UPSI Digital Repository (UDRep)
|
![]() |
|
|
Abstract : Universiti Pendidikan Sultan Idris |
This study aims to synthesize a zinc crosslinked chitosan (Chi/Zn) membrane as an adsorbent for amoxicillin in pharmaceutical wastewater. The Chi/Zn membranes were prepared over 14 hours at 50 °C with varying chitosan and zinc concentrations. FTIR analysis confirmed successful crosslinking by identifying hydroxyl (O-H), carbonyl (C-O), and amine groups (NH2), along with N-Zn and O-Zn interactions. XRD analysis indicated an amorphous structure, while SEM revealed rough, uneven surfaces. The highest adsorption capacity of a chitosan membrane occurs at a concentration of 60 mg/L. At this concentration, the pure chitosan membrane's adsorption effectiveness and capacity are 42.2% and 42.2 mg/L, respectively. The Chi/Zn membrane adsorbed amoxicillin with an adsorption efficiency of 58.86% with an adsorption capacity of 58.86 mg/g. Thus, it can be said that the chitosan/Zn membrane is quite effective in being applied as an amoxicillin adsorbent in pharmaceutical waste. © 2024, Rasayan Journal of Chemistry, c/o Dr. Pratima Sharma. All rights reserved. |
References |
R. Mohammed, M.E.M. Ali, E. Gomaa and M. Mohsen, Journal of Environmental Chemical Engineering, 8(5), 10429(2020), https://doi.org/10.1016/j.jece.2020.104295. H.K. Okoro, S. Pandey, C.O. Ogunkunle, C.J. Ngila, C. Zvinowanda, I. Jimoh, I.A. Lawal, M.M. Orosun and A.G. Adeniyi, Journal of Environmental Chemical Engineering, 8, 46(2022), https://doi.org/10.1016/j.jece.2020.104295. S. Das, S. Ghosh, A.J. Misra, A.J. Tamhankar, A. Mishra, C.S. Lundborg and S.K. Tripathy, International Journal of Environmental Research and Public Health, 15(11), 2440(2018), https://doi.org/10.3390/ijerph15112440. H. K. Maleh, A. Ayati, R. Davoodi, B. Tanhaei, F. Karimi, S. Malekmohammadi, Y. Orooji and L. Fu, Journal of Cleaner Production, 291(6), 125079(2021), https://doi.org/10.1016/j.jclepro.2021.125880. Q. Wang, P. Wang and Q. Yang, Science of The Total Environment, 621, 990(2018), https://doi.org/10.1016/j.scitotenv.2017.10.128. A. Shah, A. Arjuna, A. Baroutaji and J. Zakharova, Water Science and Engineering, 16(4), 333(2023), https://doi.org/10.1016/j.wse.2023.04.003. J. Wang, R. Zhuan and L. Chu, Science of The Total Environment, 646, 1385(2019), https://doi.org/10.1016/j.scitotenv.2018.07.415. I. Pinto, M. Simões and I.B. Gomes, Multidisciplinary Digital Publishing Institute: Antibiotics, 11(12), 1(2022), https://doi.org/10.3390/antibiotics11121700. U. Hübner, S. Spahr, H. Lutze, A. Wieland, S. Rüting, W. Gernjak and J. Wenk, Heliyon, 10(9). 30402(2024), https://doi.org/10.1016/j.heliyon.2024.e30402. A. Ayati, A. Ahmadpour, F.F Bamoharram, B. Tanhaei, M. Mänttäri and M. Sillanpää, Chemosphere, 107, 163(2014), https://doi.org/10.1016/j.chemosphere.2014.01.030. E. Sulistyawati, W.W. Nandari, A.R. Nurchasanah and K.K. Dewi, Jurnal Rekayasa Proses, 14(1), 47(2020), https://doi.org/10.22146/jrekpros.50634. X. Chen, M.F. Hossain, C. Duan, J. Lu and Y.F.Tsang, Chemosphere, 307(P1), 135545(2022), https://doi.org/10.1016/j.chemosphere.2022.135545. Y. Zhu, Highlights in Science Engineering and Technology, 69, 489(2023), https://doi.org/10.54097/hset.v69i.12403. P. Bhatt, S. Joshi, G.M.U. Bayram, P. Khati and H. Simsek, Environmental Research, 226, 115530(2023), https://doi.org/10.1016/j.envres.2023.115530. S. Suresh, M. Umesh and A.S. Santhosh, Scientific Reports, 14(4), 11369(2022), https://doi.org/10.15835/nsb14411369. M.R. Hossain, A.K. Mallik and M.M. Rahman, Handbook of Chitin and Chitosan, 199(2020), https://doi.org/10.1016/j.chemosphere.2022.135545. M.J. Ahmed, B.H. Hameed and E.H. Hummadi, Carbohydrate Polymers, 247, 116690(2020), https://doi.org/10.1016/j.carbpol.2020.116690. D.A. Gkika, A.C. Mitropoulo, P. Kokkinos, D.A. Lambropoulou, I.K. Kalavrouziotis, D.N. Bikiaris and G.Z. Kyzas, Carbohydrate Polymers Technology and Applications, 5, 100313(2023), https://doi.org/10.1016/j.carpta.2023.100313. D.C.D.S. Alves , B. Healy, L.A.D.A. Pinto, T.R.S.A. Cadaval and C.B. Breslin, Multidisciplinary Digital Publishing Institute: Molecules, 26(3). 594(2021), https://doi.org/10.3390/molecules26030594. Hasri, A. Auliah, D.E. Pratiwi, Sulfikar and N. Yusaerah, Journal of Physics: Conference Series, 1317(1), 012031(2019), https://doi.org/10.1088/1742-6596/1317/1/012031. A.S. Soubhagya, A. Moorthi, M. Prabaharan, International Journal of Biological Macromolecules, 157, 135(2020), https://doi.org/10.1016/j.ijbiomac.2020.04.156. P. Raja, M. Taj, K. Chandrakumar and S. Gowrishankar, Journal of Nanomaterials, 17(4), 1401(2024), https://doi.org/10.31788/RJC.2024.1748943. R.V. Patel and A. Yadav, Journal of Molecular Structure, 1252, 132128(2022), https://doi.org/10.1016/j.molstruc.2021.132128. A.B.D. Nandiyanto, R. Oktiani and R. Ragadhita, Indonesian Journal of Science and Technology, 4(1). 97(2019), https://doi.org/10.17509/ijost.v4i1.15806. |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |