15 Sequence Diagram of Show Next Instruction Task 191

4.16 Sequence Diagram of Show Previous Instruction Task 191

4.17 C-SOLVIS Data Design 196

4.18 General Setting of the Problem-Solving UI 202

4.19 Step 1 Problem-Solving Before Submitting the Answer 205

4.20 Step 1 Problem-Solving After Submitting the Answer 206

4.21 Step 2 Problem-Solving Before Submitting the Answer 207

4.22 Step 2 Problem-Solving After Submitting the Answer 207

4.23 Step 3 Problem-Solving Before Submitting the Answer 208

file:///D:/3%20MASTER%20STUFFS/1%20Thesis%20correction/Corrected_Master%20Thesis%20NOR%20FARAHWAHIDA%20BINTI%20MOHD%20NOOR.docx%23_Toc114993497
file:///D:/3%20MASTER%20STUFFS/1%20Thesis%20correction/Corrected_Master%20Thesis%20NOR%20FARAHWAHIDA%20BINTI%20MOHD%20NOOR.docx%23_Toc114993498

xvii

4.24 Step 3 Problem-Solving After Submitting the Answer 209

4.25 Step 4 Problem-Solving Before Submitting the Answer 209

4.26 Step 4 Problem-Solving After Submitting the Answer 210

4.27 Step 5 Problem-Solving Before Submitting the Answer 211

4.28 Step 5 Problem-Solving After Submitting the Answer 211

4.29 Step 6 Problem-Solving Before Submitting the Answer 212

4.30 Step 6 Problem-Solving After Submitting the Answer 213

4.31 Program Development Interface 213

4.32 Code Patterns and Full C Codes 215

4.33 Open File Interface 216

4.34 Save File Interface 216

4.35 Compile Program Interface 217

4.36 Execute Program Interface 217

4.37 Programming Visualization Interface 218

4.38 Programming Visualization Description 219

4.39 The C-SOLVIS Construction 220

4.40 IPO Chart Display Corresponds to Problem-Solving Input 234

4.41 The Program Development Code Editor Using Code Patterns 236

4.42 The System Test on Code Patterns 239

4.43 Compile Program 240

4.44 Execute Program 240

4.45 Frequency of SUS Score Based on Grade 248

xviii

LIST OF ABBREVIATIONS

ALM Application Lifecycle Management

CASE Computer-Aided Software Engineering

CLO Course Learning Outcome

CORR Course Outcome Review Report

C-SOLVIS C Problem-Solving and Visualization

CSUQ Computer System Usability Questionnaire

CT Computational Thinking

CVR Content Validity Ratio

DBMS Database Management Systems

DEP Diploma of Electronics (Communication) Engineering

DET Diploma of Electrical Engineering

DOM Document Object Model

DTK Diploma of Electronics (Computer) Engineering

ECMA European Computer Manufacturers Association

ERD Entity-Relationship Diagram

GCC GNU Compiler Collection

GDB GNU Debugger

GUI Graphical User Interface

IDE Integrated Development Environment

IoT Internet of Things

xix

IPO Input Process Output

IR4.0 Industrial Revolution 4.0

ISO International Organization for Standardization

LLDB Low-Level Debugger

LLVM Low-Level Virtual Machine

LMS Learning Management System

MVC Model-View-Controller

NPM Node Package Manager

NVM Node Version Manager

PSAS Sultan Azlan Shah Polytechnic

PSSUQ Post-Study System Usability Questionnaire

PT Python Tutor

PV Programming Visualization

PVC PlayVisualizerC

PW Practical Work

QUIS Questionnaire for User Interaction Satisfaction

RAD Rapid Application Development

RO Research Objective

RQ Research Question

SBRE Scenario-Based Requirements Elicitation

SC SeeC

SDD Software Design Document

SDK Software Development Kit

SDLC Software Development Life Cycle

xx

SOLVEIT Specification Oriented Language in Visual Environment for

Instruction Translation

SPM Software Process Model

SPSS Statistical Package for the Social Sciences

SRS Software Requirement Specifications

STD Software Test Document

SUS System Usability Scales

TIOBE The Importance of Being Earnest

UI User interface

UML Unified Modelling Language

VIP Visual Interpreter

VP Visual Programming

XML Extensible Mark-up Language

xxi

APPENDIX LIST

A Semi-Structured Interview Checklist

B Content Validation Form

C Interview Consent Form

D Questionnaire for Usability Evaluation

E Evaluation Consent Form

F Software Requirement Specifications (SRS)

G Software Design Document (SDD)

H C-SOLVIS Coding

I Software Test Document (STD)

J Verification For Conducting Research

K Research Ethics Approval

L Approval for Conducting Research

M Expert Appointment Letter

CHAPTER 1

INTRODUCTION

1.1 Introduction

In line with the Industrial Revolution 4.0 (IR4.0), computing and software technology

is also experiencing rapid development. This revolution has increased the demand for

expert programmers. Hence, there is an urge to produce computer science and

engineering graduates with good problem-solving and programming skills. These skills

are often obtained from programming courses at the higher education level. However,

due to its high intrinsic cognitive load, programming has been a challenging lesson to

learn among beginners (Cheah, 2020).

2

Programming needs competency in both problem-solving and program writing

(Cheah, 2020; Choi, 2019). However, novice programmers often face difficulties in

problem-solving due to their lack of programming experience (Hashim et al., 2017).

They are also facing challenges in developing a program syntactically, semantically,

and pragmatically which are reflected in their disfluency in writing a program (Henry

& Dumas, 2020). It is believed that the implementation of certain problem-solving

models and concepts could enhance the problem-solving and programming skills of

novices.

The use of a programming Integrated Development Environment (IDE), which

is overwhelmed with complex functions is believed to be intimidating for novices

(Warner & Guo, 2017). It also does not have facilities to help with problem-solving and

programming learning. Several applications were found with various approaches to

tackle these issues. However, they are mostly targeting other programming languages

where comparatively few are for the C language (Egan & Mcdonald, 2020). Therefore,

there is a need for a simple C programming application to introduce novices to an IDE,

at the same time guide the novices in problem-solving and programming.

This study aims to develop an introductory IDE, named C Problem-Solving and

Visualization (C-SOLVIS), as a tool to enhance the teaching and learning of C

programming. For that purpose, C-SOLVIS is designed as a simple introductory IDE

to guide problem-solving and facilitate program development using computational

thinking (CT) and frame-based programming. The research also evaluates this

application's usability specifically on its user interface based on a specific standard.

3

1.2 Research Background

Since its launch in 2011, the IR4.0 has brought the paradigm shift towards automation

and robotics where a majority of the task has been taken over by robots (Kamaruzaman

et al., 2019). Therefore, it has caused a change in the demand of the industry required

skills. To meet the demand of IR4.0, Chaka (2020) emphasized the importance of

problem-solving skills as a generic soft skill that is needed together with the

programming skill. Therefore, graduates especially in the engineering and computer

science field of study should be prepared with these required skills.

In today’s industry, C programming is actively used around the world in solving

engineering and scientific problems (Egan & Mcdonald, 2020). Various software such

as operating systems, databases, browsers, compilers, and Internet of Things (IoT)

applications are developed using the C language. For these reasons, C was once ranked

as the most popular programming language among the programming experts in January

2021 (TIOBE Index for January 2021, 2021).

Due to its wide use and popularity, the C language has been an essential and

elementary programming language to be taught in universities and educational

institutions (Stephen Cass, 2019). It is usually offered for the students in computer

science majors and other engineering-related majors during the first year of study.

However, several researchers found that this course has recorded high withdrawal and

failure rates of 30 – 50%, with a generally low passing rate (Margulieux et al., 2020).

4

This scenario also occurred in Malaysian higher learning institutions,

specifically the Malaysian Polytechnic population. Md Derus (2016) reported that more

than 50% of students in Malaysian Polytechnic have achieved below a satisfactory

level. In the semester of December 2019, the average percentage of the learning

outcome achievement for basic programming knowledge application in one of the

Malaysian Polytechnics was only 66%, which is below the target of 80% (Mat Isa &

Md Derus, 2017).

An academic report by a course coordinator stated that the low achievement in

the programming course was due to students' difficulties in programming which is

related to their weaknesses in performing problem-solving (Mat Isa & Md Derus,

2017). This could explain why programming is recognized as one of the great

challenges in computing education (Egan & Mcdonald, 2020). Nevertheless, through

studies and research, problem-solving can be enhanced by applying a certain problem-

solving model to produce a problem-solving algorithm. Thus, by having an algorithm,

a program can be written in a specific programming language.

Yet, the disfluency of writing in the programming language has been identified

as a significant barrier in programming learning (Edwards et al., 2018). This is

supported by Mat Isa & Md Derus (2017), who reported that programming students

often face difficulties in learning the language syntax and adapting to the language

patterns. They also face difficulties in understanding basic concepts of programming

which often lead to misconceptions. As a result, the students often struggle in

debugging bundles of syntax errors during programming practical activities.

5

Practically, students do programming in a program development environment,

namely an IDE. However, the IDE is a professional tool that is overwhelmed with tools

and facilities. Thus, it imposes an unnecessary extraneous cognitive load for the

novices. Hence, Warner & Guo (2017) raised the concern that it can be daunting for

novices to understand how to use these tools and facilities while they are already

struggling to understand programming mechanisms.

According to the Cognitive Load Theory, the high cognitive load on novices

may affect their motivation in learning programming (Abdul Rahman et al., 2018).

Therefore, the extraneous cognitive load must be reduced so that the total cognitive

load imposed on the students will not exceed their cognitive capacity (Hundhausen et

al., 2017). Instead, the germane cognitive load which is useful in the learning process

is more needed to help in understanding the course (Sweller et al., 2019).

Although several studies were done to improve programming learning, some

other aspects need to be explored as programming remains to be challenging (Shi et al.,

2017; Škorić et al., 2016). Therefore, this study focuses on another paradigm which is

the integration of problem-solving essences and program development elements. This

research contributes to another software design for educational purposes. It is a

contribution of the software engineering discipline to improve the teaching

methodologies and programming learning materials which is significant in supporting

the novices to prepare them for the demand of IR4.0.

6

1.3 Problem Statement

To score in the programming course, students must be able to solve programming

problems and build programs. However, there are three kinds of challenges faced by

students when learning to program: problem-solving deficiencies, language difficulties,

and ineffective learning tools (Khan et al., 2020), as depicted in Figure 1.1.

Figure 1.1. Challenges in Learning Programming

The first concern in learning programming is the problem-solving deficiencies

among the students. To solve the programming problem, students must be able to

understand the problem and formulate solutions into steps that they can translate later

into program coding (Nelson et al., 2017). Unfortunately, they tend to have a weak

strategic understanding of the problem, thus having difficulties in extracting the needs

and requirements of the problem (Kwon, 2017). Moreover, due to their lack of

programming experience and lack of systematic problem-solving guidelines,

translating the solution into a corresponding computer program could be difficult and

challenging (Hashim et al., 2017). Therefore, this research is important to find a

suitable technique to help novices in problem-solving and formulate coding solutions.

challenges in
learning

programming

problem-solving
deficiencies

ineffective
learning

tool

language
difficulties

7

The second concern is about the students’ difficulties in using the language.

Their disfluency in C language syntax and unfamiliarity with the language pattern often

causes unresolved syntax errors during program writing (Ettles et al., 2018). Moreover,

the abstract and dynamic computational execution of the program also imposes great

difficulties to understand the program which leads to misconception. Several

techniques have been used in programming applications to help in coding and

understanding programming (Annamalai & Nur, 2017; Milne & Rowe, 2002).

However, few have been applied for C programming (Heinsen Egan & McDonald,

2014). Therefore, this research is carried out to find a suitable technique to help novices

in C programming.

The third concern is regarding the use of the programming IDE among the

novices, which is an ineffective learning tool. The novices need to get proper training

in problem-solving and programming skills. However, most IDE focuses only on

program development rather than problem-solving processes although these two skills

are needed hand in hand. Moreover, the programming IDE is overwhelmed with

programming facilities that are beyond the needs of novices, thus could be intimidating

for the novices who are just about to learn to program (Warner & Guo, 2017). Being

novices, they should be first introduced to a more suitable IDE with a user-friendly

interface before using the professional version. Therefore, this study is an important

effort in designing and developing a more suitable educational IDE that caters to both

needs of the novices in problem-solving and programming skills.

8

1.4 Research Objectives

This research aims to develop an introductory IDE that can be used in the teaching and

learning of programming courses to enhance both problem-solving skills and

programming skills among students and prepare them before using the programming

IDE. Therefore, to achieve the purpose, the following are the research objectives (RO):

RO 1: To identify suitable techniques to overcome students’ difficulties in learning

programming.

RO 2: To design an introductory IDE that integrates guided problem-solving and

facilitating program development.

RO 3: To develop an introductory IDE that integrates guided problem-solving and

facilitating program development.

RO 4: To evaluate the usability of the introductory IDE to be used in introductory

programming courses.

1.5 Research Questions

In achieving the research objectives, several research questions need to be addressed

throughout the study. The research questions (RQ) are corresponding to the research

objectives, which are listed as the following:

9

RQ 1: What are the suitable techniques to overcome students' difficulties in learning

programming?

RQ 2: How will the introductory IDE be designed to guide problem-solving and

facilitate program development?

RQ 3: How will the introductory IDE be developed to integrate guided problem-

solving and facilitate program development?

RQ 4: To what extent is the introductory IDE usable in introductory programming

courses?

Table 1.1 summarizes the relationship between the research objectives and the research

questions.

Table 1.1 Research Objectives and Research Questions

Research Objectives and Research Questions

 Research Objectives Research Question

1 RO 1: To identify suitable techniques

to overcome students’ difficulties in

learning programming.

RQ 1: What are the suitable

techniques to overcome students'

difficulties in learning programming?

2 RO 2: To design an introductory IDE

that integrates guided problem-solving

and facilitating program development.

RQ 2: How will the introductory

IDE be designed to guide problem-

solving and facilitate program

development?

3 RO 3: To develop an introductory IDE

that integrates guided problem-solving

and facilitating program development.

RQ 3: How will the introductory

IDE be developed to integrate guided

problem-solving and facilitate

program development?

4 RO 4: To evaluate the usability of the

introductory IDE to be used in

introductory programming courses.

RQ 4: To what extent is the

introductory IDE usable in

introductory programming courses?

10

1.6 Theoretical and Conceptual Framework of the Research

The research is implemented in two major stages. These two stages are the development

stage and the evaluation stage as shown in the theoretical and conceptual framework in

Figure 1.2. In the first stage, the development of the application is carried out by using

the Rapid Application Development (RAD) Model, which is an incremental software

process development model.

The RAD model is one of the Software Process Models (SPM) that begins with

requirements planning. It is followed by the user design phase where iterative prototype

testing and refining process are done until an agreed prototype is produced. Next, it

Figure 1.2. Research Theoretical and Conceptual Framework

IPO Model

RAD Model

Requirements

Planning

Prototype

Test Refine

User Design Construction Cutover

Stage 2: Application Evaluation

Frame-based

Programming

Constructivism Learning Theory &

Cognitive Load Theory

Stage 1: Application Development

Usability evaluation

ISO 9241-11: Usability
standard

Computational

Thinking

Programming

Visualization

11

proceeds with construction activities in the construction phase until the application is

completely tested in the cutover phase. Then, in the second stage, the software is

evaluated and analyzed by complying with the ISO 9241-11 usability standard.

As the application is intended for the teaching and learning environment, thus

it considers some related learning theories. These theories are the Constructivism

Learning Theory and Cognitive Load Theory, which are supporting the research to

achieve the desired objectives. The Constructivism Learning Theory guides the

application design to focus on constructing cognitive experience. Meanwhile, the

Cognitive Load Theory encourages germane cognitive load to boost programming

learning.

 C-SOLVIS applies the Computational Thinking (CT) concept supported by the

Input-Proses-Output (IPO) Model to guide the problem-solving formulation (Alshaye

et al., 2019). This concept and model help to translate problems into data, mathematical

expressions, logical processes, and computational terms in C language programming

by identifying the variables in the problem. Meanwhile, the program development is

utilizing the frame-based programming concept. In addition, the PV is also applied to

enable users among lecturers and students to show and visualize programming

execution to understand programming behaviour and structure.

12

1.7 Research Scope and Limitations

The development of the application is targeting the teaching and learning of the

introductory programming course in the C language in higher education in Malaysia.

To focus on this scope, this research refers to the Malaysian Polytechnic curriculum

which covers the Programming Fundamentals syllabus, focusing on Topic 2:

Fundamentals of C Language from the Programming Fundamentals course.

The research focuses on designing and developing an introductory IDE

prototype that caters to the problem-solving formulation and programming facilities for

basic scientific and engineering problems which involves simple calculation and

formulas. Therefore, the application can only be used to solve programming problems

that involve basic arithmetic calculations. Although the application design includes the

PV interface design, the construction of the prototype focuses on the integration of

problem-solving with the program development function which does not cover the

construction of PV interfaces.

The application is evaluated on the usability aspect in terms of effectiveness,

efficiency and satisfaction by using the ISO 9241-11 standard. For the evaluation

purpose, a lab sheet that covers the practical activity involving Operators is used during

the application deployment. Although the application is targeting both lecturers and

students of the programming course, the evaluation is done only among the lecturers

due to several access limitations of the application prototype functions and server.

13

1.8 Research Significance

This study is significant as it contributes to the body of knowledge in the software

engineering field. It also contributes to the programming education field as well as other

research communities. The significance of the research is elaborated based on several

parties that can benefit from this study as below:

i. Software engineering body of knowledge

The success of the research can be used as guidance and reference to software

developers and other researchers in software engineering, especially in the field

of educational software. This study shows basic procedures and processes in

software design and development which contribute to a framework for

developing other student-friendly educational software to support educational

needs. It contributes as a guide to conducting requirements planning, software

design, and construction. Moreover, this study has considered a few learning

theories such as the Constructivism Learning Theory and Cognitive Load

Theory to help in designing and developing better educational software.

Besides, it also contributes to the study of software evaluation that involves the

usability evaluation of a software interface design by using specific software

evaluation instruments and methods.

ii. Programming Education

The introductory IDE which was developed in this study contributes to the

production of graduates with a strong foundation of problem-solving and

14

programming skills as it focuses on accelerating the experience acquisition

among the novices based on the Constructivism Learning Theory. A strong

foundation in problem-solving and programming skills is essential to becoming

an expert programmer. Indirectly, this study contributes to the demand for

skilled programmers in IR4.0. Moreover, the study also benefits the lecturers as

the features of this application could facilitate the lecturers in guiding problem-

solving and teaching the C language syntax among novices as it considers the

Cognitive Load Theory in optimizing students’ cognitive ability. Therefore, this

application also contributes to being an option in the programming instructional

tools.

iii. New knowledge for research communities

Researchers may gain useful information and knowledge from this study, which

allows them to explore and conduct further studies related to programming

learning among novices. Since previous studies have focused on the potential

of visual programming and programming visualization, this study highlights

how problem-solving can be integrated with frame-based programming and

programming visualization to enhance the understanding of the subject. The

rigorous study which focuses on this integration has also yielded the connection

between other knowledge concepts such as CT and IPO Model. It has expanded

the ability of CT to be integrated into other models and concepts to produce a

new educational approach to facilitating the teaching and learning process.

15

1.9 Operational Definition

Some terms are being used in this research that needs to be comprehended according to

these operational definitions to support the understanding of the research. This section

defines important terms as the following:

i. Algorithm

A programming algorithm is the organized, logical sequence of a program,

which is represented in the step-by-step computational procedure (Riza et al.,

2019). In the research context, an algorithm is the logical flow of the program

which is often represented before the program is written and can be obtained by

a problem-solving process. It involves calculations or other problem-solving

operations done on input variables to get specific outputs.

ii. Cognitive load

A cognitive load is a load that involves a person’s intellectual activity such as

thinking, reasoning, or remembering (Spieler et al., 2020). In the research

context, cognitive load is categorized according to the Cognitive Load Theory

as intrinsic cognitive load, germane cognitive load and extraneous cognitive

load.

iii. Compiler

A compiler is a special tool that compiles the program written in a high-level

language and converts it into a machine-readable object file (Mulla et al., 2016).

16

In the research context, the compiler is a basic component of the application that

combines different object files to create a single executable file so that the

program can be run.

iv. Computational Thinking

Computational thinking (CT) is a cognitive skill which is most needed by

industries to solve problems with computational solutions, which is also

recognized as a 21st-century skill (Lai & Wong, 2022). In this research context,

CT has been used in developing instructions and inquiries for solving a

programming problem.

v. Debugger

A debugger is used to test and debug a program to locate errors if any so that

the error can be fixed (Heinsen Egan & McDonald, 2014). In the research

context, the debugger is one of the components needed in the application that

can show the position of errors in the program and perform programming

visualization.

vi. Extraneous cognitive load

Extraneous cognitive load is the cognitive load that results from an improper

instructional design that interferes with the learning process and may reduce

instructional effectiveness (Swezller, 1994). In the research context, the

extraneous cognitive load refers to any extra burden that should be eliminated

to alleviate the cognitive load imposed during the learning.

17

vii. Frame-based Programming

Frame-based programming is a type of programming that use instruction blocks

that contain grouped codes based on their patterns (Sim & Lau, 2018). In the

research context, frame-based programming is a technique used to help novices

write a C program from the pre-written codes known as Code Patterns with

modifiable parameters.

viii. Germane Cognitive Load

Germane cognitive load is a non-intrinsic cognitive load that contributes to

learning (Caspersen & Bennedsen, 2007). In the research context, the germane

cognitive load is the relevant and useful cognitive load that is needed to enhance

the learning process.

ix. Intrinsic Cognitive Load

Intrinsic cognitive load is the fixed cognitive load of a content area which is

determined by the relational complexity of the to-be-learned content (Caspersen

& Bennedsen, 2007; Swezller, 1994). In the research context, intrinsic cognitive

load resembles the difficulty level being imposed by the nature of the subject.

x. Introductory IDE

An introductory IDE is an educational software that is designed to support the

learning process (Fiddi, 2015). In the research context, the introductory IDE is

similar to a programming IDE but with simpler facilities. It allows the users to

write and edit their program to be compiled and executed to get the result. At

18

the same time, it is supported with educational features with a novice-friendly

interface.

xi. Misconceptions

Misconceptions are the misunderstood ideas held by students in programming,

which conflict with normally acknowledged programming rules and procedures

(Qian & Lehman, 2017). In the research context, misconceptions are the results

of poor understanding based on incorrect mental models of the program

execution.

xii. Novice programmer

The novice programmer is a computer programmer who is not experienced in

programming (Venigalla et al., 2020). In this research context, the novice

programmer refers to the students who are learning to program in introductory

programming courses. They are unfamiliar with C language programming and

inexperienced in performing problem-solving.

xiii. Pragmatic

Pragmatic is the practical knowledge of the environment and language features

dictated by practical consequences more than by theory (Deek et al., 1999). In

this research context, pragmatic refers to the confidence and knowledge in using

the programming environment, which is the IDE. Pragmatic knowledge reflects

the higher level of programming skills that are often gained after several periods

of experience.

19

xiv. Problem-solving

Problem-solving is the process of finding the solution for a certain issue or

problem. In the research context, problem-solving refers to solving problems

using a programming technique. It is the act of defining a problem, translating

the problem into computer-compatible form, and determining how to write the

solution into a specific programming language to get the problem solved

through a computer program.

xv. Program

In the research context, a program is a set of sequential computational

instructions that are written in a programming language. It is executed to

perform a process that can solve scientific and engineering problems with a

computer.

xvi. Program development

Program development is a process of translating a problem solution into a

computer program, testing and delivering the solution (Deek et al 2000). In the

research context, program development refers to the programming activity to

create a computer program that can be used to solve a problem. This term is also

used in the C-SOLVIS as one of the main functions, which acts similar to an

IDE.

xvii. Program execution

Program execution is the process of running a computer program (Mulla et al.,

2016). In the research context, program execution runs the code to tell the

20

computer to implement instruction step-by-step as written by the programmer

which involves variable update according to the instruction.

xviii. Programming

Programming refers to the activity of writing a computer program that needs

syntactical, semantical, and pragmatical knowledge of a programming language

to solve problems (Scherer et al., 2020). In the research context, programming

is related to the activities of writing, compiling, executing, and debugging a

program code to solve a specific problem.

xix. Programming Visualization

Programming visualization is the activity to show the internal structure and

behaviour of a program that cannot be physically visualized (Shin, 2018). In the

research context, visualization is the formation of visual images of the program

execution state that shows the result of program execution on variables through

a graphical representation.

xx. Prototype

In this research context, a prototype is a preliminary version of the application,

from which the application functionalities are developed after the prototype

design is agreed upon with all stakeholders (Agarwal et al., 2017). The

prototype is subject to the research scope and limitations.

21

xxi. Semantic

Semantic is the logic interpretation and functional meaning of the written

instruction codes in a particular programming language (Deek et al., 1999). In

this research context, semantic refers to the programming conceptual

knowledge which concerns the logical meaning of the C-language instruction.

xxii. Syntax

The syntax is a set of grammatical rules and approved structural patterns of a

specific programming language (Ahadi et al., 2018). In this research context,

syntax refers to the set of C-programming grammatical rules and structural

patterns that govern the use of valid words and symbols for issuing commands

or instructions to make a valid program.

xxiii. Usability

Usability refers to the measure of the ease of use for the user in using the

application (Komiyama et al., 2020). In the research context, usability refers to

the measure of effectiveness, efficiency and satisfaction of the application’s

user interface which refers to the ISO 9241-11 standard (Komiyama et al.,

2020).

xxiv. Variable

From a program perspective, a variable is an element in a program that holds

data with a descriptive name, which is allocated to a specific memory location

22

(Kohn, 2017). In the research context, a variable represents any data or

information that will be operated by programming operations and processes.

1.10 Summary

The research is about overcoming the challenges in programming teaching and learning

which intends to help lecturers in teaching programming with better application and

help the students who are novice programmers in learning programming especially in

problem-solving and developing C programs. Therefore, the C-SOLVIS is proposed to

be developed as an introductory IDE for use in the Programming Fundamentals course.

C-SOLVIS which is developed based on a software development model integrates

problem-solving essence into a program development environment. Supported with

established models, concepts and learning theories, it aims to build a strong

programming foundation to prepare the students for the next challenge in the era of

IR4.0.

The next chapter reviews the related studies on C programming learning that

discovers the difficulties of students in learning programming. Besides, several related

learning theories, models and studies in problem-solving and programming are also

reviewed that initiates the introductory IDE development ideas. It also discusses the

introductory IDE development criteria, software process model for software

development and several standards in the evaluation of software usability.

