UPSI Digital Repository (UDRep)
|
![]() |
|
|
Abstract : Universiti Pendidikan Sultan Idris |
Intrusion detection systems (IDSs) employ sophisticated security techniques to detect malicious activities on hosts and/or networks. IDSs have been utilized to ensure the security of computer and network systems. However, numerous evaluation and selection issues related to several cybersecurity aspects of IDSs were solved using a decision support approach. The approach most often utilized for decision support in this regard is multi-Attribute decision-making (MADM). MADM can aid in selecting the most optimal solution from a huge pool of available alternatives when the appropriate evaluation attributes are provided. The openness of the MADM methods in solving numerous cybersecurity issues makes it largely efficient for IDS applications. We must first understand the available solutions and gaps in this area of research to provide an insightful analysis of the combination of MADM techniques with IDS and support researchers. Therefore, this study conducts a systematic review to organize the research landscape into a consistent taxonomy. A total of 28 articles were considered for this taxonomy and were classified into three main categories: data analysis and detection (n=4), response selection (n=7) and IDS evaluation (n=17). Each category was thoroughly analyzed in terms of a variety of aspects, including the issues and challenges confronted, as well as the contributions of each study. Furthermore, the datasets, evaluation attributes, MADM methods, evaluation and validation and bibliography analysis used by the selected articles are discussed. In this study, we highlighted the existing perspective and opportunities for MADM in the IDS literature through a systematic review, providing researchers with a valuable reference. 2023 World Scientific Publishing Company. |
References |
Abushark, Y. B., Khan, A. I., Alsolami, F., Almalawi, A., Alam, M. M., Agrawal, A., Kumar, R., & Khan, R. A. (2022). Cyber Security Analysis and Evaluation for Intrusion Detection Systems. Computers, Materials and Continua, 72(1), 1765–1783. https://doi.org/10.32604/cmc.2022.025604 Albahri, O. S., Zaidan, A. A., Salih, M. M., Zaidan, B. B., Khatari, M. A., Ahmed, M. A., Albahri, A. S., & Alazab, M. (2021). Multidimensional benchmarking of the active queue management methods of network congestion control based on extension of fuzzy decision by opinion score method. International Journal of Intelligent Systems, 36(2), 796–831. https://doi.org/10.1002/int.22322 Alharbi, A., Seh, A. H., Alosaimi, W., Alyami, H., Agrawal, A., Kumar, R., & Khan, R. A. (2021). Analyzing the impact of cyber security related attributes for intrusion detection systems. Sustainability (Switzerland), 13(22). https://doi.org/10.3390/su132212337 Alinezhad, A., & Khalili, J. (2019). New methods and applications in multiple attribute decision making (Madm). In International Series in Operations Research and Management Science (Vol. 277). https://doi.org/10.1007/978-3-030-15009-9 Alsalem, M. A., Mohammed, R., Albahri, O. S., Zaidan, A. A., Alamoodi, A. H., Dawood, K., Alnoor, A., Albahri, A. S., Zaidan, B. B., Aickelin, U., Alazab, M., & Jumaah, F. (2022). Rise of multiattribute decision-making in combating COVID-19: A systematic review of the state-of-the-art literature. International Journal of Intelligent Systems, 37(6), 3514–3624. https://doi.org/10.1002/int.22699 Alyami, H., Ansari, M. T. J., Alharbi, A., Alosaimi, W., Alshammari, M., Pandey, D., Agrawal, A., Kumar, R., & Khan, R. A. (2022). Effectiveness Evaluation of Different IDSs Using Integrated Fuzzy MCDM Model. Electronics (Switzerland), 11(6). https://doi.org/10.3390/electronics11060859 Beck, M., & Tews, E. (2009). Practical attacks against WEP and WPA. Proceedings of the 2nd ACM Conference on Wireless Network Security, WiSec’09, 79–85. https://doi.org/10.1145/1514274.1514286 Çavuşoğlu, Ü. (2019). A new hybrid approach for intrusion detection using machine learning methods. Applied Intelligence, 49(7), 2735–2761. https://doi.org/10.1007/s10489-018-01408-x Choi, M.-K., Robles, R. J., Hong, C.-H., & Kim, T.-H. (2008). Wireless network security: Vulnerabilities, threats and countermeasures. International Journal of Multimedia and Ubiquitous Engineering, 3(3), 77–86. Day, D. J., Flores, D. A., & Lallie, H. S. (2012). CONDOR: A hybrid IDS to offer improved intrusion detection. Proc. of the 11th IEEE Int. Conference on Trust, Security and Privacy in Computing and Communications, TrustCom-2012 - 11th IEEE Int. Conference on Ubiquitous Computing and Communications, IUCC-2012, 931–936. https://doi.org/10.1109/TrustCom.2012.110 de La Hoz, E., de La Hoz, E., Ortiz, A., Ortega, J., & Martínez-Álvarez, A. (2014). Feature selection by multi-objective optimisation: Application to network anomaly detection by hierarchical self-organising maps. Knowledge-Based Systems, 71, 322–338. https://doi.org/10.1016/j.knosys.2014.08.013 Debar, H., Dacier, M., & Wespi, A. (1999). Towards a taxonomy of intrusion-detection systems. Computer Networks, 31(8), 805–822. https://doi.org/10.1016/S1389-1286(98)00017-6 Delgado, N., Gates, A. Q., & Roach, S. (2004). A taxonomy and catalog of runtime software-fault monitoring tools. IEEE Transactions on Software Engineering, 30(12), 859–872. https://doi.org/10.1109/TSE.2004.91 Denning, D. E. (1987). An Intrusion-Detection Model. IEEE Transactions on Software Engineering, SE-13(2), 222–232. https://doi.org/10.1109/TSE.1987.232894 DeSanctis, G., & Gallupe, R. B. (1987). FOUNDATION FOR THE STUDY OF GROUP DECISION SUPPORT SYSTEMS. Management Science, 33(5), 589–609. https://doi.org/10.1287/mnsc.33.5.589 El-Alfy, E.-S. M., & Al-Obeidat, F. N. (2014). A multicriterion fuzzy classification method with greedy attribute selection for anomaly-based intrusion detection. Procedia Computer Science, 34, 55–62. https://doi.org/10.1016/j.procs.2014.07.037 El-Alfy, E.-S. M., & Al-Obeidat, F. N. (2015). Detecting Cyber-Attacks on Wireless Mobile Networks Using Multicriterion Fuzzy Classifier with Genetic Attribute Selection. Mobile Information Systems, 2015. https://doi.org/10.1155/2015/585432 Estevez-Tapiador, J. M., Garcia-Teodoro, P., & Diaz-Verdejo, J. E. (2004). Anomaly detection methods in wired networks: A survey and taxonomy. Computer Communications, 27(16), 1569–1584. https://doi.org/10.1016/j.comcom.2004.07.002 Fei, L., & Deng, Y. (2020). Multi-criteria decision making in Pythagorean fuzzy environment. Applied Intelligence, 50(2), 537–561. https://doi.org/10.1007/s10489-019-01532-2 García-Teodoro, P., Díaz-Verdejo, J., Maciá-Fernández, G., & Vázquez, E. (2009). Anomaly-based network intrusion detection: Techniques, systems and challenges. Computers and Security, 28(1–2), 18–28. https://doi.org/10.1016/j.cose.2008.08.003 Ikram, S. T., Cherukuri, A. K., Poorva, B., Ushasree, P. S., Zhang, Y., Liu, X., & Li, G. (2021). Anomaly Detection Using XGBoost Ensemble of Deep Neural Network Models. Cybernetics and Information Technologies, 21(3), 175–188. https://doi.org/10.2478/cait-2021-0037 Inayat, Z., Gani, A., Anuar, N. B., Khan, M. K., & Anwar, S. (2016). Intrusion response systems: Foundations, design, and challenges. Journal of Network and Computer Applications, 62, 53–74. https://doi.org/10.1016/j.jnca.2015.12.006 Kabiri, P., & Ghorbani, A. A. (2005). Research on intrusion detection and response: A survey. International Journal of Network Security, 1(2), 84–102. Khasawneh, M., Kajman, I., Alkhudaidy, R., & Althubyani, A. (2014). A Survey on Wi-Fi Protocols: WPA and WPA2. In Communications in Computer and Information Science: Vol. 420 CCIS. https://doi.org/10.1007/978-3-642-54525-2_44 Krishnan, E., Mohammed, R., Alnoor, A., Albahri, O. S., Zaidan, A. A., Alsattar, H., Albahri, A. S., Zaidan, B. B., Kou, G., Hamid, R. A., Alamoodi, A. H., & Alazab, M. (2021). Interval type 2 trapezoidal-fuzzy weighted with zero inconsistency combined with VIKOR for evaluating smart e-tourism applications. International Journal of Intelligent Systems, 36(9), 4723–4774. https://doi.org/10.1002/int.22489 Kunal, & Dua, M. (2020). Attribute Selection and Ensemble Classifier based Novel Approach to Intrusion Detection System. Procedia Computer Science, 167, 2191–2199. https://doi.org/10.1016/j.procs.2020.03.271 Lashkari, A. H., Danesh, M. M. S., & Samadi, B. (2009). A survey on wireless security protocols (WEP,WPA and WPA2/802.11i). Proceedings - 2009 2nd IEEE International Conference on Computer Science and Information Technology, ICCSIT 2009, 48–52. https://doi.org/10.1109/ICCSIT.2009.5234856 Li, L., Yu, Y., Bai, S., Hou, Y., & Chen, X. (2017). An Effective Two-Step Intrusion Detection Approach Based on Binary Classification and κ-NN. IEEE Access, 6, 12060–12073. https://doi.org/10.1109/ACCESS.2017.2787719 Liang, J., Ma, M., Sadiq, M., & Yeung, K.-H. (2019). A filter model for intrusion detection system in Vehicle Ad Hoc Networks: A hidden Markov methodology. Knowledge-Based Systems, 163, 611–623. https://doi.org/10.1016/j.knosys.2018.09.022 Liao, H.-J., Richard Lin, C.-H., Lin, Y.-C., & Tung, K.-Y. (2013). Intrusion detection system: A comprehensive review. Journal of Network and Computer Applications, 36(1), 16–24. https://doi.org/10.1016/j.jnca.2012.09.004 Liu, Q., Wang, D., Jia, Y., Luo, S., & Wang, C. (2022). A multi-task based deep learning approach for intrusion detection. Knowledge-Based Systems, 238. https://doi.org/10.1016/j.knosys.2021.107852 Lunt, T. F. (1993). A survey of intrusion detection techniques. Computers and Security, 12(4), 405–418. https://doi.org/10.1016/0167-4048(93)90029-5 Mishra, A., Nadkarni, K., & Patcha, A. (2004). Intrusion Detection in Wireless Ad Hoc Networks. IEEE Wireless Communications, 11(1), 48–60. https://doi.org/10.1109/MWC.2004.1269717 Mukherjee, B. (1994). The Role of Customer-Premises Bandwidth Management: In the evolving era of high-speed wide-area networking, customer premises bandwidth management should offer economic advantages well into the future. IEEE Network, 8(3), 26–41. https://doi.org/10.1109/65.283931 Mukkamala, S., & Sung, A. H. (2003). A Comparative Study of Techniques for Intrusion Detection. Proceedings of the International Conference on Tools with Artificial Intelligence, 570–577. Nadeem, M., Al-Amri, J. F., Subahi, A. F., Seh, A. H., Khan, S. A., Agrawal, A., & Khan, R. A. (2022). Multi-level hesitant fuzzy based model for usable-security assessment. Intelligent Automation and Soft Computing, 31(1), 61–82. https://doi.org/10.32604/IASC.2022.019624 Nespoli, P., Papamartzivanos, D., Mármol, F. G., & Kambourakis, G. (2018). Optimal Countermeasures Selection Against Cyber Attacks: A Comprehensive Survey on Reaction Frameworks. IEEE Communications Surveys and Tutorials, 20(2), 1361–1396. https://doi.org/10.1109/COMST.2017.2781126 Patcha, A., & Park, J.-M. (2007). An overview of anomaly detection techniques: Existing solutions and latest technological trends. Computer Networks, 51(12), 3448–3470. https://doi.org/10.1016/j.comnet.2007.02.001 Peng, J.-J., Wang, J.-Q., Wang, J., Yang, L.-J., & Chen, X.-H. (2015). An extension of ELECTRE to multi-criteria decision-making problems with multi-hesitant fuzzy sets. Information Sciences, 307, 113–126. https://doi.org/10.1016/j.ins.2015.02.030 Priyadarshini, I., Kumar, R., Sharma, R., Singh, P. K., & Satapathy, S. C. (2021). Identifying cyber insecurities in trustworthy space and energy sector for smart grids. Computers and Electrical Engineering, 93. https://doi.org/10.1016/j.compeleceng.2021.107204 Puthal, D., Mohanty, S. P., Nanda, P., & Choppali, U. (2017). Building Security Perimeters to Protect Network Systems Against Cyber Threats [Future Directions]. IEEE Consumer Electronics Magazine, 6(4), 24–27. https://doi.org/10.1109/MCE.2017.2714744 Robinson, R. R. R., & Thomas, C. (2016). Ranking of machine learning algorithms based on the performance in classifying DDoS attacks. 2015 IEEE Recent Advances in Intelligent Computational Systems, RAICS 2015, 185–190. https://doi.org/10.1109/RAICS.2015.7488411 Salih, M. M., Zaidan, B. B., & Zaidan, A. A. (2020). Fuzzy decision by opinion score method. Applied Soft Computing Journal, 96. https://doi.org/10.1016/j.asoc.2020.106595 Shameli-Sendi, A., Louafi, H., He, W., & Cheriet, M. (2018). Dynamic Optimal Countermeasure Selection for Intrusion Response System. IEEE Transactions on Dependable and Secure Computing, 15(5), 755–770. https://doi.org/10.1109/TDSC.2016.2615622 Shanian, A., & Savadogo, O. (2006). A material selection model based on the concept of multiple attribute decision making. Materials and Design, 27(4), 329–337. https://doi.org/10.1016/j.matdes.2004.10.027 Singh, D. K., & Kaushik, P. (2019). Intrusion response prioritization based on fuzzy ELECTRE multiple criteria decision making technique. Journal of Information Security and Applications, 48. https://doi.org/10.1016/j.jisa.2019.102359 Smarandache, F. (2010). α-Discounting Method for Multi-Criteria Decision Making (α-D MCDM). 13th Conference on Information Fusion, Fusion 2010. Sultana, N., Chilamkurti, N., Peng, W., & Alhadad, R. (2019). Survey on SDN based network intrusion detection system using machine learning approaches. Peer-to-Peer Networking and Applications, 12(2), 493–501. https://doi.org/10.1007/s12083-017-0630-0 Sumaiya Thaseen, I., & Aswani Kumar, C. (2017). Intrusion detection model using fusion of chi-square feature selection and multi class SVM. Journal of King Saud University - Computer and Information Sciences, 29(4), 462–472. https://doi.org/10.1016/j.jksuci.2015.12.004 Tabrizi, F. M., & Pattabiraman, K. (2016). Flexible Intrusion Detection Systems for Memory-Constrained Embedded Systems. Proceedings - 2015 11th European Dependable Computing Conference, EDCC 2015, 1–12. https://doi.org/10.1109/EDCC.2015.17 Torkayesh, A. E., Vandchali, H. R., & Tirkolaee, E. B. (2021). Multi-objective optimization for healthcare waste management network design with sustainability perspective. Sustainability (Switzerland), 13(15). https://doi.org/10.3390/su13158279 Tsai, C.-F., Hsu, Y.-F., Lin, C.-Y., & Lin, W.-Y. (2009). Intrusion detection by machine learning: A review. Expert Systems with Applications, 36(10), 11994–12000. https://doi.org/10.1016/j.eswa.2009.05.029 Tucker, C. J., Furnell, S. M., Ghita, B. V., & Brooke, P. J. (2007). A new taxonomy for comparing intrusion detection systems. Internet Research, 17(1), 88–98. https://doi.org/10.1108/10662240710730515 Verma, R., & Chandra, S. (2021). Interval-Valued Intuitionistic Fuzzy-Analytic Hierarchy Process for evaluating the impact of security attributes in Fog based Internet of Things paradigm. Computer Communications, 175, 35–46. https://doi.org/10.1016/j.comcom.2021.04.019 Vijayakumar, K. P., & Ganeshkumar, P. (2019). Jamming detection approach based on fuzzy assisted multicriteria decision-making system for wireless sensor networks. International Journal of Communication Systems, 32(12). https://doi.org/10.1002/dac.4010 Xiang, G., Jin, H., Zou, D., Zhang, X., Wen, S., & Zhao, F. (2010). VMDriver: A driver-based monitoring mechanism for virtualization. Proceedings of the IEEE Symposium on Reliable Distributed Systems, 72–81. https://doi.org/10.1109/SRDS.2010.38 Yan, Q., Gong, Q., & Deng, F.-A. (2016). Detection of DDoS attacks against wireless SDN controllers based on the fuzzy synthetic evaluation decision-making model. Ad-Hoc and Sensor Wireless Networks, 33(1–4), 275–299. Yin, C., Zhu, Y., Fei, J., & He, X. (2017). A Deep Learning Approach for Intrusion Detection Using Recurrent Neural Networks. IEEE Access, 5, 21954–21961. https://doi.org/10.1109/ACCESS.2017.2762418 Yoon, M.-K., Mohan, S., Choi, J., Kim, J.-E., & Sha, L. (2013). SecureCore: A multicore-based intrusion detection architecture for real-time embedded systems. Real-Time Technology and Applications - Proceedings, 21–32. https://doi.org/10.1109/RTAS.2013.6531076 Young, C., Zambreno, J., Olufowobi, H., & Bloom, G. (2019). Survey of automotive controller area network intrusion detection systems. IEEE Design and Test, 36(6), 48–55. https://doi.org/10.1109/MDAT.2019.2899062 Zbakh, M., Elmahdi, K., Cherkaoui, R., & Enniari, S. (2015). A multi-criteria analysis of intrusion detection architectures in cloud environments. Proceedings of 2015 International Conference on Cloud Computing Technologies and Applications, CloudTech 2015. https://doi.org/10.1109/CloudTech.2015.7336967 Zimmer, C., Bhat, B., Mueller, F., & Mohan, S. (2010). Time-based intrusion detection in cyber-physical systems. Proceedings of the 1st ACM/IEEE International Conference on Cyber-Physical Systems, ICCPS ’10, 109–118. https://doi.org/10.1145/1795194.1795210 |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |