UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :article
Subject :H Social Sciences
ISSN :0127-9696
Main Author :Juliana Jumadi
Additional Authors :Azlan Kamari
Nurulsaidah Abdul Rahim
Norjan Yusof
Title :Ferrihydrite-Chitosan Nanocomposite As A Recyclable Flocculant For Palm Oil Mill Effluent
Place of Production :Tanjung Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2023
Notes :Jurnal Teknologi
Corporate Name :Universiti Pendidikan Sultan Idris
HTTP Link :Click to view web link

Abstract : Universiti Pendidikan Sultan Idris
In the present study, ferrihydrite-chitosan nanocomposite (FCN) was successfully produced by co-precipitation method and used for the first time as a recyclable flocculant for pre-treatment of palm oil mill effluent (POME). The physicochemical properties of FCN were studied using Raman spectrometer, Scanning Electron Microscope (SEM) and Thermogravimetric Analyser (TGA). The feasibility of FCN to remove total suspended solids (TSS), turbidity, chemical oxygen demand (COD), and, oil and grease (O&G) from POME was investigated using a jar test method. The optimum conditions for contaminant removal from POME were determined by varying the experimental parameters such as flocculant dosage, solution pH and settling time. The results obtained showed that FCN, at a dosage of 1.5 g/L, a contact time of 60 min and pH of 5.0 gave a highest reduction of turbidity, TSS, COD and O&G levels by 72.38%, 77.32%, 71.60% and 53.40%, respectively. Besides that, FCN exhibited a better flocculation performance as compared to alum and chitosan. After three cycles of flocculation/deflocculation process, FCN retained satisfying flocculation efficiency and flocculants recovery in the range of 80-83% and 43.2-78.6%, respectively. Combination of charge neutralisation and polymer bridging was the main key mechanism of interaction between FCN and POME contaminants. The synergy effect between iron oxide/oxyhydroxide nanoparticle and chitosan has increased the physicochemical properties and flocculation performance of the FCN nanocomposite. Overall, FCN nanocomposite can be used an alternative flocculant for POME treatment. 2024, Penerbit UTM Press. All rights reserved.

References

Malaysian Palm Oil Council. 2022. Nutrition & Health. https://mpoc.org.my/nutrition-health.

Kumaran, P., Hephzibah, D., Sivasankari, R., Saifuddin, N. and Sahamsuddin A. H. 2016. A Review on Industrial Scale Anaerobic Digestion Systems Deployment in Malaysia: Opportunities and Challenges. Renewable and Sustainable Energy Reviews. 56: 929-940. https://doi.org/10.1016/j.rser.2015.11.069.

Adela, B. N., Muzzammil, N., Loh, S. K. and Choo, Y. M. 2014. Characteristic of Palm Oil Mill Effluent (POME) in an Anaerobic Biogas Digester. Asian Journal of Mircobiology, Biotechnology & Environmental Sciences. 16(1): 225-231.

Jumadi, J., Kamari, A., Hargreaves, J. S. J. and Yusof. N. 2020. A Review of Nano-based Materials used as Flocculants for Water Treatment. International Journal of Environmental Science and Technology. 17: 3571-3594. https://doi.org/10.1007/s13762-020-02723-y.

Bala, J. D., Lalung, J., Al-Gheethi, A. A. S., Kaizar, H. and Ismail, N. 2018. Reduction of Organic Load and Biodegradation of Palm Oil Mill Effluent by Aerobic Indigenous Mixed Microbial Consortium Isolated from Palm Oil Mill Effluent (POME). Water Conservation Science and Engineering. 3(3): 139-156. https://doi.org/10.1007/s41101-018-0043-9.

Bashir, I., Lone, F. A., Bhat, R. A., Mir, S. A., Dar, Z. A. and Dar, S. A. 2020. Concerns and Threats of Contamination on Aquatic Ecosystems. Bioremediation and Biotechnology: Sustainable Approaches to Pollution Degradation. 1-26. https://doi.org/10.1007/978-3-030-35691-0_1.

Kamyab, H., Chelliapan, S., Din, M. F. M., Rezania, S., Khademi, T. and Kumar, A. 2018. Palm Oil Mill Effluent as an Environmental Pollutant. In (Ed.). Palm Oil. IntechOpen. https://doi.org/10.5772/intechopen.75811.

Chan, Y. J. and Chong M. F. 2019. Palm Oil Mill Effluent (POME) Treatment - Current Technologies, Biogas Capture and Challenges. In: Foo D., Tun Abdul Aziz M. (eds). Green Technologies for the Oil Palm Industry. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-2236-5_4.

Mohammad, S., Baidurah, S., Kobayashi, T., Ismail, N., and Leh, C. P. 2021. Palm Oil Mill Effluent Treatment Processes—A Review. Processes. 9(5): 739. https://doi.org/10.3390/pr9050739.

Jumadi, J., Kamari, A., Abdul Rahim, N., Yusof, N., and Fatimah, I. 2022. Remediation of Palm Oil Mill Effluent (POME) using Selected Biological Techniques: A Mini Review. Jurnal Teknologi. 84(5): 93-103. https://doi.org/10.11113/jurnalteknologi.v84.18013.

Yusoff, M. S., Aziz, H. A., Zamri, M. F. M. A., Suja’, F., Abdullah, A. Z. and Basri, N. E. A. 2018. Floc Behavior and Removal Mechanisms of Cross-linked Durio zibethinus Seed Starch as a Natural Flocculant for Landfill Leachate Coagulation-Flocculation Treatment. Waste Management. 74: 362-372. https://doi.org/10.1016/j.wasman.2018.01.016.

Halakarni, M., Mahto, A., Aruchamy, K., Mondal, D. and Nataraj, S. K. 2020. Developing Helical Carbon Functionalized Chitosan-based Loose Nanofiltration Membranes for Selective Separation and Wastewater Treatment. Chemical Engineering Journal. 417: 127911. https://doi.org/10.1016/j.cej.2020.127911.

Brion-Roby, R., Gagnon, J., Deschênes, J. -S. and Chabot, B. 2018. Investigation of Fixed Bed Adsorption Column Operation Parameters using a Chitosan Material for Treatment of Arsenate Contaminated Water. Journal of Environmental Chemical Engineering. 6(1): 505-511. https://doi.org/10.1016/j.jece.2017.12.032.

Halim, A. L. A., Kamari, A. and Phillip, E. 2018. Chitosan, Gelatin and Methylcellulose Films Incorporated with Tannic Acid for Food Packaging. International Journal of Biological Macromolecules. 120(Part A): 1119-1126. https://doi.org/10.1016/j.ijbiomac.2018.08.169.

Yusoff, S. N. M., Kamari, A., Ishak, S. and Halim, A. L. A. 2018. N-hexanoyl-O-glycol Chitosan as a Carrier Agent for Water-insoluble Herbicide. Journal of Physics: Conference Series, 1097: 012053.

França, D., Medina, Â. F., Messa, L. L., Souza, C. F. and Faez, R. 2018. Chitosan Spray-dried Microcapsule and Microsphere as Fertilizer Host for Swellable − Controlled Release Materials. Carbohydrate Polymers. 196: 47-55. https://doi.org/10.1016/j.carbpol.2018.05.014.

Tripathi, N., Choppala, G., Singh, R. S. and Hills, C. D. 2017. Impact of Modified Chitosan on Pore Water Bioavailability of Zinc in Contaminated Soil. Journal of Geochemical Exploration. 186: 94-99. https://doi.org/10.1016/j.gexplo.2017.12.005.

Yang, Z., Miao, H., Rui, Z. and Ji, H. 2019. Enhanced Formaldehyde Removal from Air using Fully Biodegradable Chitosan Grafted β-cyclodextrin Adsorbent with Weak Chemical Interaction. Polymers. 11(2): 276. https://doi.org/10.3390/polym11020276.

Chik, C. E. N. C. E., Kurniawan, S. B., Shukri, Z. N. A., Terkula, I. B., Wahab, F., Endut, A., Lananan, F., Hasan, H. A., Abdullah, S. R. S., and Kasan, N. A. 2023. Chitosan Coagulant: Coagulation/Flocculation Studies on Turbidity Removal from Aquaculture Wastewater by Response Surface Methodology. International Journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-023-04989-4.

Saiyad, M., Shah, N., Joshipura, M., Dwivedi, A., and Pillai, S. 2023. Chitosan and its Derivatives in Wastewater Treatment Application. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.10.157.

Abdullah, N. H., Shameli, K., Abdullah, E. C. and Abdullah, L. C. 2018. Solid Matrices for fabrication of magnetic iron oxide nanocomposites: Synthesis, Properties, and Application for the Adsorption of Heavy Metal Ions and Dyes. Composites Part B: Engineering. 162: 538-568. https://doi.org/10.1016/j.compositesb.2018.12.075.

Gutierrez, A. M., Dziubla, T. D. and Hilt, J. Z. 2017. Recent Advances on Iron Oxide Magnetic Nanoparticles as Sorbents of Organic Pollutants in Water and Wastewater Treatment. Reviews on Environmental Health. 32(1-2): 111-117. https://doi.org/10.1515/reveh-2016-0063.

Chaiyarat, A. and Saejung, C. 2022. Photosynthetic Bacteria with Iron Oxide Nanoparticles as Catalyst for Cooking Oil Removal and Valuable Products Recovery with Heavy Metal Co-contamination. Waste Management. 140: 81-89. https://doi.org/10.1016/j.wasman.2022.01.005.

Ali, A., Zafar, H., Zia, M., ul Haq, I., Phull, A. R., Ali, J. S. and Hussain, A. 2016. Synthesis, Characterization, Applications, and Challenges of Iron Oxide Nanoparticles. Nanotechnology, Science and Applications. 9: 49-67. https://dx.doi.org/10.2147%2FNSA.S99986.

Wu, W., He, Q. and Jiang, C. 2008. Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Functionalization Strategies. Nanoscale Research Letters. 3: 397. https://doi.org/10.1007/s11671-008-9174-9.

Chisty, A. H., Rahman, M. M. 2022. Insight Of Iron Oxide-Chitosan Nanocomposites for Drug Delivery. In: Pandey, L.M., Hasan, A. (eds). Nanoscale Engineering of Biomaterials: Properties and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-16-3667-7_22.

Singh, S., Singh, G., and Bala, N. 2021. Synthesis and Characterization of Iron Oxide-hydroxyapatite-chitosan Composite Coating and Its Biological Assessment for Biomedical Applications. Progress in Organic Coatings. 150: 106011. https://doi.org/10.1016/j.porgcoat.2020.106011.

Samejo, S., Baig, J. A., Uddin, S., Kazi, T. G., Afridi, H. I., Hol, A., Ali, F. I., Hussain, S., Akhtar, K., Perveen, S., and Bhutto, A. A. 2023. Green Synthesis of Iron Oxide Nanobiocomposite for the Adsorptive Removal of Heavy Metals from the Drinking Water. Materials Chemistry and Physics. 303: 127807. https://doi.org/10.1016/j.matchemphys.2023.127807.

Sarojini, G., Kannan, P., Rajamohan, N., and Rajasimman, M. 2023. Bio-fabrication of Porous Magnetic Chitosan/Fe3O4 Nanocomposite using Azolla Pinnata for Removal of Chromium- Parametric Effects, Surface Characterization and Kinetics. Environmental Research. 218: 114822. https://doi.org/10.1016/j.envres.2022.114822.

Jumadi, J., Kamari, A., Rahim, N. A., Wong, S. T. S., Yusoff, S. N. M., Ishak, S., Abdulrasool, M. M., and Kumaran, S. 2019. Removal of Methylene Blue and Congo Red by Magnetic Chitosan Nanocomposite: Characterization and Adsorption Studies. Journal of Physics: Conference Series. 1397: 012027. https://doi.org/10.1088/1742-6596/1397/1/012027.

Villacís-García, M., Ugalde-Arzate, M., Vaca-Escobar, K., Villalobos, M., Zanella, R., and Martínez-Villegas, N. 2015. Laboratory Synthesis of Goethite and Ferrihydrite of Controlled Particle Sizes. Boletín de la Sociedad Geológica Mexicana. 67(3): 433-446.

Pham, X. N., Nguyen, T. P., Pham, T. N., Tran, T. T. N., & Tran, T. V. T. 2016. Synthesis and Characterization of Chitosan-coated Magnetite Nanoparticles and Their Application in Curcumin Drug Delivery. Advances in Natural Sciences: Nanoscience and Nanotechnology. 7: 045010.

Saritha, V., Srinivas, N. and Srikanth Vuppala, N. V. 2017. Analysis and Optimization of Coagulation and Flocculation Process. Applied Water Science. 7(1): 451-460. https://doi.org/10.1007/s13201-014-0262-y.


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.