UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :Thesis
Subject :QD Chemistry
Main Author :Ong, Suu Wan
Title :Graphene oxide-based hybrid nanocomposite for high efficient photodegradation of malachite green
Hits :6
Place of Production :Tanjong Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2024
Corporate Name :Perpustakaan Tuanku Bainun
PDF Guest :Click to view PDF file
PDF Full Text :You have no permission to view this item.

Abstract : Perpustakaan Tuanku Bainun
Photocatalyst attracted enormous attention due to its ability to fully degrade hazardous contaminants. This research work aimed to synthesis binary hybrid photocatalyst consists of iron (III) oxide (Fe2O3) and reduced graphene oxide (rGO): FG (1:1), FG (1:2), FG (2:1). The effect of polyaniline (PANI) addition was also studied in ternary hybrid photocatalyst: PFG (1:1), PFG (1:2), PFG (2:1). The synthesis process was carried out via oxidation method assisted by ultrasonication technique. The photocatalyst samples were characterised using X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Brunauer-Emmett-Teller (BET) surface area analysis, Field Emission Scanning Electron Microscopy (FESEM) with the EDX analysis, UV-Vis diffuse reflectance spectra (UV-DRS) and Photoluminescence Spectroscopy (PL). FTIR and XRD proved the presence of rGO and Fe2O3 in all FG photocatalysts while PFG photocatalysts have rGO, Fe2O3 and PANI. The FESEM analysis showed the distribution of Fe2O3 particles on the surface of rGO. The hybrid catalyst demonstrated a lower band gap energy and recombination rate, as evidenced by the UV-DRS and PL analyses, respectively. Photocatalytic capability of photocatalysts were evaluated through photodegradation of Malachite Green (MG) under ultraviolet light for 180 minutes. Optimization of the photodegradation performance were carried out by manipulating the reaction parameters such as dye concentration, photocatalyst dose and pH value. The finding showed FG (1:1) owned the highest degradation efficiency up to 89.2% at 60ppm dye concentration in pH 9. This is due to the synergic effect between Fe2O3 and rGO improved the active electron (e-) and hole (h+) generation and separation. In conclusion, FG (1:1) show a promising potential photocatalyst material for degradation of MG. This study implies on the exploration of the fundamental knowledge to develop a highly efficient photocatalyst for photodegradation of hazardous contaminants, particularly dyes in the application of wastewater treatment.

References

Abasali Karaj Abad, Z., Nemati, A., Malek Khachatourian, A., & Golmohammad, M. (2020). Synthesis and characterization of rGO/Fe2O3 nanocomposite as an efficient supercapacitor electrode material. Journal of Materials Science: Materials in Electronics, 31(17), 14998–15005. 

Abdiryim, T., Jamal, R., & Nurulla, I. (2007). Doping effect of organic sulphonic acids on the solid-state synthesized polyaniline. Journal of Applied Polymer Science, 105(2), 576–584. 

Abed, S. N., Deb, P. K., Surchi, H. S., Kokaz, S. F., Jamal, S. M., Bandopadhyay, S.,& Tekade, R. K. (2019). Nanocarriers in different preclinical and clinical stages. In Basic Fundamentals of Drug Delivery (pp. 685–731). Elsevier. 

Abid, Sehrawat, P., Islam, S. S., Mishra, P., & Ahmad, S. (2018). Reduced graphene oxide (rGO) based wideband optical sensor and the role of temperature, defect states and quantum efficiency. Scientific Reports, 8(1), 1–13. 

Abushrida, A., Elhuni, I., Taresco, V., Marciani, L., Stolnik, S., & Garnett, M. C. (2020). A simple and efficient method for polymer coating of iron oxide nanoparticles. Journal of Drug Delivery Science and Technology, 55(December 2019), 101460. 

Achee, T. C., Sun, W., Hope, J. T., Quitzau, S. G., Sweeney, C. B., Shah, S. A., Habib, T., & Green, M. J. (2018). High-yield scalable graphene nanosheet production from compressed graphite using electrochemical exfoliation. Scientific Reports, 8(1), 1–8. 

Aik, L. C. (2018). Photocatalytic degradation of sunset yellow by hydrothermally synthesized three-dimensional flower-like bismuth oxybromide with hierarchical structure. Universiti Tunku Abdul Rahman. 

Akmil-Basar, C., Önal, Y., Kiliçer, T., & Eren, D. (2005). Adsorptions of high concentration malachite green by two activated carbons having different porous structures. Journal of Hazardous Materials, 127(1–3), 73–80. 

Al-Gubury, H. Y.,Altameme, H. J. M., &Ali, M. M. (2018). Significant enhancement of photocatalytic activity of zinc oxide by extracted anthocyanin pigment and solar light. Plant Archives, 18(2), 2723–2726. 

Alaie, Z., Nejad, S. M., & Yousefi, M. H. (2015). Recent advances in ultraviolet photodetectors. Materials Science in Semiconductor Processing, 29, 16–55. 

Alam, S. N., Sharma, N., & Kumar, L. (2017). Synthesis of graphene oxide (GO) by modified hummers method and its thermal reduction to obtain reduced graphene oxide (rGO). Graphene, 6(1), 1–18. 

AlSalka,Y., Granone, L. I., Ramadan, W., Hakki,A., Dillert, R., & Bahnemann, D. W. (2019). Iron-based photocatalytic and photoelectrocatalytic nano-structures: Facts, perspectives, and expectations. Applied Catalysis B: Environmental, 244, 1065– 1095. 

Anucha, C. B., Altin, I., Bacaksiz, E., & Stathopoulos, V. N. (2022). Titanium dioxide (TiO2)-based photocatalyst materials activity enhancement for contaminants of emerging concern (CECs) degradation: In the light of modification strategies. Chemical Engineering Journal Advances, 10, 100262. 

Armelin, E., Pla, R., Liesa, F., Ramis, X., Iribarren, J. I., & Alemán, C. (2008). Corrosion protection with polyaniline and polypyrrole as anticorrosive additives for epoxy paint. Corrosion Science, 50(3), 721–728. 

Arslan, S., Eyvaz, M., Gürbulak, E., &Yüksel, E. (2016). Areview of state-of-the art technologies in dye-containing wastewater treatment – the textile industry case. Textile wastewater treatment, 1-29. 

Asiltürk, M.,Sayilkan,F.,&Arpaç,E. (2009). Effect ofFe3+ ion doping to TiO2 on the photocatalytic degradation of malachite green dye under UV and Vis irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 203(1), 64–71. 

Asmatulu, R., & Khan, W. S. (2018). Synthesis and applications of electrospun nanofibers. Elsevier. 

Ayodhya, D., & Veerabhadram, G. (2018). A review on recent advances in photodegradation of dyes using doped and heterojunction based semiconductor metal sulfide nanostructures for environmental protection. Materials Today Energy, 9, 83–113. 

Barreca, D., Carraro, G., Gasparotto, A., & Maccato, C. (2018). Metal oxide electrodes for photo-activated water splitting. In Multifunctional Photocatalytic Materials for Energy. Elsevier Ltd. 

Beydoun, D., Amal, R., Low, G. K. C., & McEvoy, S. (2000). Novel photocatalyst: titania-coated magnetite. Activity and photodissolution. The Journal of Physical Chemistry B, 104(18), 4387–4396. 

Bhadra, S., Khastgir, D., Singha, N. K., & Lee, J. H. (2009). Progress in preparation, processing and applications of polyaniline. Progress in polymer science, 34(8), 783–810. 

Bhadra, S., Singha, N. K., Chattopadhyay, S., & Khastgir, D. (2007). Effect of different reaction parameters on the conductivity and dielectric properties of polyaniline synthesized electrochemically and modeling of conductivity against reaction parameters through regression analysis. Journal of Polymer Science Part B: Polymer Physics, 45(15), 2046–2059. 

Bhandari, S. (2018). Polyaniline: Structure and properties relationship. In Polyaniline Blends, Composites, and Nanocomposites (pp. 23–60). Elsevier Inc. 

Bhandari, S., & Khastgir, D. (2016). Corrosion-free electrochemical synthesis of polyaniline using Cu counter electrode in acidic medium. International Journal of Polymeric Materials and Polymeric Biomaterials, 65(11), 543–549. 

Bharath, G., Anwer, S., Mangalaraja, R. V., Alhseinat, E., Banat, F., & Ponpandian, N. (2018). Sunlight-Induced photochemical synthesis of Au nanodots on aFe2O3@Reduced graphene oxide nanocomposite and their enhanced heterogeneous catalytic properties. Scientific Reports, 8(1). 

Bhuyan, M. S. A., Uddin, M. N., Islam, M. M., Bipasha, F. A., & Hossain, S. S. (2016). Synthesis of graphene. International Nano Letters, 6(2), 65–83. 

Boeva, Z. A., & Sergeyev, V. G. (2014). Polyaniline: Synthesis, properties, and application. Polymer Science -Series C, 56(1), 144–153. 

Bu, Y., & Chen, Z. (2014). Role of polyaniline on the photocatalytic degradation and stability performance of the polyaniline/silver/silver phosphate composite under visible light. ACS Applied Materials and Interfaces, 6(20), 17589–17598. 

Cai,Z.,Sun,Y.,Liu,W.,Pan,F.,Sun,P.,&Fu,J. (2017).An overviewofnanomaterials applied for removing dyes from wastewater. Environmental Science and Pollution Research, 24(19), 15882–15904. 

Carnes, C. L., & Klabunde, K. J. (2002). Unique chemical reactivities of nanocrystalline metal oxides toward hydrogen sulfide. Chemistry of Materials, 14(4), 1806–1811. 

Charles, J., Ramkumaar, G. R., Azhagiri, S., & Gunasekaran, S. (2009). FTIR and thermal studies on nylon-66 and 30% glass fibre reinforced nylon-66. E-Journal of Chemistry, 6(1), 23–33. 

Cheah, W., Hosseini, S., Khan, M. A., Chuah, T. G., & Choong, T. S. Y. (2013). Acid modified carbon coated monolith for methyl orange adsorption. Chemical Engineering Journal, 215–216, 747–754. 

Chen, M., Liu, P., Wang, C., Ren, W., & Diao, G. (2014). Fast catalytic reduction of an azo dye by recoverable and reusable Fe3O4 @PANI@Au magnetic composites. New J. Chem., 38(9), 4566–4573. 

Chiou,M. S.,Ho,P.Y.,&Li,H.Y. (2004).Adsorption ofanionicdyesin acidsolutions using chemically cross-linked chitosan beads. Dyes and Pigments, 60(1), 69–84. 

Chirita, M., Kiss, M. L., Ieta, A., Ercuta, A., & Grozescu, I. (2013). Synthesis of micrometric single crystalline magnetite with superparamagnetic properties for biomedical applications. Technical Proceedings of the 2013 NSTI Nanotechnology Conference and Expo, NSTI-Nanotech 2013, 1(June), 378–381. 

Chowdhury, D., Paul, A., & Chattopadhyay, A. (2002). Lithography by simultaneous chemical and photochemical polymerization of aniline at the air-water interface. Journal of Physical Chemistry B, 106(17), 4343–4347. 

Cranford, S. W., & Buehler, M. J. (2011). Packing efficiency and accessible surface area of crumpled graphene. Physical Review B -Condensed Matter and Materials Physics, 84(20), 1–7. 

Dahal, K. P. (2016). Green Aspects of the Photocatalytic Oxidation ( PCO ) Method : Reference to the UV Turbo System. In CLIMA 2016, REHVA World Congress, (p. 189). Aalborg University. 

De Barros, R. A., De Azevedo, W. M., & De Aguiar, F. M. (2003). Photo-induced polymerization of polyaniline. Materials Characterization, 50(2–3), 131–134. 

de Oliveira, G. A. R., de Lapuente, J., Teixid E., Porred, C., Borràs, M., & de Oliveira, D. P. (2016). Textile dyes induce toxicity on zebrafish early life stages. Environmental Toxicology and Chemistry, 35(2), 429–434. 

Desario, P. A., & Gray, K. A. (2012). Passive systems to improve air quality and reduce heat retention in the urban environment. In Metropolitan Sustainability: Understanding and Improving the Urban Environment. (pp. 292-316) Woodhead Publishing Limited. 

Dhachanamoorthi, N., Chandra, L., Suresh, P., Perumal, K., Dhachanamoorthi, N., Chandra, L., Suresh, P., & Preparation, K. P. F. (2017). Facile preparation and characterization of polyaniline-iron oxide ternary polymer nanocomposites by using “mechanical mixing” approach. Mechanics, Materials Science & Engineering MMSE Journal, Open Access, 284–291. 

Dutt, M., Suhasini, K., Ratan, A., Shah, J., Kotnala, R. K., & Singh, V. (2018). Mesoporous silica mediated synthesis of a-Fe2O3 porous structures and their application as humidity sensors. Journal of Materials Science: Materials in Electronics, 29(23), 20506–20516. 

Dutta, S., Manna, K., Srivastava, S. K., Gupta, A. K., &Yadav, M. K. (2020). Hollow polyaniline microsphere/Fe3O4 nanocomposite as an effective adsorbent for removal of arsenic from water. Scientific Reports, 10(1), 1–14. 

Emiru, T. F., & Ayele, D. W. (2017). Controlled synthesis, characterization and reduction of graphene oxide: A convenient method for large scale production. Egyptian Journal of Basic and Applied Sciences, 4(1), 74–79. 

Erbe, A., Nayak, S., Chen, Y.-H., Niu, F., Pander, M., Tecklenburg, S., & Toparli, C. (2018). How to probe structure, kinetics, and dynamics at complex interfaces in Situ and Operando by Optical Spectroscopy. Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry; part of" Reference Module in Chemistry, Molecular Sciences and Chemical Engineering". 

Feng, X. M., Li, R. M., Ma, Y. W., Chen, R. F., Shi, N. E., Fan, Q. L., & Huang, W. (2011). One-step electrochemical synthesis of graphene/polyaniline composite film and its applications. Advanced Functional Materials, 21(15), 2989–2996. 

Fernandes, T. A., Mendo, S. G., Ferreira, L. P., Neng, N. R., Oliveira, M. C., Gil, A., Carvalho, M. D., Monteiro, O. C., Nogueira, J. M. F., & Calhorda, M. J. (2021). Photocatalytic degradation of acetaminophen and caffeine using magnetite– hematite combined nanoparticles: kinetics and mechanisms. Environmental Science and Pollution Research. 

Fondriest Environmental, I. (21 March 2014). Solar Radiation and Photosynethically Active Radiation. Fondriest Environmental Learning Center. https://www.fondriest.com/environmental-measurements/parameters/weather/ photosynthetically-active-radiation/ 

Fujishima, A., & & Honda, K. (1972). Electrochemical photolysis of water at a semiconductor electrode. Nature, 238(5358), 37–38. 

Gade, R., Ahemed, J., Yanapu, K. L., Abate, S. Y., Tao, Y. T., & Pola, S. (2018). Photodegradation of organic dyes and industrial wastewater in the presence of layer-type perovskite materials under visible light irradiation. Journal of Environmental Chemical Engineering, 6(4), 4504–4513. 

Gagol, M., Przyjazny, A., & Boczkaj, G. (2018). Wastewater treatment by means of advanced oxidation processes based on cavitation – A review. Chemical Engineering Journal, 338, 599–627. 

Gamage, J., & Zhang, Z. (2010). Applications of photocatalytic disinfection. International Journal of Photoenergy, 2010. 

Ghosh Chaudhuri, R., & Paria, S. (2012). Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chemical reviews, 112(4), 2373-2433. 

Ghosh, S., Jiang, W., McClements, J. D., & Xing, B. (2011). Colloidal stability of magnetic iron oxide nanoparticles: Influence of natural organic matter and synthetic polyelectrolytes. Langmuir, 27(13), 8036–8043. 

Goswami, S., Maiti, U. N., Maiti, S., Nandy, S., Mitra, M. K., & Chattopadhyay, K. K. (2011). Preparation of graphene-polyaniline composites by simple chemical procedure and its improved field emission properties. Carbon, 49(7), 2245–2252. 

Gotic, M., & Music, S. (2007). Mössbauer, FT-IR and FESEM investigation of iron oxides precipitated from FeSO4 solutions. Journal of Molecular Structure, 834– 836(SPEC. ISS.), 445–453. 

Guo, X., Ho, M. S., You, L., Cao, J., Fang, Y., Tu, T., & Hong, Y. (2018). Industrial water pollution discharge Taxes in China: A multi-sector dynamic analysis. Water, 10(12), 1–21. 

Hannah, D. M., Abbott, B. W., Khamis, K., Kelleher, C., Lynch, I., Krause, S., & Ward,A. S. (2022). Illuminating the ‘invisible water crisis’ to address global water pollution challenges. Hydrological Processes, 36(3). 

Holzwarth, U., & Gibson, N. (2011). The Scherrer equation versus the “Debye-Scherrer equation.” Nature Nanotechnology, 6(9), 534. 

Hu, X., Li, G., & Yu, J. C. (2010). Design, fabrication, and modification of nanostructured semiconductor materials for environmental and energy applications. Langmuir, 26(5), 3031–3039. 

Huang, H., Liu, J., Zhang, P., Zhang, D., & Gao, F. (2017). Investigation on the simultaneous removal of fluoride, ammonia nitrogen and phosphate from semiconductor wastewater using chemical precipitation. Chemical Engineering Journal, 307, 696–706. 

Jaafar, N. F., Abdul Jalil, A., Triwahyono, S., Muhd Muhid, M. N., Sapawe, N., Satar, M. A. H., & Asaari, H. (2012). Photodecolorization of methyl orange over a-Fe2O3-supported HYcatalysts:The effects ofcatalyst preparation and dealumination. Chemical Engineering Journal, 191, 112–122. 

Jacinto, M. J., Silva, F. P., Kiyohara, P. K., Landers, R., & Rossi, L. M. (2012). Catalyst recovery and recycling facilitated by magnetic separation: iridium and other metal nanoparticles. ChemCatChem, 4(5), 698–703. 

Jumat, N. A., Khor, S. H., Basirun, W. J., Juan, J. C., & Phang, S. W. (2021). Highly Visible Light Active Ternary Polyaniline-TiO2-Fe3O4 Nanotube/Nanorod for Photodegradation of Reactive Black 5 Dyes. Journal of Inorganic and Organometallic Polymers and Materials, 0123456789. 

Karami, K., Beram, S. M., Siadatnasab, F., Bayat, P., & Ramezanpour, A. (2021). An investigation on MIL-101 Fe/PANI/Pd nanohybrid as a novel photocatalyst based on MIL-101(Fe) metal–organic frameworks removing methylene blue dye. Journal of Molecular Structure, 1231, 130007. 

Karthikeyan, B., Govindhan, R., & Amutheesan, M. (2018). Chemical Methods for Synthesis of Hybrid Nanoparticles. In Noble Metal-Metal Oxide Hybrid Nanoparticles: Fundamentals and Applications. Elsevier Inc. 

Katubi, K. M. M., Alsaiari, N. S., Alzahrani, F. M., Siddeeg, S. M., & Tahoon, M. A. (2021). Synthesis of manganese ferrite/graphene oxide magnetic nanocomposite for pollutants removal from water. Processes, 9(4). 

Khan, F., Khan, M. S., Kamal, S., Arshad, M., Ahmad, S. I., & Nami, S. A. A. (2020). Recent advances in graphene oxide and reduced graphene oxide based nanocomposites for the photodegradation of dyes. Journal of Materials Chemistry C, 8(45), 15940–15955. 

Khasha Ghaffarzadeh. (2017). Graphene, 2D Materials and Carbon Nanotubes: Markets, Technologies and Opportunities 2011-2027. IDTechEx. http://www.idtechex.com/en/research-report/graphene-2d-materials-and­carbonnanotubes-markets-technologies-and-opportunities-2017-2027/530 

Khoshnam, M., Farahbakhsh, J., Zargar, M., Mohammad, A. W., Benamor, A., Ang, W. L., & Mahmoudi, E. (2021). a-Fe2O3/graphene oxide powder and thin film nanocomposites as peculiar photocatalysts for dye removal from wastewater. Scientific Reports, 11(1), 1–15. 

Kohli, R., & Mittal, K. L. (Eds.). (2019). Developments in surface contamination and cleaning, volume 12: Methods for assessment and verification of cleanliness of surfaces and characterization of surface contaminants. Elsevier. 

Kumar, A., Kumar, V., & Awasthi, K. (2018). Polyaniline–carbon nanotube composites: preparation methods, properties, and applications. Polymer -Plastics Technology and Engineering, 57(2), 70–97. 

Kumaravel, V., Imam, M. D., Badreldin, A., Chava,R. K., Do, J. Y., Kang, M., &Abdel-Wahab, A. (2019). Photocatalytic hydrogen production: Role of sacrificial reagents on the activity of oxide, carbon, and sulfide catalysts. Catalysts, 9(3). 

Lahuri, A. H.,Yarmo, M. A., Abu Tahari, M. N., Marliza, T. S., Tengku Saharuddin, T. S., Wun Fui, M. L., & Dzakaria, N. (2020). Comparative adsorption isotherm for beryllium oxide/ iron (III) oxide toward CO2 adsorption and desorption studies. In Materials Science Forum, (Vol. 1010, pp. 361-366). Trans Tech Publications Ltd. 

Lassoued, A., Lassoued, M. S., Dkhil, B., Ammar, S., & Gadri, A. (2018). Photocatalytic degradation of methylene blue dye by iron oxide (a-Fe2O3) nanoparticles under visible irradiation. Journal of Materials Science: Materials in Electronics, 29(10), 8142–8152. 

Levia, D. F., Creed, I. F., Hannah, D. M., Nanko, K., Boyer, E. W., Carlyle-Moses, D.E., van de Giesen, N., Grasso, D., Guswa, A. J., Hudson, J. E., Hudson, S. A.,Iida,S., Jackson, R. B., Katul, G. G., Kumagai, T., Llorens, P., Ribeiro, F. L., Pataki, D. E., Peters, C. A., … Bruen, M. (2020). Homogenization of the terrestrial water cycle. Nature Geoscience, 13(10), 656–658. 

Li, H., Wang, J., Chu, Q., Wang, Z., Zhang, F., & Wang, S. (2009). Theoretical and experimental specific capacitance of polyaniline in sulfuric acid. Journal of Power Sources, 190(2), 578–586. 

Li, X., Yu, J., Wageh, S., Al-Ghamdi, A. A., & Xie, J. (2016). Graphene in photocatalysis: A review. small, 12(48), 6640–6696. 

Lian, B., De Luca, S., You, Y., Alwarappan, S., Yoshimura, M., Sahajwalla, V., Smith, S. C., Leslie, G., & Joshi, R. K. (2018). Extraordinary water adsorption characteristics of graphene oxide. Chemical Science, 9(22), 5106–5111. 

Lim,J.Y.,Mubarak,N. M.,Abdullah,E. C.,Nizamuddin,S.,Khalid,M.,&Inamuddin. (2018). Recent trends in the synthesis of graphene and graphene oxide based nanomaterials for removal of heavy metals — A review. Journal of Industrial and Engineering Chemistry, 66, 29–44. 

Lin, L., Deng, B., Sun, J., Peng, H., & Liu, Z. (2018). Bridging the gap between reality and ideal in chemical vapor deposition growth of graphene. Chemical Reviews, 118(18), 9281–9343. 

Lin,M.,Tan,H.R.,Tan,J.P.Y.,&Bai,S.(2013). Understanding the growth mechanism of a-Fe2O3 nanoparticles through a controlled shape transformation. Journal of Physical Chemistry C, 117(21), 11242–11250. 

Liu, A., Zhou, W., Shen, K., Liu, J., & Zhang, X. (2015). One-pot hydrothermal synthesis of hematite-reduced graphene oxide composites for efficient removal of malachite green from aqueous solution. RSC Advances, 5(22), 17336–17342. 

Liu, Mancheng, Wen, T., Wu, X., Chen, C., Hu, J., Li, J., & Wang, X. (2013). Synthesis of porous Fe3O4 hollow microspheres/ graphene oxide composite for Cr(VI) removal. Dalton Transactions, 42(41), 14710–14717. 

Liu, Mingkai, Miao,Y. E.,Zhang, C.,Tjiu,W.W.,Yang, Z., Peng, H., &Liu,T. (2013). Hierarchical composites of polyaniline-graphene nanoribbons-carbon nanotubes as electrode materials in all-solid-state supercapacitors. Nanoscale, 5(16), 7312– 7320. 

Liu, S., Wang, J., Ou, J., Zhou, J., Chen, Y., & Yang, S. (2010). Fabrication of one dimensional polyaniline nanofibers by uv-assisted polymerization in the aqueous phase. Journal of Nanoscience and Nanotechnology, 10(2), 933–940. 

Lokhande, A. C., Qattan, I. A., Lokhande, C. D., & Patole, S. P. (2020). Holey graphene: An emerging versatile material. Journal of Materials Chemistry A, 8(3), 918–977. 

Long, Y., Chen, Z., Zhang, X., Zhang, J., & Liu, Z. (2004). Synthesis and electrical properties of carbon nanotube polyaniline composites. Applied Physics Letters, 85(10), 1796–1798. 

Low, J., Yu, J., Jaroniec, M., Wageh, S., & Al-Ghamdi, A. A. (2017).Heterojunction 29(20),29(20), 1–20.photocatalysts. Advanced Materials, , 1–20. 

Lu, W., Guo, X.,Yang, B.,Wang, S., Liu,Y., Yao, H., Liu, C. Sen, & Pang, H.(2019). Synthesis and applications of graphene/iron(III) oxide composites. ChemElectroChem, 6(19), 4922–4948. 

Lv, C., Zhang, J., Li, G., Xi, H., Ge, M., & Goto, T. (2020). Facile fabrication of selfassembled lamellar PANI-GO-Fe3O4 hybrid nanocomposites with enhanced adsorption capacities and easy recyclicity towards ionic dyes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 585, 124147. 

Ma, S., Zhan, S., Jia, Y., & Zhou, Q. (2015). Superior Antibacterial Activity of Fe3O4TiO2 Nanosheets under Solar Light. ACS Applied Materials and Interfaces, 7(39), 21875–21883. 

Makula, P., Pacia, M., & Macyk, W. (2018). How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV-Vis Spectra. Journal of Physical Chemistry Letters, 9(23), 6814–6817. 

Manuel, J., Kim, M., Fapyane, D., Chang, I. S., Ahn, H. J., & Ahn, J. H. (2014). Preparation and electrochemical properties of polyaniline nanofibers using ultrasonication. Materials Research Bulletin, 58, 213–217. 

Masar, M., Urbanek, P., Skoda, D., Hanulikova, B., Kozakova, Z., Machovsky, M., Munster, L., & Kuritka, I. (2018). Preparation and characterization of expanded gC3N4 via rapid microwave-assisted synthesis. Diamond and Related Materials, 83(October 2017), 109–117. 

Massoumi, B., & Mohammadi, R. (2013). Synthesis of nanostructured polyaniline via chemical oxidative polymerization: Investigation of morphology and conductivity of the prepared polymers. Polymer Science -Series B, 55(11–12), 593–600. 

Mayeen, A., Shaji, L. K., Nair, A. K., & Kalarikkal, N. (2018). Morphological characterization of nanomaterials. In Characterization of Nanomaterials (pp. 335–364). Woodhead Publishing. 

Md Disa, N., Abu Bakar, S., Alfarisa, S., Mohamed, A., Md Isa, I., Kamari, A., Hashim, N., Abd Aziz, A., & Rusop Mahmood, M. (2015). The synthesis of graphene oxide via electrochemical exfoliation method. Advanced Materials Research, 1109, 55– 59. 

Mejias, L., Reihmann, M. H., Sepulveda-Boza, S., & Ritter, H. (2002). New polymers from natural phenols using horseradish or soybean peroxidase. Macromolecular Bioscience, 2(1), 24–32. 

Meng, F., Li, J., Cushing, S. K., Bright, J., Zhi, M., Rowley, J. D., Hong, Z., Manivannan, A., Bristow, A. D., & Wu, N. (2013). Photocatalytic water oxidation by hematite/reduced graphene oxide composites. ACS Catalysis, 3(4), 746–751. 

Mitra, M., Ahamed, S. T., Ghosh, A., Mondal, A., Kargupta, K., Ganguly, S., & Banerjee, D. (2019). Polyaniline/reduced graphene oxide composite-enhanced visible-light­driven photocatalytic activity for the degradation of organic dyes. ACS Omega, 4(1), 1623–1635. 

Mohammed, H., Kumar, A., Bekyarova, E., Al-Hadeethi, Y. M., Zhang, X., Chen, M., Ansari, S., Cochis, A., & Rimondini, L. (2020). Antimicrobial mechanisms and effectiveness of graphene and graphene-functionalized biomaterials. A scope review. Frontiers in Bioengineering and Biotechnology. 

Monshi, A., Foroughi, M. R., & Monshi, M. R. (2012). Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD. World Journal of Nano Science and Engineering, 02(03), 154–160. 

Monzon, L. M. A., Ackland, K., Mosivand, S., Venkatesan, M., & Coey, J. M. D. (2013). The role of polyaniline in the formation of iron-containing nanocomposites. Journal of Nanoparticle Research, 15(4). 

Mu, B., Tang, J., Zhang, L., & Wang, A. (2017). Facile fabrication of superparamagnetic graphene/polyaniline/Fe3O4 nanocomposites for fast magnetic separation and efficient removal of dye. Scientific Reports, 7(1), 1–12. 

Muniandy, S., Salleh, L., & Zaini, M. A. A. (2020). Evaluation of malachite green and methyl violet dyes removal by 3a molecular sieve adsorbents. Desalination and Water Treatment, 203, 440–448. 

Mura, S., Jiang, Y., Vassalini, I., Gianoncelli, A., Alessandri, I., Granozzi, G., Calvillo, L., Senes, N., Enzo, S., Innocenzi, P., & Malfatti, L. (2018). Graphene oxide/iron oxide nanocomposites for water remediation. ACS Applied Nano Materials, 1(12), 6724–6732. 

Nandiyanto, A. B. D., Oktiani, R., & Ragadhita, R. (2019). How to read and interpret ftir spectroscope of organic material. Indonesian Journal of Science and Technology, 4(1), 97–118. 

Nandiyanto, A. B. D., Zaen, R., & Oktiani, R. (2020). Correlation between crystallite size and photocatalytic performance of micrometer-sized monoclinic WO3 particles. Arabian Journal of Chemistry, 13(1), 1283–1296. 

Ng, K. C., Burhan, M., Shahzad, M. W., & Ismail, A. Bin. (2017). A universal isotherm model to capture adsorption uptake and energy distribution of porous heterogeneous Surface. Scientific Reports, 7(1), 1–11. 

Nguyen, V. H., Lamiel, C., Kharismadewi, D., Tran, V. C., & Shim, J. J. (2015). Covalently bonded reduced graphene oxide/polyaniline composite for electrochemical sensors and capacitors. Journal of Electroanalytical Chemistry, 758, 148–155. 

Obulapuram, P. K., Arfin, T., Mohammad, F., Khiste, S. K., Chavali, M., Albalawi, A. N., & Al-Lohedan, H. A. (2021). Adsorption, equilibrium isotherm, and thermodynamic studies towards the removal of reactive orange 16 dye using Cu(I)­polyaninile composite. Polymers, 13(20), 3490. 

Pang, Y. L., Lim, S., Ong, H. C., & Chong, W. T. (2016). Research progress on iron oxide-based magnetic materials: Synthesis techniques and photocatalytic applications. Ceramics International, 42(1), 9–34. 

Parkinson, G. S. (2016). Iron oxide surfaces. Surface Science Reports, 71(1), 272–365. 

Paton, K. R., Varrla, E., Backes, C., Smith, R. J., Khan, U., O’Neill, A., Boland, C., Lotya, M., Istrate, O. M., King, P., Higgins, T., Barwich, S., May, P., Puczkarski, P., Ahmed, I., Moebius, M., Pettersson, H., Long, E., Coelho, J., … Coleman, J. N. (2014). Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nature Materials, 13(6), 624–630. 

Pei, S., Wei, Q., Huang, K., Cheng, H., & Ren, W. (2018). Green synthesis of graphene oxide by seconds timescale water electrolytic oxidation. Nature Communications, 9(1), 1–9. 

Pethsangave, D. A., Khose, R. V., Wadekar, P. H., Kulal, D. K., & Some, S. (2020). One-pot synthetic approach for magnetically separable graphene nanocomposite for dye degradation. ChemistrySelect 5(4), 1516-1525. 

Qazi, U. Y., Iftikhar, R., Ikhlaq, A., Riaz, I., Jaleel, R., Nusrat, R., & Javaid, R. (2022). Application of Fe-RGO for the removal of dyes by catalytic ozonation process. Environmental Science and Pollution Research, 29(59), 89485–89497. 

Rajendran, A. (2017). Synthesis, characterization and electrical properties of nano metal and metal-oxide doped with conducting polymer composites by in-situ chemical polymerization. MOJ Polymer Science, 1(6), 2–6. 

Rauf, M. A., Meetani, M. A., & Hisaindee, S. (2011). An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transit ion metals. Desalination, 276(1–3), 13–27. 

Reddy, I. N., Reddy, C. V., Sreedhar, M., Shim, J., Cho, M., & Kim, D. (2019). Effect of ball milling on optical properties and visible photocatalytic activity of Fe doped ZnO nanoparticles. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 240(December 2018), 33–40. 

Robati, D., Mirza, B., Rajabi, M., Moradi, O., Tyagi, I., Agarwal, S., & Gupta, V. K. (2015). Removal of hazardous dyes-br 12 and methyl orange using graphene oxide as an adsorbent from aqueous phase. Chemical Engineering Journal, 284, 687– 697. 

Rodwihok, C., Wongratanaphisan, D., Ngo, Y. L. T., Khandelwal, M., Hur, S. H., & Chung, J. S. (2019). Effect of GO additive in ZnO/rGO nanocomposites with enhanced photosensitivity and photocatalytic activity. Nanomaterials, 9(10). 

Rossi, L. M., Costa, N. J. S., Silva, F. P., & Wojcieszak, R. (2014). Magnetic nanomaterials in catalysis: Advanced catalysts for magnetic separation and beyond. Green Chemistry, 16(6), 2906–2933. 

Saha, S., Chaudhary, N., Kumar, A., & Khanuja, M. (2020). Polymeric nanostructures for photocatalytic dye degradation: polyaniline for photocatalysis. SN Applied Sciences, 2(6). 

Sang,Y.,Liu,H.,&Umar,A.(2015).PhotocatalysisfromUV/Visto near-infrared light: Towards full solar-light spectrum activity. ChemCatChem, 7(4), 559–573. 

Sang, Y., Zhao, Z., Tian, J., Hao, P., Jiang, H., Liu, H., & Claverie, J. P. (2014). Enhanced photocatalytic property of reduced graphene oxide/TiO2 nanobelt surface heterostructures constructed by an in situ photochemical reduction method. Small, 10(18), 3775–3782. 

Santhosh, C., Kollu, P., Doshi, S., Sharma, M., Bahadur, D., Vanchinathan, M. T., Saravanan, P., Kim, B. S., & Grace, A. N. (2014). Adsorption, photodegradation and antibacterial study of graphene-Fe3O4 nanocomposite for multipurpose water purification application. RSC Advances, 4(54), 28300–28308. 

Saratale, R. G., Saratale, G. D., Chang, J. S., & Govindwar, S. P. (2011). Bacterial decolorization and degradation of azo dyes: A review. Journal of the Taiwan Institute of Chemical Engineers, 42(1), 138–157. 

Shao, W., Jamal, R., Xu, F., Ubul, A., & Abdiryim, T. (2012). The effect of a small amount of water on the structure and electrochemical properties of solid-state synthesized polyaniline. Materials, 5(10), 1811–1825. 

Shindhal, T., Rakholiya, P., Varjani, S., Pandey, A., Ngo, H. H., Guo, W., Ng, H. Y., & Taherzadeh, M. J. (2021). A critical review on advances in the practices and perspectives for the treatment of dye industry wastewater. Bioengineered, 12(1), 70–87. 

Shirakawa, H., Louis, E. J., MacDiarmid, A. G., Chiang, C. K., & Heeger, A. J. (1977). Synthesis of electrically conducting organic polymers: Halogen derivatives of polyacetylene, (CH)x. Journal of the Chemical Society, Chemical Communications, 16, 578–580. 

Singh, P., & Shukla, S. K. (2019). Advances in polyaniline-based nanocomposites. Journal of Materials Science, 1–35. 

Singh, S., Kapoor, D., Khasnabis, S., Singh, J., & Ramamurthy, P. C. (2021). Mechanism and kinetics of adsorption and removal of heavy metals from wastewater using nanomaterials. In Environmental Chemistry Letters (Vol. 19, Issue 3). Springer International Publishing. 

Sivarajasekar, N. (2015). Agriculture waste biomass valorisation for cationic dyes sequestration: a concise review. J. Chem. Pharm. Res, 7(9), 737–748. 

Sivaranjan, K., Padmaraj, O., Santhanalakshmi, J., Sathuvan, M., Sathiyaseelan, A., & Sagadevan, S. (2020). Effect of Hybrid mono/bimetallic Nanocomposites for an enhancement of Catalytic and Antimicrobial Activities. Scientific Reports, 10(1), 1–18. 

Skipka, K. J., & Theodore, L. (2014). Energy resources: availability, management, and environmental impacts. CRC Press. 

Sleiman, M., Vildozo, D., Ferronato, C., & Chovelon, J. M. (2007). Photocatalytic degradation of azo dye MetanilYellow: Optimization and kinetic modeling using a chemometric approach. Applied Catalysis B: Environmental, 77(1–2), 1–11. 

Srivastava, S., Sinha, R., & Roy, D. (2004). Toxicological effects of malachite green. Aquatic Toxicology, 66(3), 319–329. 

Sun, K., Wang, L., Wu, C., Deng, J., & Pan, K. (2017). Fabrication of a­Fe2O3@rGO/PAN Nanofiber Composite Membrane for Photocatalytic Degradation of Organic Dyes. Advanced Materials Interfaces, 4(24), 1–7. 

Sun, S. N.,Wei, C., Zhu, Z. Z., Hou, Y. L.,Venkatraman, S. S., & Xu, Z. C. (2014). Magnetic iron oxide nanoparticles: Synthesis and surface coating techniques for biomedical applications. Chinese Physics B, 23(3). 

Sun, Z., Fan, J., Feng, R.,Wang, M., Zhou,Y., & Zhang, L. (2021). Facile preparation of hierarchical heterostructured TiO2/Bi/Bi2MoO6 photocatalyst for phocatalytic degradation of toluene gas. Journal of Chemical Technology and Biotechnology, 96(6), 1732–1741. 

Sur, U. K. (2012). Graphene: A Rising Star on the Horizon of Materials Science. International Journal of Electrochemistry, 2012, 1–12. 

Suresh,R.,Giribabu,K.,Manigandan,R.,Mangalaraja,R.V.,JorgeYanez,S.,Stephen, A., & Narayanan, V. (2017). Synthesis of Ni0.2Fe1.8O3/polyaniline magnetic nanocomposite with excellent photocatalytic activity. Materials Letters, 208, 27– 30. 

Tahir, A. A., Upul Wijayantha, K. G., Saremi-Yarahmadi,S.,Maznar,M.,&McKee,V. (2009). Nanostructured a-Fe2O3 thin films for photoelectrochemical hydrogen generation. Chemistry of Materials, 21(16), 3763–3772. 

Tang, S. J., Lin, K.Y., Zhu,Y. R., Huang, H.Y., Ji,W. F.,Yang, C. C., Chao,Y. C.,Yeh, J. M., & Chiu, K. C. (2013). Structural and electrical characterization of polyanilines synthesized from chemical oxidative polymerization via doping/dedoping/re-doping processes. Journal of Physics D: Applied Physics, 46(50). 

Tanwar, R., & Mandal, U. K. (2019). Photocatalytic activity of Ni0.5Zn0.5Fe2O4@polyaniline decorated BiOCl for azo dye degradation under visible light-integrated role and degradation kinetics interpretation. RSC Advances, 9(16), 8977–8993. 

Tarcan, R., Todor-Boer, O., Petrovai, I., Leordean, C., Astilean, S., & Botiz, I. (2020). Reduced graphene oxide today. Journal of Materials Chemistry C, 8(4), 1198– 1224. 

Teja,A.S.,&Koh,P.Y.(2009).Synthesis,properties,and applicationsofmagneticiron oxide nanoparticles. Progress in Crystal Growth and Characterization of Materials, 55(1–2), 22–45. 

Thy, L. T. M., Thuong, N. H., Tu, T. H., Nam, H. M., Hieu, N. H., & Phong, M. T. (2019). Synthesis of magnetic iron oxide/graphene oxide nanocomposites for removal of cadmium ions from water. Advances in Natural Sciences: Nanoscience and Nanotechnology, 10(2), 025006. 

Tong, H., Ouyang, S., Bi, Y., Umezawa, N., Oshikiri, M., & Ye, J. (2012). Nanophotocatalytic materials: Possibilities and challenges. Advanced Materials, 24(2), 229–251. 

Tran, H. D., D’Arcy, J. M., Wang, Y., Beltramo, P. J., Strong, V. A., & Kaner, R. B. (2011). The oxidation of aniline to produce “polyaniline”: A process yielding many different nanoscale structures. Journal of Materials Chemistry, 21(11), 3534–3550. 

Tsang, C. H. A., Li, K., Zeng, Y., Zhao, W., Zhang, T., Zhan,Y., Xie, R., Leung, D. Y. C., & Huang, H. (2019). Titanium oxide based photocatalytic materials development and their role of in the air pollutants degradation: Overview and forecast. Environment International, 125, 200–228. 

Turczyn, R., Krukiewicz, K., Katunin, A., Sroka, J., & Sul, P. (2020). Fabrication and application of electrically conducting composites for electromagnetic interference shielding of remotely piloted aircraft systems. Composite Structures, 232, 111498. 

Uddin, F. (2021). Environmental hazard in textile dyeing wastewater from local textile industry. Cellulose, 28(17), 10715–10739. 

Verma, A. K., Dash, R. R., & Bhunia, P. (2012). A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. Journal of Environmental Management, 93(1), 154–168. 

Vikrant, K., Giri, B. S., Raza, N., Roy, K., Kim, K. H., Rai, B. N., & Singh, R. S. (2018). Recent advancements in bioremediation of dye: Current status and challenges. Bioresource Technology, 253, 355–367. 

Viswanathan, B. (2017). Photocatalytic Degradation of Dyes: An Overview. Current Catalysis, 7(2), 99–121. 

Wan, X., Zhan, Y., Long, Z., Zeng, G., & He, Y. (2017). Core@double-shell structured magnetic halloysite nanotube nano-hybrid as efficient recyclable adsorbent for methylene blue removal. Chemical Engineering Journal, 330, 491–504. 

Wan, Z., & Wang, J. (2017). Degradation of sulfamethazine using Fe3O4Mn3O4/reduced graphene oxide hybrid as Fenton-like catalyst. Journal of Hazardous Materials, 324, 653–664. 

Wang, C. Y., Böttcher, C., Bahnemann, D. W., & Dohrmann, J. K. (2003). A comparative study of nanometer sized Fe(III)-doped TiO2 photocatalysts: Synthesis, characterization and activity. Journal of Materials Chemistry, 13(9), 2322–2329. 

Wang, F.,Yu, X., Ge, M., Wu, S., Guan, J., Tang, J., Wu, X., & Ritchie, R. O. (2019). Facile self-assembly synthesis of .-Fe2O3 /graphene oxide for enhanced photo-Fenton reaction. Environmental Pollution, 248, 229–237. 

Wang, H., Zhang, L., Chen, Z., Hu, J., Li, S., Wang, Z., Liu, J., & Wang, X. (2014). Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances. Chemical Society Reviews, 43(15), 5234–5244. 

Wang, Le,Wei, H., Fan,Y., Gu, X., & Zhan, J. (2009). One-dimensional CdS/a-Fe2O3 and CdS/Fe3O4 heterostructures: Epitaxial and nonepitaxial growth and photocatalytic activity. Journal of Physical Chemistry C, 113(32), 14119–14125. 

Wang, Liqun, Tong, Y., Feng, J., Hou, J., Li, J., Hou, X., & Liang, J. (2019). G­C3N4based films: A rising star for photoelectrochemical water splitting. Sustainable Materials and Technologies, 19, e00089. 

Wang,Y., Yu, F., Zhu, M., Ma, C., Zhao, D., Wang, C., Zhou, A., Dai, B., Ji, J., &Guo, X. (2018). N-Doping of plasma exfoliated graphene oxide: Via dielectric barrier discharge plasma treatment for the oxygen reduction reaction. Journal of Materials Chemistry A, 6(5), 2011–2017. 

Wu, W., He, Q., & Jiang, C. (2008). Magnetic iron oxide nanoparticles: Synthesis and surface functionalization strategies. Nanoscale Research Letters, 3(11), 397–415. 

Xia, C.,Jia,Y.,Tao,M.,&Zhang,Q. (2013). Tuning theband gap ofhematite a-Fe2O3 by sulfur doping. In Physics Letters, Section A: General, Atomic and Solid State Physics (Vol. 377, Issues 31–33, pp. 1943–1947). 

Xiang,Q.,Yu,J.,&Jaroniec,M.(2012).Graphene-based semiconductor photocatalysts. Chemical Society Reviews, 41(2), 782–796. 

Yan, C., Zhang, Z., Wang, W., Ju, T., She, H., & Wang, Q. (2018). Synthesis and characterization of polyaniline-modified BiOI: a visible-light-response photocatalyst. Journal of Materials Science: Materials in Electronics, 29(21), 18343–18351. 

Yan,H.,Wang,X.,Yao,M.,&Yao,X.(2013).Band structuredesign of semiconductors for enhanced photocatalytic activity: The case of TiO2. Progress in Natural Science: Materials International, 23(4), 402–407. 

Yang, X., & Wang, D. (2018). Photocatalysis: From Fundamental Principles to Materials and Applications. ACS Applied Energy Materials, 1(12), 6657–6693. 

Yellappa,M.,Sravan,J.S.,Sarkar,O.,Reddy,Y.V.R.,&Mohan,S.V.(2019).Modified conductive polyaniline-carbon nanotube composite electrodes for bioelectricity generation and waste remediation. Bioresource Technology, 284, 148–154. 

Yin, Z., Zhou, H., Fu, C., Zhang, N., Liu, D., & Kuang, Y. (2016). Synthesis of curly graphene nanoribbon/polyaniline/MnO2 composite and its application in supercapacitor. RSC Advances, 6(47), 41142–41150. 

Yu, J., Yu, Y., Zhou, P., Xiao, W., & Cheng, B. (2014). Morphology-dependent photocatalytic H2-production activity of CdS. Applied Catalysis B: Environmental, 156–157, 184–191. 

Yu, Z., Hu, C., Dichiara, A. B., Jiang, W., & Gu, J. (2020). Cellulose nanofibril/carbon nanomaterial hybrid aerogels for adsorption removal of cationic and anionic organic dyes. Nanomaterials, 10(1), 1–20. https://doi.org/10.3390/nano10010169 

Zaaba, N. I., Foo, K. L., Hashim, U., Tan, S. J., Liu, W. W., & Voon, C. H. (2017). Synthesis of graphene oxide using modified hummers method: solvent influence. Procedia engineering, 184, 469-477.. 

Zhang, C., Shao, M., Ning, F., Xu, S., Li, Z., Wei, M., Evans, D. G., & Duan, X. (2015). Au nanoparticles sensitized ZnO nanorod@nanoplatelet core-shell arrays for enhanced photoelectrochemical water splitting. Nano Energy, 12, 231–239. 

Zhang, D., & Wang, Y. (2006). Synthesis and applications of one-dimensional nanostructured polyaniline: An overview. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 134(1), 9– 19. 

Zhang, H.,Lv, X., Li, Y.,Wang,Y., & Li, J. (2010). P25-Graphene composite as a high performance photocatalyst. ACS Nano, 4(1), 380–386. 

Zhang, L., Zhang, F., Yang, X., Long, G., Wu,Y., Zhang, T., Leng, K., Huang, Y., Ma, Y., Yu, A., & Chen, Y. (2013). Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors. Scientific Reports, 3, 1–9. 

Zhang, X., Goux, W. J., & Manohar, S. K. (2004). Synthesis of polyaniline nanofibers by “Nanofiber Seeding.” Journal of the American Chemical Society, 126(14), 4502–4503. 

Zhou, C., Yang, Y.,Zhu, Y., Ma,J.,Long, J., Yuan,R., Ding, Z.,Li, Z., &Xu, C.(2018). A graphene-hidden structure with diminished light shielding effect: More efficient graphene-involved composite photocatalysts. Catalysis Science and Technology, 8(18), 4734–4740. 

Zhou, W. J., Leng, Y. H., Hou, D. M., Li, H. D., Li, L. G., Li, G. Q., Liu, H., & Chen, S. W. (2014). Phase transformation and enhanced photocatalytic activity of S-doped Ag2O/TiO2 heterostructured nanobelts. Nanoscale, 6(9), 4698–4704. 

Zia, M., Phull, A. R., & Ali, J. S. (2016). Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnology, Science and Applications, 9, 49–67. 

Zoshki, A., Rahmani, M. B., Masdarolomoor, F., & Pilehrood, S. H. (2017). Room temperature gas sensing properties of polyaniline/ZnO nanocomposite thin films. Journal of Nanoelectronics and Optoelectronics, 12(5), 465–471. 

Zujovic, Z. D., Laslau, C., Bowmaker, G. A., Kilmartin, P. A., Webber, A. L., Brown, S. P., & Travas-Sejdic, J. (2010). Role of aniline oligomeric nanosheets in the formation of polyaniline nanotubes. Macromolecules, 43(2), 662-670. 

 


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to search page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.