UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :Article
Subject :Q Science (General)
ISBN :1530-437X
Main Author :Illyas Md Isa
Additional Authors :
  • Suriani Abu Bakar
Title :Improved CH4 detection utilizing Pt-decorated ZnO Nanorods-coated on a dynamic microcantilever surface
Hits :110
Place of Production :Tanjung Malim
Publisher :Fakulti Sains & Matematik
Year of Publication :2024
Notes :IEEE Sensors Journal
Corporate Name :Universiti Pendidikan Sultan Idris
HTTP Link : Click to view web link
PDF Full Text :You have no permission to view this item.

Abstract : Universiti Pendidikan Sultan Idris
Detecting methane (CH4) at room temperature through adsorption-based sensing poses a challenge due to its inert properties. In this study, we enhance both the sensitivity and selectivity of CH4 detection by decorating ZnO nanorods (ZNRs) with platinum (Pt), forming Pt-decorated ZNRs (PZNRs), which are then coated on a microcantilever surface. The sensor's response is monitored by measuring the resonance frequency shift, ranging from 3 to 20 Hz, and Q-factor of 194 to 208, as CH4 flows at rates of 10-100 mL/min under room temperature conditions. The introduction of Pt significantly enhances the sensor's sensitivity to picogram levels, enabling the detection of extremely low concentrations of CH4. To assess the sensor's selectivity, we compared its response to CH4 with that of carbon monoxide (CO). The results demonstrate that the sensor exhibits a substantially higher response to CH4, with CO detection showing minimal (9-19 times smaller than CH4) or no response. The presence of Pt atoms improves the ability of the PZNR surface to interact with CH4, which is further substantiated by density functional theory (DFT) analyses. These analyses reveal that the PZNRs exhibit greater selectivity toward CH4 than CO, as indicated by the more negative adsorption energy for CH4, suggesting a more stable and favorable adsorption configuration. The combination of high sensitivity, exceptional selectivity, and room temperature operation makes this sensor a highly effective and advantageous solution for CH4 detection, with potential applications in environmental monitoring, industrial safety, and energy sectors. © 2001-2012 IEEE.

References

C. Liao et al., “Design and realization of 3D printed fiber-tip microcantilever probes applied to hydrogen sensing,” Light, Adv. Manuf., vol. 3, no. 1, p. 1, 2022, doi: 10.37188/LAM.2022.005.

M. Qazi and G. Koley, “NO2 detection using microcantilever based potentiometry,” Sensors, vol. 8, no. 11, pp. 7144–7156, Nov. 2008, doi:10.3390/S8117144.

L. Aprilia et al., “CO gas-induced resonance frequency shift of ZnO-functionalized microcantilever in humid air,” J. Nanomaterials, vol. 2017, no. 1, pp. 1–7, 2017, doi: 10.1155/2017/4824607.

C. Yim, M. Lee, M. Yun, G.-H. Kim, K. T. Kim, and S. Jeon, “CO2- selective nanoporous metal-organic framework microcantilevers,” Sci. Rep., vol. 5, no. 1, pp. 1–8, Jun. 2015, doi: 10.1038/SREP10674.

L. Nsubuga et al., “Modeling nonlinear dynamics of functionalization layers: Enhancing gas sensor sensitivity for piezoelectrically driven microcantilever,” ACS Sensors, vol. 9, no. 4, pp. 1842–1856, Apr. 2024, doi: 10.1021/ACSSENSORS.3C02393.

H. L. Xu, J. F. Daigle, Q. Luo, and S. L. Chin, “Femtosecond laserinduced nonlinear spectroscopy for remote sensing of methane,” Appl. Phys. B, vol. 82, no. 4, pp. 655–658, Feb. 2006, doi: 10.1007/S00340- 005-2123-8.

Y. Li, H. Wang, Y. Chen, and M. Yang, “A multi-walled carbon nanotube/palladium nanocomposite prepared by a facile method for the detection of methane at room temperature,” Sens. Actuators B, Chem., vol. 132, no. 1, pp. 155–158, May 2008, doi:10.1016/J.SNB.2008.01.034.

M. Rahimi, I. Chae, J. E. Hawk, S. K. Mitra, and T. Thundat, “Methane sensing at room temperature using photothermal cantilever deflection spectroscopy,” Sens. Actuators B, Chem., vol. 221, pp. 564–569, Dec. 2015, doi: 10.1016/J.SNB.2015.07.006.

L. Wang, Y. Kang, X. Liu, S. Zhang, W. Huang, and S. Wang, “ZnO nanorod gas sensor for ethanol detection,” Sens. Actuators B, Chem., vol. 162, no. 1, pp. 237–243, Feb. 2012, doi:10.1016/J.SNB.2011.12.073.

M. Dwivedi, J. Bhargava, A. Sharma, V. Vyas, and G. Eranna, “CO sensor using ZnO thin film derived by RF magnetron sputtering technique,” IEEE Sensors J., vol. 14, no. 5, pp. 1577–1582, May 2014, doi:10.1109/JSEN.2014.2298879.

L. Schlur, J. R. Calado, and D. Spitzer, “Synthesis of zinc oxide nanorods or nanotubes on one side of a microcantilever,” Roy. Soc. Open Sci., vol. 5, no. 8, Aug. 2018, Art. no. 180510, doi: 10.1098/RSOS.180510.

N. Kilinc et al., “Fabrication of 1D ZnO nanostructures on MEMS cantilever for VOC sensor application,” Sens. Actuators B, Chem., vol. 202, pp. 357–364, Oct. 2014, doi: 10.1016/J.SNB.2014.05.078.

S. Öztürk, N. Kılınç, and Z. Z. Özturk, “Fabrication of ZnO nanorods for NO2 sensor applications: Effect of dimensions and electrode position,” J. Alloys Compounds, vol. 581, pp. 196–201, Dec. 2013, doi:10.1016/J.JALLCOM.2013.07.063.

V. Galstyan, E. Comini, C. Baratto, G. Faglia, and G. Sberveglieri, “Nanostructured ZnO chemical gas sensors,” Ceram. Int., vol. 41, no. 10, pp. 14239–14244, Dec. 2015, doi: 10.1016/J.CERAMINT.2015.07.052.

T. V. K. Karthik, L. Martinez, and V. Agarwal, “Porous silicon ZnO/SnO2 structures for CO2 detection,” J. Alloys Compounds, vol. 731, pp. 853–863, Jan. 2018, doi: 10.1016/J.JALLCOM.2017.10.070.

C.-H. Jin, S.-H. Park, H.-S. Kim, S.-Y. An, and C.-M. Lee, “CO gassensor based on pt-functionalized Mg-doped ZnO nanowires,” Bull. Korean Chem. Soc., vol. 33, no. 6, pp. 1993–1997, Jun. 2012.

J. Xuan et al., “Fabrication of in-situ grown and Pt-decorated ZnO nanoclusters on new-type FTO electrode for room-temperature detection of low-concentration H2S,” J. Alloys Compounds, vol. 860, Apr. 2021,

Art. no. 158499, doi: 10.1016/J.JALLCOM.2020.158499.

L. Aprilia et al., “Influence of water vapor on CO detection using a resonant microcantilever functionalized by Al-doped ZnO nanorods,” Jpn. J. Appl. Phys., vol. 58, no. 1, Apr. 2019, Art. no. SBBH09, doi:10.7567/1347-4065/AB02E4.

R. Nuryadi et al., “Observation of CO detection using aluminum-doped ZnO nanorods on microcantilever,” Sensors, vol. 20, no. 7, p. 2013, Apr. 2020, doi: 10.3390/s20072013.

N. L. Hadipour, A. Ahmadi Peyghan, and H. Soleymanabadi, “Theoretical study on the al-doped ZnO nanoclusters for CO chemical sensors,” J. Phys. Chem. C, vol. 119, no. 11, pp. 6398–6404, Mar. 2015, doi:10.1021/JP513019Z.

A. Yu, Z. Li, and J. Yi, “Selective detection of parts-per-billion H2S with Pt-decorated ZnO nanorods,” Sens. Actuators B, Chem., vol. 333, Apr. 2021, Art. no. 129545, doi: 10.1016/j.snb.2021.129545.

A. A. Daryakenari, A. Apostoluk, and J. Delaunay, “Effect of Pt decoration on the gas response of ZnO nanoparticles,” Phys. Status Solidi c, vol. 10, no. 10, pp. 1297–1300, Oct. 2013.

H. Zhang et al., “PDMS film-based flexible pressure sensor array with surface protruding structure for human motion detection and wrist posture recognition,” ACS Appl. Mater. Inter., vol. 16, no. 2, pp. 2554–2563, Jan. 2024, doi: 10.1021/ACSAMI.3C14036.

H. Zhang, D. Zhang, B. Zhang, D. Wang, and M. Tang, “Wearable pressure sensor array with layer-by-layer assembled MXene nanosheets/Ag nanoflowers for motion monitoring and human–machine interfaces,” ACS Appl. Mater. Inter., vol. 14, no. 43, pp. 48907–48916, Nov. 2022, doi: 10.1021/ACSAMI.2C14863.

H. Zhang et al., “A flexible wearable strain sensor for human-motion detection and a human–machine interface,” J. Mater. Chem. C, vol. 10, no. 41, pp. 15554–15564, 2022, doi: 10.1039/D2TC03147G.

Z. A. Burhanudin, R. Nuryadi, and M. Tabe, “Detection of field-induced single-acceptor ionization in Si by single-hole-tunneling transistor,” Appl. Phys. Lett., vol. 91, no. 4, Jul. 2007, Art. no. 042103.

L. Aprilia et al., “Highly sensitive CO sensor based on Al-doped-ZnO nanorods-coated resonant microcantilevers,” Jpn. J. Appl. Phys., vol. 59, no. 7, Jul. 2020, Art. no. 077003, doi: 10.35848/1347-4065/AB9985.

J. Xu, M. Bertke, H. S. Wasisto, and E. Peiner, “Piezoresistive microcantilevers for humidity sensing,” J. Micromech. Microeng., vol. 29, no. 5, May 2019, Art. no. 053003, doi: 10.1088/1361-6439/AB0CF5.

H. Xu, W. Fan, A. L. Rosa, R. Q. Zhang, and T. Frauenheim, “Hydrogen and oxygen adsorption on ZnO nanowires: A first-principles study,” Phys. Rev. B, vol. 79, no. 7, Feb. 2009, Art. no. 073402, doi:10.1103/PHYSREVB.79.073402.

M. Hjiri, L. El Mir, S. G. Leonardi, A. Pistone, L. Mavilia, and G. Neri, “Al-doped ZnO for highly sensitive CO gas sensors,” Sens. Actuators B, Chem., vol. 196, pp. 413–420, Jun. 2014, doi:10.1016/J.SNB.2014.01.068.

Nugraha et al., “Selectivity of CO and NO adsorption on ZnO (0002) surfaces: A DFT investigation,” Appl. Surf. Sci., vol. 410, pp. 373–382, Jul. 2017.

Y. Dong, W. Gao, Q. Zhou, Y. Zheng, and Z. You, “Characterization of the gas sensors based on polymer-coated resonant microcantilevers for the detection of volatile organic compounds,” Analytica Chim. Acta, vol. 671, nos. 1–2, pp. 85–91, Jun. 2010, doi:10.1016/J.ACA.2010.05.007.

F. Lochon, I. Dufour, D. Rebiare, U. Sampath, S. M. Heinrich, and F. Josse, “Effect of viscoelasticity on quality factor of microcantilever chemical sensors: Optimal coating thickness for minimum limit of detection,” Proc. IEEE Sensors, vol. 2005, pp. 265–268, Jun. 2005, doi:10.1109/ICSENS.2005.1597687.

M. GuL, M. Amin, M. Abbas, S. Z. Ilyas, and N. A. Shah, “Synthesis and characterization of magnesium doped ZnO nanostructures: Methane (CH4) detection,” J. Mater. Sci., Mater. Electron., vol. 30, no. 5, pp. 5257–5265, Mar. 2019, doi: 10.1007/S10854-019-00825-Z.

B. Mondal, J. Dutta, C. Roychaudhury, D. Mohanta, and H. Saha, “Zinc oxide nano-platelets for effective methane gas-sensing applications,” Chin. J. Phys., vol. 51, pp. 994–1005, Jun. 2013, doi:10.6122/CJP.51.994.

D. Zhang, H. Chang, P. Li, R. Liu, and Q. Xue, “Fabrication and characterization of an ultrasensitive humidity sensor based on metal oxide/graphene hybrid nanocomposite,” Sens. Actuators B, Chem., vol. 225, pp. 233–240, Mar. 2016, doi: 10.1016/J.SNB.2015.11.024.

S. Luo, R. Chen, J. Wang, and L. Xiang, “ZnO/Pd@ZIF-7-based gas sensors for selective methane sensing,” ACS Appl. Nano Mater., vol. 6, no. 7, pp. 5808–5816, Apr. 2023, doi: 10.1021/ACSANM. 3C00224.

D. Zhang, H. Chang, Y. Sun, C. Jiang, Y. Yao, and Y. Zhang, “Fabrication of platinum-loaded cobalt oxide/molybdenum disulfide nanocomposite toward methane gas sensing at low temperature,” Sens. Actuators B, Chem., vol. 252, pp. 624–632, Nov. 2017, doi:10.1016/J.SNB.2017.06.063.

L. Han et al., “The rapid detection for methane of ZnO porous nanoflakes with the decoration of Ag nanoparticles,” Frontiers Mater. Sci., vol. 15, no. 4, pp. 621–631, Dec. 2021, doi: 10.1007/S11706-021-0580-6.


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.