

MEASURING EFFICIENCY OF STATIONS IN AN AIRLINE NETWORK: AN APPLICATION OF DATA ENVELOPMENT ANALYSIS

MAD ITHNIN SALLEH

MASTER OF SCIENCE (QUANTITATIVE SCIENCES) **FACULTY OF INFORMATION TECHNOLOGY & QUANTITATIVE SCIENCES** UNIVERSITI TEKNOLOGI MARA

APRIL 2005

Universiti Teknologi MARA

Measuring Efficiency of Stations in an Airline Network: An Application of Data Envelopment **Analysis**

Mad Ithnin Salleh (2003307445) Mohd Isa Yeop (2003213729)

Project submitted in partial fulfillment of the requirements for the degree of

Master of Science (Quantitative Sciences) Faculty of Information Technology & Quantitative Sciences

APRIL 2005

Master of Science (Quantitative Sciences)

ACKNOWLEDGEMENT

Special appreciation to our project supervisors:

Internal - Associate Professor Hasni Hashim, MARA University of Technology, Faculty of Information Technology and Quantitative Sciences

External -En. Mohamed Amirudin Jumaat, Operation Research Manager, Malaysia Airlines, Complex A-ABO103, Sultan Abdul Aziz Airport, 47200 Subang, Selangor Darul Ehsan

TABLE OF CONTENTS

Acknowledgements		pa	i i	
Table of Contents			ii	
List of Tables			v	
List of Figures			vi	
List of Appendices			vii	
Abstract		4	viii	
CHAPTER 1	INTRO	ODUCTION		
	1.1	Background of Organization	1	
	1.2	Problem Statement	2	
	1.3my	Problem Definition Jalil Shah	3	
	1.4	Research Questions	3	
	1.5	Research Objectives	4	
	1.6	Significance of the Project	4	
	1.7	Scope and Limitations of Project	4	
	1.8	Layout of Project Report	5	
CHAPTER 2	LITE	RATURE REVIEW		
	2.1	Introduction	6	
	2.2	Data Envelopment Analysis (DEA)	11	

CHAPTER 3 RESEARCH METHODOLOGY

3.1	Introd	15	
3.2	Study Assumption		
3.3	Research Data		
3.4	Analysis of Data		
3.5	Perfor	17	
	Envel	opment Analysis (DEA)	
3.6	The A	21	
	3.6.1	Developing the Hierarchy	21
	3.6.2	Pairwise Comparison	22
	3.6.3	The Pairwise Comparison Matrix	25
	3.6.4	Synthesization	26
	3.6.5	Consistency	27
	3.6.6	Other Pairwise Comparisons for	28
		the Best Station Problem	

05-4506832 pustaka.upsi.edu.r 3.6.7 Using AHP to Develop OverallustakaTBainur 32 ptbupsi Priority Ranking

ANALYSIS AND RESULT **CHAPTER 4**

4.1	First Analysis		
	4.1.1 Determining the Relative		33
		Efficiency	
	4.1.2	The Station's Ranking on Overall	36
		Performance	
	4.1.3	Identifying Potential	37
		Transformation for Achieving	
		Efficiency	
4.2	Second Analysis		38
	4.2.1	Synthesization	38
	4.2.2	Consistency	40

	4.2.3	Discussion for Other Pairwise	43
		Comparison for the Station	
		Selection Problem	
	4.2.4	Overall Priority Ranking	44
CHAPTER 5	CONCLUS	SION	
	5.1 Introd	uction	46
	5.2 Resea	rch Summary	46
4	5.3 Concl	usions	47
REFERENCES			
APPENDIX 1	The Project	Schedule	
APPENDIX 2	Input and O	Output Data	
APPENDIX 3	Data Envelo	opment Analysis (DEA)-Data	
05-4506832 pustaka.upsi.e	Γable		
		opment Analysis(DEA)-Solution	

List

LIST OF TABLES

			Page
	Table 1:	Input and Output Factor Used in This Study	11
	Table 2:	The Participating Units: The Airline Stations in Selected	16
		Continent	
	Table 3:	The Input and Output Factors	16
	Table 4:	Comparison Scale for the Importance of Criteria Using	24
		AHP	
	Table 5:	Summary Pairwise Comparison of Six Criteria for the Best	25
		Station in Selected Continent	
	Table 6:	The Pairwise Comparison Matrix	26
	Table 7:	Pairwise Comparison Matrices Showing Preference for the	29
		Station Using Each Criterion	
0	Table 8:	Overall Stations Performance for the First Half of Year	35 ptbupsi
		2004	
	Table 9:	Overall Stations Performance for the Second Half of Year	35
		2004	
	Table 10:	Overall Performance Ranking	36
	Table 11:	Suggested Output Augmentation	37
	Table 12:	Priorities for Each Station Using Each Criterion	43

LIST OF FIGURES

		Page
Figure 1:	A Model for Measuring Station Performance	20
Figure 2:	Performance Indicator	20
Figure 3:	Hierarchy for the Best Station Problem	22

LIST OF APPENDICES

Appendix 1: The Project Schedule

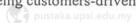
Appendix 2: Input and Output Data

Appendix 3: Data Envelopment Analysis (DEA) - Data Table

Data Envelopment Analysis (DEA) - Solution List Appendix 4:

ABSTRACT

This study attempts to provide a mechanism in measuring relative efficiency of selected five airline stations for the year 2004. The objective is achieved by establishing a set of efficiency indicator particularly in the aspect of relative efficiency covering both input and output factor of the stations. In this context, the relative efficiency of five stations in selected continent involved in the study were using non-parametric technique called Data Envelopment Analysis (DEA). The results of using this method to asses the relative efficiencies of all selected five airline stations are then reported. Outcomes are obtained from seven different specifications of output and input. For overall relative efficiency result, three out of five stations were found to be efficient or productive. These three stations can serve as efficient reference set for the relatively inefficient station for potential improvement.


CHAPTER 1

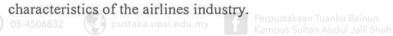
INTRODUCTION

1.1 **Background of Organization**

This study is based on a hypothetical problem in a major networked airline operating in a global environment. The organization chosen is one of the leading carrier airlines company. It is previously a government agency that was later privatized. It embarked on a system of corporate governance that would ensure the fulfillment of its role not only as a major carrier but also as a corporate citizen centered on being responsible to its shareholders. However, this change in business practice did not change the company's focus on being customers-driven.

It is the mission of the airline, as a corporation, to provide a transport service that ranks among the best in terms of safety, comfort and punctuality, distinguished and loved for its personal touch and warmth. The airline aim to set new world standards continuously with enhanced in-flight services, reliable ground support and excellent infrastructure as well as to respond to consumer demand for worldwide coverage.

In this new age of technology, the airline company is committed to being a carrier as well as a responsible corporate citizen in the global economy. The airline also ventures into a diversified operation that is the human resource development, training, catering, property consultancy and technical ground support for aircrafts. The airline also provides world-class cargo management facilities to meet the needs of their partners.



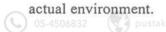
1.2 **Problem Statement**

As the competitive nature of an airline intensifies, the ability of the firm within the industry to withstand extended periods of productive inefficiency diminishes. These firms are no longer able to set the price freely, and the ability to achieve monopoly rent reduces. As a result, these firms have limited cushion before economic losses incurred. As a perfectly competitive emerges, pricing control is agreed to the market and trend towards the marginal cost of the most efficient producer in this industry.

The competitive nature of the airlines industry has become more intense in recent years. The economic recession and industry turmoil resulting from September 11 attack shifted demand downward and reduced it's near term growth rate. There has been highlighted that the tendency for rivalry to increase between firm in an industry when growth in demand slows or slack off all together. The rivalry between firms is further intensified in those situations where inventory is perishable and production costs are highly fixed, both

Economic theory clearly establishes the importance of measuring efficiency in the airline industry. In the face of weak demand, both pricing level and profitability have deteriorated. Those firms with lower level of efficiency are likely to feel the impact of this dynamics more severely. Those without a strong financial base with which to absorb the lost in profitability may, in fact, not survive.

The main focus in this study is to discuss the performance assessment particularly on the aspect of relative efficiency to measure the level of productivity via indicator. We are actually comparing the efficiency among several units of assessment. The concept of efficiency here is the capability of a unit in utilizing input to produce output. In the context of the airline, the units assessed are stations, where they set up their sales office and airport operations. In general the unit of assessment can be defined as the entity proposed to compare its performance with other entities of it kind. The unit of



assessment uses a set of limited resources referred to as input factors to be transformed into a set of outcome referred to as output factor.

As a proactive action to face this kind of stiff competition, the airline tries to evaluate the efficiency of selected stations. This kind of performance measurement will play a role as a management decision-making tool to the management. This performance measurement may help the airline to survive and make profit in the airlines industry.

Problem Definition 1.3

As the competition in the airlines industry become stiffer, an operation research technique shall be applied to help the airline faces this situation. In the current situation the airline tries to assess the performance of it stations the selected continent in terms of relative efficiency measures. This is a hypothetical study using a set of data based on an

1.4 **Research Questions**

The research questions involved in this project including:

- 1. How data envelopment analysis enables the airline to calculate the relative efficiency of it's five stations?
- 2. Which stations comprise the reference sets for the inefficient stations?
- 3. Which station can serve as a reference center for improvement to other station?

1.5 Research Objectives

The objectives of this research are:

- 1. To compute the relative efficiency of the airline's five selected stations.
- 2. To identify the efficiency reference set for the relatively inefficient station for potential improvements.

1.6 Significance of the Project

There should be numerous benefits that the airline can be achieved from this project. Some of them are:

- 1. To gain better insight into the performance of each station.
- 2. To identify efficient operating practices in which can be disseminate to all other station so that they will improve their performances.
- To generate potential improvements for inefficient units and re-allocate limited resources to improve productivity.
- To provide an intellectual advantage to managers who may be involved in relative efficiency analysis in the other problem.

1.7 Scope and Limitations of the Project

For the purpose of adequate data, this study will take into consideration only the selected five stations namely Station A, Station B, Station C, Station D and Station E. This study will cover only on the selected stations. There are some reasons why the selected stations were chosen in this study. One of the reasons is to strengthen the airline's market presence at the selected stations location.

Another reason for choosing the selected station for this study is because it is expected that the chosen ones are the airline's engine of growth for the next few years to complement and support company long-haul flights whereby identifying and exploiting new areas of growth is a central pillar of company business plan.

Besides that, the demand for airfreight is expected to grow strongly where, the forecasted world average cargo traffic annual growth is 5.5% with Asia to lead the growth in airfreight demand. On this basis, the airline's freighter services will further build on its strength in the named stations, with emphasis on the selected markets to improve yield and overall revenue with the main trade lanes from the named and Far East into Europe and Australia in which is also another reason to choose the selected stations in this study.

From the schedule shown in APPENDIX 1, it takes about four months from the project proposal submission to the final project presentation. The scope in this study shall be reasonably restricted by the time constraint, as Sultan Abdul Jalil Shah

Since this project applies actual historical data from the airlines business, it is important to realize that restricted information is accessible and some information may not be revealed.

1.8 Layout of the Project

In chapter 1 the problem statement, research questions, research objectives, significance of the project, scope and limitations of the project are discussed. In the chapter 2 the literature reviews from the previous research is done are given. Where as in chapter 3 the methodology used in research shall be explained. While in chapter 4 the results of the study shall be discussed. Overall conclusion of the study shall be discussed in last chapter.

